| //===- MemProfiler.cpp - memory allocation and access profiler ------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file is a part of MemProfiler. Memory accesses are instrumented |
| // to increment the access count held in a shadow memory location, or |
| // alternatively to call into the runtime. Memory intrinsic calls (memmove, |
| // memcpy, memset) are changed to call the memory profiling runtime version |
| // instead. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Transforms/Instrumentation/MemProfiler.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/Analysis/MemoryBuiltins.h" |
| #include "llvm/Analysis/MemoryProfileInfo.h" |
| #include "llvm/Analysis/TargetLibraryInfo.h" |
| #include "llvm/Analysis/ValueTracking.h" |
| #include "llvm/IR/Constant.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/DiagnosticInfo.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/GlobalValue.h" |
| #include "llvm/IR/IRBuilder.h" |
| #include "llvm/IR/Instruction.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/IR/Value.h" |
| #include "llvm/ProfileData/InstrProf.h" |
| #include "llvm/ProfileData/InstrProfReader.h" |
| #include "llvm/Support/BLAKE3.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/HashBuilder.h" |
| #include "llvm/Support/VirtualFileSystem.h" |
| #include "llvm/TargetParser/Triple.h" |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| #include "llvm/Transforms/Utils/LongestCommonSequence.h" |
| #include "llvm/Transforms/Utils/ModuleUtils.h" |
| #include <map> |
| #include <set> |
| |
| using namespace llvm; |
| using namespace llvm::memprof; |
| |
| #define DEBUG_TYPE "memprof" |
| |
| namespace llvm { |
| extern cl::opt<bool> PGOWarnMissing; |
| extern cl::opt<bool> NoPGOWarnMismatch; |
| extern cl::opt<bool> NoPGOWarnMismatchComdatWeak; |
| } // namespace llvm |
| |
| constexpr int LLVM_MEM_PROFILER_VERSION = 1; |
| |
| // Size of memory mapped to a single shadow location. |
| constexpr uint64_t DefaultMemGranularity = 64; |
| |
| // Size of memory mapped to a single histogram bucket. |
| constexpr uint64_t HistogramGranularity = 8; |
| |
| // Scale from granularity down to shadow size. |
| constexpr uint64_t DefaultShadowScale = 3; |
| |
| constexpr char MemProfModuleCtorName[] = "memprof.module_ctor"; |
| constexpr uint64_t MemProfCtorAndDtorPriority = 1; |
| // On Emscripten, the system needs more than one priorities for constructors. |
| constexpr uint64_t MemProfEmscriptenCtorAndDtorPriority = 50; |
| constexpr char MemProfInitName[] = "__memprof_init"; |
| constexpr char MemProfVersionCheckNamePrefix[] = |
| "__memprof_version_mismatch_check_v"; |
| |
| constexpr char MemProfShadowMemoryDynamicAddress[] = |
| "__memprof_shadow_memory_dynamic_address"; |
| |
| constexpr char MemProfFilenameVar[] = "__memprof_profile_filename"; |
| |
| constexpr char MemProfHistogramFlagVar[] = "__memprof_histogram"; |
| |
| // Command-line flags. |
| |
| static cl::opt<bool> ClInsertVersionCheck( |
| "memprof-guard-against-version-mismatch", |
| cl::desc("Guard against compiler/runtime version mismatch."), cl::Hidden, |
| cl::init(true)); |
| |
| // This flag may need to be replaced with -f[no-]memprof-reads. |
| static cl::opt<bool> ClInstrumentReads("memprof-instrument-reads", |
| cl::desc("instrument read instructions"), |
| cl::Hidden, cl::init(true)); |
| |
| static cl::opt<bool> |
| ClInstrumentWrites("memprof-instrument-writes", |
| cl::desc("instrument write instructions"), cl::Hidden, |
| cl::init(true)); |
| |
| static cl::opt<bool> ClInstrumentAtomics( |
| "memprof-instrument-atomics", |
| cl::desc("instrument atomic instructions (rmw, cmpxchg)"), cl::Hidden, |
| cl::init(true)); |
| |
| static cl::opt<bool> ClUseCalls( |
| "memprof-use-callbacks", |
| cl::desc("Use callbacks instead of inline instrumentation sequences."), |
| cl::Hidden, cl::init(false)); |
| |
| static cl::opt<std::string> |
| ClMemoryAccessCallbackPrefix("memprof-memory-access-callback-prefix", |
| cl::desc("Prefix for memory access callbacks"), |
| cl::Hidden, cl::init("__memprof_")); |
| |
| // These flags allow to change the shadow mapping. |
| // The shadow mapping looks like |
| // Shadow = ((Mem & mask) >> scale) + offset |
| |
| static cl::opt<int> ClMappingScale("memprof-mapping-scale", |
| cl::desc("scale of memprof shadow mapping"), |
| cl::Hidden, cl::init(DefaultShadowScale)); |
| |
| static cl::opt<int> |
| ClMappingGranularity("memprof-mapping-granularity", |
| cl::desc("granularity of memprof shadow mapping"), |
| cl::Hidden, cl::init(DefaultMemGranularity)); |
| |
| static cl::opt<bool> ClStack("memprof-instrument-stack", |
| cl::desc("Instrument scalar stack variables"), |
| cl::Hidden, cl::init(false)); |
| |
| // Debug flags. |
| |
| static cl::opt<int> ClDebug("memprof-debug", cl::desc("debug"), cl::Hidden, |
| cl::init(0)); |
| |
| static cl::opt<std::string> ClDebugFunc("memprof-debug-func", cl::Hidden, |
| cl::desc("Debug func")); |
| |
| static cl::opt<int> ClDebugMin("memprof-debug-min", cl::desc("Debug min inst"), |
| cl::Hidden, cl::init(-1)); |
| |
| static cl::opt<int> ClDebugMax("memprof-debug-max", cl::desc("Debug max inst"), |
| cl::Hidden, cl::init(-1)); |
| |
| // By default disable matching of allocation profiles onto operator new that |
| // already explicitly pass a hot/cold hint, since we don't currently |
| // override these hints anyway. |
| static cl::opt<bool> ClMemProfMatchHotColdNew( |
| "memprof-match-hot-cold-new", |
| cl::desc( |
| "Match allocation profiles onto existing hot/cold operator new calls"), |
| cl::Hidden, cl::init(false)); |
| |
| static cl::opt<bool> ClHistogram("memprof-histogram", |
| cl::desc("Collect access count histograms"), |
| cl::Hidden, cl::init(false)); |
| |
| static cl::opt<bool> |
| ClPrintMemProfMatchInfo("memprof-print-match-info", |
| cl::desc("Print matching stats for each allocation " |
| "context in this module's profiles"), |
| cl::Hidden, cl::init(false)); |
| |
| static cl::opt<std::string> |
| MemprofRuntimeDefaultOptions("memprof-runtime-default-options", |
| cl::desc("The default memprof options"), |
| cl::Hidden, cl::init("")); |
| |
| static cl::opt<bool> |
| SalvageStaleProfile("memprof-salvage-stale-profile", |
| cl::desc("Salvage stale MemProf profile"), |
| cl::init(false), cl::Hidden); |
| |
| cl::opt<unsigned> MinClonedColdBytePercent( |
| "memprof-cloning-cold-threshold", cl::init(100), cl::Hidden, |
| cl::desc("Min percent of cold bytes to hint alloc cold during cloning")); |
| |
| extern cl::opt<bool> MemProfReportHintedSizes; |
| |
| static cl::opt<unsigned> MinMatchedColdBytePercent( |
| "memprof-matching-cold-threshold", cl::init(100), cl::Hidden, |
| cl::desc("Min percent of cold bytes matched to hint allocation cold")); |
| |
| // Instrumentation statistics |
| STATISTIC(NumInstrumentedReads, "Number of instrumented reads"); |
| STATISTIC(NumInstrumentedWrites, "Number of instrumented writes"); |
| STATISTIC(NumSkippedStackReads, "Number of non-instrumented stack reads"); |
| STATISTIC(NumSkippedStackWrites, "Number of non-instrumented stack writes"); |
| |
| // Matching statistics |
| STATISTIC(NumOfMemProfMissing, "Number of functions without memory profile."); |
| STATISTIC(NumOfMemProfMismatch, |
| "Number of functions having mismatched memory profile hash."); |
| STATISTIC(NumOfMemProfFunc, "Number of functions having valid memory profile."); |
| STATISTIC(NumOfMemProfAllocContextProfiles, |
| "Number of alloc contexts in memory profile."); |
| STATISTIC(NumOfMemProfCallSiteProfiles, |
| "Number of callsites in memory profile."); |
| STATISTIC(NumOfMemProfMatchedAllocContexts, |
| "Number of matched memory profile alloc contexts."); |
| STATISTIC(NumOfMemProfMatchedAllocs, |
| "Number of matched memory profile allocs."); |
| STATISTIC(NumOfMemProfMatchedCallSites, |
| "Number of matched memory profile callsites."); |
| |
| namespace { |
| |
| /// This struct defines the shadow mapping using the rule: |
| /// shadow = ((mem & mask) >> Scale) ADD DynamicShadowOffset. |
| struct ShadowMapping { |
| ShadowMapping() { |
| Scale = ClMappingScale; |
| Granularity = ClHistogram ? HistogramGranularity : ClMappingGranularity; |
| Mask = ~(Granularity - 1); |
| } |
| |
| int Scale; |
| int Granularity; |
| uint64_t Mask; // Computed as ~(Granularity-1) |
| }; |
| |
| static uint64_t getCtorAndDtorPriority(Triple &TargetTriple) { |
| return TargetTriple.isOSEmscripten() ? MemProfEmscriptenCtorAndDtorPriority |
| : MemProfCtorAndDtorPriority; |
| } |
| |
| struct InterestingMemoryAccess { |
| Value *Addr = nullptr; |
| bool IsWrite; |
| Type *AccessTy; |
| Value *MaybeMask = nullptr; |
| }; |
| |
| /// Instrument the code in module to profile memory accesses. |
| class MemProfiler { |
| public: |
| MemProfiler(Module &M) { |
| C = &(M.getContext()); |
| LongSize = M.getDataLayout().getPointerSizeInBits(); |
| IntptrTy = Type::getIntNTy(*C, LongSize); |
| PtrTy = PointerType::getUnqual(*C); |
| } |
| |
| /// If it is an interesting memory access, populate information |
| /// about the access and return a InterestingMemoryAccess struct. |
| /// Otherwise return std::nullopt. |
| std::optional<InterestingMemoryAccess> |
| isInterestingMemoryAccess(Instruction *I) const; |
| |
| void instrumentMop(Instruction *I, const DataLayout &DL, |
| InterestingMemoryAccess &Access); |
| void instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore, |
| Value *Addr, bool IsWrite); |
| void instrumentMaskedLoadOrStore(const DataLayout &DL, Value *Mask, |
| Instruction *I, Value *Addr, Type *AccessTy, |
| bool IsWrite); |
| void instrumentMemIntrinsic(MemIntrinsic *MI); |
| Value *memToShadow(Value *Shadow, IRBuilder<> &IRB); |
| bool instrumentFunction(Function &F); |
| bool maybeInsertMemProfInitAtFunctionEntry(Function &F); |
| bool insertDynamicShadowAtFunctionEntry(Function &F); |
| |
| private: |
| void initializeCallbacks(Module &M); |
| |
| LLVMContext *C; |
| int LongSize; |
| Type *IntptrTy; |
| PointerType *PtrTy; |
| ShadowMapping Mapping; |
| |
| // These arrays is indexed by AccessIsWrite |
| FunctionCallee MemProfMemoryAccessCallback[2]; |
| |
| FunctionCallee MemProfMemmove, MemProfMemcpy, MemProfMemset; |
| Value *DynamicShadowOffset = nullptr; |
| }; |
| |
| class ModuleMemProfiler { |
| public: |
| ModuleMemProfiler(Module &M) { TargetTriple = Triple(M.getTargetTriple()); } |
| |
| bool instrumentModule(Module &); |
| |
| private: |
| Triple TargetTriple; |
| ShadowMapping Mapping; |
| Function *MemProfCtorFunction = nullptr; |
| }; |
| |
| } // end anonymous namespace |
| |
| MemProfilerPass::MemProfilerPass() = default; |
| |
| PreservedAnalyses MemProfilerPass::run(Function &F, |
| AnalysisManager<Function> &AM) { |
| assert((!ClHistogram || ClMappingGranularity == DefaultMemGranularity) && |
| "Memprof with histogram only supports default mapping granularity"); |
| Module &M = *F.getParent(); |
| MemProfiler Profiler(M); |
| if (Profiler.instrumentFunction(F)) |
| return PreservedAnalyses::none(); |
| return PreservedAnalyses::all(); |
| } |
| |
| ModuleMemProfilerPass::ModuleMemProfilerPass() = default; |
| |
| PreservedAnalyses ModuleMemProfilerPass::run(Module &M, |
| AnalysisManager<Module> &AM) { |
| |
| ModuleMemProfiler Profiler(M); |
| if (Profiler.instrumentModule(M)) |
| return PreservedAnalyses::none(); |
| return PreservedAnalyses::all(); |
| } |
| |
| Value *MemProfiler::memToShadow(Value *Shadow, IRBuilder<> &IRB) { |
| // (Shadow & mask) >> scale |
| Shadow = IRB.CreateAnd(Shadow, Mapping.Mask); |
| Shadow = IRB.CreateLShr(Shadow, Mapping.Scale); |
| // (Shadow >> scale) | offset |
| assert(DynamicShadowOffset); |
| return IRB.CreateAdd(Shadow, DynamicShadowOffset); |
| } |
| |
| // Instrument memset/memmove/memcpy |
| void MemProfiler::instrumentMemIntrinsic(MemIntrinsic *MI) { |
| IRBuilder<> IRB(MI); |
| if (isa<MemTransferInst>(MI)) { |
| IRB.CreateCall(isa<MemMoveInst>(MI) ? MemProfMemmove : MemProfMemcpy, |
| {MI->getOperand(0), MI->getOperand(1), |
| IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)}); |
| } else if (isa<MemSetInst>(MI)) { |
| IRB.CreateCall( |
| MemProfMemset, |
| {MI->getOperand(0), |
| IRB.CreateIntCast(MI->getOperand(1), IRB.getInt32Ty(), false), |
| IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)}); |
| } |
| MI->eraseFromParent(); |
| } |
| |
| std::optional<InterestingMemoryAccess> |
| MemProfiler::isInterestingMemoryAccess(Instruction *I) const { |
| // Do not instrument the load fetching the dynamic shadow address. |
| if (DynamicShadowOffset == I) |
| return std::nullopt; |
| |
| InterestingMemoryAccess Access; |
| |
| if (LoadInst *LI = dyn_cast<LoadInst>(I)) { |
| if (!ClInstrumentReads) |
| return std::nullopt; |
| Access.IsWrite = false; |
| Access.AccessTy = LI->getType(); |
| Access.Addr = LI->getPointerOperand(); |
| } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { |
| if (!ClInstrumentWrites) |
| return std::nullopt; |
| Access.IsWrite = true; |
| Access.AccessTy = SI->getValueOperand()->getType(); |
| Access.Addr = SI->getPointerOperand(); |
| } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { |
| if (!ClInstrumentAtomics) |
| return std::nullopt; |
| Access.IsWrite = true; |
| Access.AccessTy = RMW->getValOperand()->getType(); |
| Access.Addr = RMW->getPointerOperand(); |
| } else if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) { |
| if (!ClInstrumentAtomics) |
| return std::nullopt; |
| Access.IsWrite = true; |
| Access.AccessTy = XCHG->getCompareOperand()->getType(); |
| Access.Addr = XCHG->getPointerOperand(); |
| } else if (auto *CI = dyn_cast<CallInst>(I)) { |
| auto *F = CI->getCalledFunction(); |
| if (F && (F->getIntrinsicID() == Intrinsic::masked_load || |
| F->getIntrinsicID() == Intrinsic::masked_store)) { |
| unsigned OpOffset = 0; |
| if (F->getIntrinsicID() == Intrinsic::masked_store) { |
| if (!ClInstrumentWrites) |
| return std::nullopt; |
| // Masked store has an initial operand for the value. |
| OpOffset = 1; |
| Access.AccessTy = CI->getArgOperand(0)->getType(); |
| Access.IsWrite = true; |
| } else { |
| if (!ClInstrumentReads) |
| return std::nullopt; |
| Access.AccessTy = CI->getType(); |
| Access.IsWrite = false; |
| } |
| |
| auto *BasePtr = CI->getOperand(0 + OpOffset); |
| Access.MaybeMask = CI->getOperand(2 + OpOffset); |
| Access.Addr = BasePtr; |
| } |
| } |
| |
| if (!Access.Addr) |
| return std::nullopt; |
| |
| // Do not instrument accesses from different address spaces; we cannot deal |
| // with them. |
| Type *PtrTy = cast<PointerType>(Access.Addr->getType()->getScalarType()); |
| if (PtrTy->getPointerAddressSpace() != 0) |
| return std::nullopt; |
| |
| // Ignore swifterror addresses. |
| // swifterror memory addresses are mem2reg promoted by instruction |
| // selection. As such they cannot have regular uses like an instrumentation |
| // function and it makes no sense to track them as memory. |
| if (Access.Addr->isSwiftError()) |
| return std::nullopt; |
| |
| // Peel off GEPs and BitCasts. |
| auto *Addr = Access.Addr->stripInBoundsOffsets(); |
| |
| if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) { |
| // Do not instrument PGO counter updates. |
| if (GV->hasSection()) { |
| StringRef SectionName = GV->getSection(); |
| // Check if the global is in the PGO counters section. |
| auto OF = Triple(I->getModule()->getTargetTriple()).getObjectFormat(); |
| if (SectionName.ends_with( |
| getInstrProfSectionName(IPSK_cnts, OF, /*AddSegmentInfo=*/false))) |
| return std::nullopt; |
| } |
| |
| // Do not instrument accesses to LLVM internal variables. |
| if (GV->getName().starts_with("__llvm")) |
| return std::nullopt; |
| } |
| |
| return Access; |
| } |
| |
| void MemProfiler::instrumentMaskedLoadOrStore(const DataLayout &DL, Value *Mask, |
| Instruction *I, Value *Addr, |
| Type *AccessTy, bool IsWrite) { |
| auto *VTy = cast<FixedVectorType>(AccessTy); |
| unsigned Num = VTy->getNumElements(); |
| auto *Zero = ConstantInt::get(IntptrTy, 0); |
| for (unsigned Idx = 0; Idx < Num; ++Idx) { |
| Value *InstrumentedAddress = nullptr; |
| Instruction *InsertBefore = I; |
| if (auto *Vector = dyn_cast<ConstantVector>(Mask)) { |
| // dyn_cast as we might get UndefValue |
| if (auto *Masked = dyn_cast<ConstantInt>(Vector->getOperand(Idx))) { |
| if (Masked->isZero()) |
| // Mask is constant false, so no instrumentation needed. |
| continue; |
| // If we have a true or undef value, fall through to instrumentAddress. |
| // with InsertBefore == I |
| } |
| } else { |
| IRBuilder<> IRB(I); |
| Value *MaskElem = IRB.CreateExtractElement(Mask, Idx); |
| Instruction *ThenTerm = SplitBlockAndInsertIfThen(MaskElem, I, false); |
| InsertBefore = ThenTerm; |
| } |
| |
| IRBuilder<> IRB(InsertBefore); |
| InstrumentedAddress = |
| IRB.CreateGEP(VTy, Addr, {Zero, ConstantInt::get(IntptrTy, Idx)}); |
| instrumentAddress(I, InsertBefore, InstrumentedAddress, IsWrite); |
| } |
| } |
| |
| void MemProfiler::instrumentMop(Instruction *I, const DataLayout &DL, |
| InterestingMemoryAccess &Access) { |
| // Skip instrumentation of stack accesses unless requested. |
| if (!ClStack && isa<AllocaInst>(getUnderlyingObject(Access.Addr))) { |
| if (Access.IsWrite) |
| ++NumSkippedStackWrites; |
| else |
| ++NumSkippedStackReads; |
| return; |
| } |
| |
| if (Access.IsWrite) |
| NumInstrumentedWrites++; |
| else |
| NumInstrumentedReads++; |
| |
| if (Access.MaybeMask) { |
| instrumentMaskedLoadOrStore(DL, Access.MaybeMask, I, Access.Addr, |
| Access.AccessTy, Access.IsWrite); |
| } else { |
| // Since the access counts will be accumulated across the entire allocation, |
| // we only update the shadow access count for the first location and thus |
| // don't need to worry about alignment and type size. |
| instrumentAddress(I, I, Access.Addr, Access.IsWrite); |
| } |
| } |
| |
| void MemProfiler::instrumentAddress(Instruction *OrigIns, |
| Instruction *InsertBefore, Value *Addr, |
| bool IsWrite) { |
| IRBuilder<> IRB(InsertBefore); |
| Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy); |
| |
| if (ClUseCalls) { |
| IRB.CreateCall(MemProfMemoryAccessCallback[IsWrite], AddrLong); |
| return; |
| } |
| |
| Type *ShadowTy = ClHistogram ? Type::getInt8Ty(*C) : Type::getInt64Ty(*C); |
| Type *ShadowPtrTy = PointerType::get(*C, 0); |
| |
| Value *ShadowPtr = memToShadow(AddrLong, IRB); |
| Value *ShadowAddr = IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy); |
| Value *ShadowValue = IRB.CreateLoad(ShadowTy, ShadowAddr); |
| // If we are profiling with histograms, add overflow protection at 255. |
| if (ClHistogram) { |
| Value *MaxCount = ConstantInt::get(Type::getInt8Ty(*C), 255); |
| Value *Cmp = IRB.CreateICmpULT(ShadowValue, MaxCount); |
| Instruction *IncBlock = |
| SplitBlockAndInsertIfThen(Cmp, InsertBefore, /*Unreachable=*/false); |
| IRB.SetInsertPoint(IncBlock); |
| } |
| Value *Inc = ConstantInt::get(ShadowTy, 1); |
| ShadowValue = IRB.CreateAdd(ShadowValue, Inc); |
| IRB.CreateStore(ShadowValue, ShadowAddr); |
| } |
| |
| // Create the variable for the profile file name. |
| void createProfileFileNameVar(Module &M) { |
| const MDString *MemProfFilename = |
| dyn_cast_or_null<MDString>(M.getModuleFlag("MemProfProfileFilename")); |
| if (!MemProfFilename) |
| return; |
| assert(!MemProfFilename->getString().empty() && |
| "Unexpected MemProfProfileFilename metadata with empty string"); |
| Constant *ProfileNameConst = ConstantDataArray::getString( |
| M.getContext(), MemProfFilename->getString(), true); |
| GlobalVariable *ProfileNameVar = new GlobalVariable( |
| M, ProfileNameConst->getType(), /*isConstant=*/true, |
| GlobalValue::WeakAnyLinkage, ProfileNameConst, MemProfFilenameVar); |
| Triple TT(M.getTargetTriple()); |
| if (TT.supportsCOMDAT()) { |
| ProfileNameVar->setLinkage(GlobalValue::ExternalLinkage); |
| ProfileNameVar->setComdat(M.getOrInsertComdat(MemProfFilenameVar)); |
| } |
| } |
| |
| // Set MemprofHistogramFlag as a Global veriable in IR. This makes it accessible |
| // to the runtime, changing shadow count behavior. |
| void createMemprofHistogramFlagVar(Module &M) { |
| const StringRef VarName(MemProfHistogramFlagVar); |
| Type *IntTy1 = Type::getInt1Ty(M.getContext()); |
| auto MemprofHistogramFlag = new GlobalVariable( |
| M, IntTy1, true, GlobalValue::WeakAnyLinkage, |
| Constant::getIntegerValue(IntTy1, APInt(1, ClHistogram)), VarName); |
| Triple TT(M.getTargetTriple()); |
| if (TT.supportsCOMDAT()) { |
| MemprofHistogramFlag->setLinkage(GlobalValue::ExternalLinkage); |
| MemprofHistogramFlag->setComdat(M.getOrInsertComdat(VarName)); |
| } |
| appendToCompilerUsed(M, MemprofHistogramFlag); |
| } |
| |
| void createMemprofDefaultOptionsVar(Module &M) { |
| Constant *OptionsConst = ConstantDataArray::getString( |
| M.getContext(), MemprofRuntimeDefaultOptions, /*AddNull=*/true); |
| GlobalVariable *OptionsVar = |
| new GlobalVariable(M, OptionsConst->getType(), /*isConstant=*/true, |
| GlobalValue::WeakAnyLinkage, OptionsConst, |
| "__memprof_default_options_str"); |
| Triple TT(M.getTargetTriple()); |
| if (TT.supportsCOMDAT()) { |
| OptionsVar->setLinkage(GlobalValue::ExternalLinkage); |
| OptionsVar->setComdat(M.getOrInsertComdat(OptionsVar->getName())); |
| } |
| } |
| |
| bool ModuleMemProfiler::instrumentModule(Module &M) { |
| |
| // Create a module constructor. |
| std::string MemProfVersion = std::to_string(LLVM_MEM_PROFILER_VERSION); |
| std::string VersionCheckName = |
| ClInsertVersionCheck ? (MemProfVersionCheckNamePrefix + MemProfVersion) |
| : ""; |
| std::tie(MemProfCtorFunction, std::ignore) = |
| createSanitizerCtorAndInitFunctions(M, MemProfModuleCtorName, |
| MemProfInitName, /*InitArgTypes=*/{}, |
| /*InitArgs=*/{}, VersionCheckName); |
| |
| const uint64_t Priority = getCtorAndDtorPriority(TargetTriple); |
| appendToGlobalCtors(M, MemProfCtorFunction, Priority); |
| |
| createProfileFileNameVar(M); |
| |
| createMemprofHistogramFlagVar(M); |
| |
| createMemprofDefaultOptionsVar(M); |
| |
| return true; |
| } |
| |
| void MemProfiler::initializeCallbacks(Module &M) { |
| IRBuilder<> IRB(*C); |
| |
| for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) { |
| const std::string TypeStr = AccessIsWrite ? "store" : "load"; |
| const std::string HistPrefix = ClHistogram ? "hist_" : ""; |
| |
| SmallVector<Type *, 2> Args1{1, IntptrTy}; |
| MemProfMemoryAccessCallback[AccessIsWrite] = M.getOrInsertFunction( |
| ClMemoryAccessCallbackPrefix + HistPrefix + TypeStr, |
| FunctionType::get(IRB.getVoidTy(), Args1, false)); |
| } |
| MemProfMemmove = M.getOrInsertFunction( |
| ClMemoryAccessCallbackPrefix + "memmove", PtrTy, PtrTy, PtrTy, IntptrTy); |
| MemProfMemcpy = M.getOrInsertFunction(ClMemoryAccessCallbackPrefix + "memcpy", |
| PtrTy, PtrTy, PtrTy, IntptrTy); |
| MemProfMemset = |
| M.getOrInsertFunction(ClMemoryAccessCallbackPrefix + "memset", PtrTy, |
| PtrTy, IRB.getInt32Ty(), IntptrTy); |
| } |
| |
| bool MemProfiler::maybeInsertMemProfInitAtFunctionEntry(Function &F) { |
| // For each NSObject descendant having a +load method, this method is invoked |
| // by the ObjC runtime before any of the static constructors is called. |
| // Therefore we need to instrument such methods with a call to __memprof_init |
| // at the beginning in order to initialize our runtime before any access to |
| // the shadow memory. |
| // We cannot just ignore these methods, because they may call other |
| // instrumented functions. |
| if (F.getName().contains(" load]")) { |
| FunctionCallee MemProfInitFunction = |
| declareSanitizerInitFunction(*F.getParent(), MemProfInitName, {}); |
| IRBuilder<> IRB(&F.front(), F.front().begin()); |
| IRB.CreateCall(MemProfInitFunction, {}); |
| return true; |
| } |
| return false; |
| } |
| |
| bool MemProfiler::insertDynamicShadowAtFunctionEntry(Function &F) { |
| IRBuilder<> IRB(&F.front().front()); |
| Value *GlobalDynamicAddress = F.getParent()->getOrInsertGlobal( |
| MemProfShadowMemoryDynamicAddress, IntptrTy); |
| if (F.getParent()->getPICLevel() == PICLevel::NotPIC) |
| cast<GlobalVariable>(GlobalDynamicAddress)->setDSOLocal(true); |
| DynamicShadowOffset = IRB.CreateLoad(IntptrTy, GlobalDynamicAddress); |
| return true; |
| } |
| |
| bool MemProfiler::instrumentFunction(Function &F) { |
| if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage) |
| return false; |
| if (ClDebugFunc == F.getName()) |
| return false; |
| if (F.getName().starts_with("__memprof_")) |
| return false; |
| |
| bool FunctionModified = false; |
| |
| // If needed, insert __memprof_init. |
| // This function needs to be called even if the function body is not |
| // instrumented. |
| if (maybeInsertMemProfInitAtFunctionEntry(F)) |
| FunctionModified = true; |
| |
| LLVM_DEBUG(dbgs() << "MEMPROF instrumenting:\n" << F << "\n"); |
| |
| initializeCallbacks(*F.getParent()); |
| |
| SmallVector<Instruction *, 16> ToInstrument; |
| |
| // Fill the set of memory operations to instrument. |
| for (auto &BB : F) { |
| for (auto &Inst : BB) { |
| if (isInterestingMemoryAccess(&Inst) || isa<MemIntrinsic>(Inst)) |
| ToInstrument.push_back(&Inst); |
| } |
| } |
| |
| if (ToInstrument.empty()) { |
| LLVM_DEBUG(dbgs() << "MEMPROF done instrumenting: " << FunctionModified |
| << " " << F << "\n"); |
| |
| return FunctionModified; |
| } |
| |
| FunctionModified |= insertDynamicShadowAtFunctionEntry(F); |
| |
| int NumInstrumented = 0; |
| for (auto *Inst : ToInstrument) { |
| if (ClDebugMin < 0 || ClDebugMax < 0 || |
| (NumInstrumented >= ClDebugMin && NumInstrumented <= ClDebugMax)) { |
| std::optional<InterestingMemoryAccess> Access = |
| isInterestingMemoryAccess(Inst); |
| if (Access) |
| instrumentMop(Inst, F.getDataLayout(), *Access); |
| else |
| instrumentMemIntrinsic(cast<MemIntrinsic>(Inst)); |
| } |
| NumInstrumented++; |
| } |
| |
| if (NumInstrumented > 0) |
| FunctionModified = true; |
| |
| LLVM_DEBUG(dbgs() << "MEMPROF done instrumenting: " << FunctionModified << " " |
| << F << "\n"); |
| |
| return FunctionModified; |
| } |
| |
| static void addCallsiteMetadata(Instruction &I, |
| ArrayRef<uint64_t> InlinedCallStack, |
| LLVMContext &Ctx) { |
| I.setMetadata(LLVMContext::MD_callsite, |
| buildCallstackMetadata(InlinedCallStack, Ctx)); |
| } |
| |
| static uint64_t computeStackId(GlobalValue::GUID Function, uint32_t LineOffset, |
| uint32_t Column) { |
| llvm::HashBuilder<llvm::TruncatedBLAKE3<8>, llvm::endianness::little> |
| HashBuilder; |
| HashBuilder.add(Function, LineOffset, Column); |
| llvm::BLAKE3Result<8> Hash = HashBuilder.final(); |
| uint64_t Id; |
| std::memcpy(&Id, Hash.data(), sizeof(Hash)); |
| return Id; |
| } |
| |
| static uint64_t computeStackId(const memprof::Frame &Frame) { |
| return computeStackId(Frame.Function, Frame.LineOffset, Frame.Column); |
| } |
| |
| // Helper to generate a single hash id for a given callstack, used for emitting |
| // matching statistics and useful for uniquing such statistics across modules. |
| static uint64_t computeFullStackId(ArrayRef<Frame> CallStack) { |
| llvm::HashBuilder<llvm::TruncatedBLAKE3<8>, llvm::endianness::little> |
| HashBuilder; |
| for (auto &F : CallStack) |
| HashBuilder.add(F.Function, F.LineOffset, F.Column); |
| llvm::BLAKE3Result<8> Hash = HashBuilder.final(); |
| uint64_t Id; |
| std::memcpy(&Id, Hash.data(), sizeof(Hash)); |
| return Id; |
| } |
| |
| static AllocationType addCallStack(CallStackTrie &AllocTrie, |
| const AllocationInfo *AllocInfo, |
| uint64_t FullStackId) { |
| SmallVector<uint64_t> StackIds; |
| for (const auto &StackFrame : AllocInfo->CallStack) |
| StackIds.push_back(computeStackId(StackFrame)); |
| auto AllocType = getAllocType(AllocInfo->Info.getTotalLifetimeAccessDensity(), |
| AllocInfo->Info.getAllocCount(), |
| AllocInfo->Info.getTotalLifetime()); |
| std::vector<ContextTotalSize> ContextSizeInfo; |
| if (MemProfReportHintedSizes || MinClonedColdBytePercent < 100) { |
| auto TotalSize = AllocInfo->Info.getTotalSize(); |
| assert(TotalSize); |
| assert(FullStackId != 0); |
| ContextSizeInfo.push_back({FullStackId, TotalSize}); |
| } |
| AllocTrie.addCallStack(AllocType, StackIds, std::move(ContextSizeInfo)); |
| return AllocType; |
| } |
| |
| // Helper to compare the InlinedCallStack computed from an instruction's debug |
| // info to a list of Frames from profile data (either the allocation data or a |
| // callsite). For callsites, the StartIndex to use in the Frame array may be |
| // non-zero. |
| static bool |
| stackFrameIncludesInlinedCallStack(ArrayRef<Frame> ProfileCallStack, |
| ArrayRef<uint64_t> InlinedCallStack) { |
| auto StackFrame = ProfileCallStack.begin(); |
| auto InlCallStackIter = InlinedCallStack.begin(); |
| for (; StackFrame != ProfileCallStack.end() && |
| InlCallStackIter != InlinedCallStack.end(); |
| ++StackFrame, ++InlCallStackIter) { |
| uint64_t StackId = computeStackId(*StackFrame); |
| if (StackId != *InlCallStackIter) |
| return false; |
| } |
| // Return true if we found and matched all stack ids from the call |
| // instruction. |
| return InlCallStackIter == InlinedCallStack.end(); |
| } |
| |
| static bool isAllocationWithHotColdVariant(const Function *Callee, |
| const TargetLibraryInfo &TLI) { |
| if (!Callee) |
| return false; |
| LibFunc Func; |
| if (!TLI.getLibFunc(*Callee, Func)) |
| return false; |
| switch (Func) { |
| case LibFunc_Znwm: |
| case LibFunc_ZnwmRKSt9nothrow_t: |
| case LibFunc_ZnwmSt11align_val_t: |
| case LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t: |
| case LibFunc_Znam: |
| case LibFunc_ZnamRKSt9nothrow_t: |
| case LibFunc_ZnamSt11align_val_t: |
| case LibFunc_ZnamSt11align_val_tRKSt9nothrow_t: |
| case LibFunc_size_returning_new: |
| case LibFunc_size_returning_new_aligned: |
| return true; |
| case LibFunc_Znwm12__hot_cold_t: |
| case LibFunc_ZnwmRKSt9nothrow_t12__hot_cold_t: |
| case LibFunc_ZnwmSt11align_val_t12__hot_cold_t: |
| case LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t12__hot_cold_t: |
| case LibFunc_Znam12__hot_cold_t: |
| case LibFunc_ZnamRKSt9nothrow_t12__hot_cold_t: |
| case LibFunc_ZnamSt11align_val_t12__hot_cold_t: |
| case LibFunc_ZnamSt11align_val_tRKSt9nothrow_t12__hot_cold_t: |
| case LibFunc_size_returning_new_hot_cold: |
| case LibFunc_size_returning_new_aligned_hot_cold: |
| return ClMemProfMatchHotColdNew; |
| default: |
| return false; |
| } |
| } |
| |
| struct AllocMatchInfo { |
| uint64_t TotalSize = 0; |
| AllocationType AllocType = AllocationType::None; |
| bool Matched = false; |
| }; |
| |
| DenseMap<uint64_t, SmallVector<CallEdgeTy, 0>> |
| memprof::extractCallsFromIR(Module &M, const TargetLibraryInfo &TLI, |
| function_ref<bool(uint64_t)> IsPresentInProfile) { |
| DenseMap<uint64_t, SmallVector<CallEdgeTy, 0>> Calls; |
| |
| auto GetOffset = [](const DILocation *DIL) { |
| return (DIL->getLine() - DIL->getScope()->getSubprogram()->getLine()) & |
| 0xffff; |
| }; |
| |
| for (Function &F : M) { |
| if (F.isDeclaration()) |
| continue; |
| |
| for (auto &BB : F) { |
| for (auto &I : BB) { |
| if (!isa<CallBase>(&I) || isa<IntrinsicInst>(&I)) |
| continue; |
| |
| auto *CB = dyn_cast<CallBase>(&I); |
| auto *CalledFunction = CB->getCalledFunction(); |
| // Disregard indirect calls and intrinsics. |
| if (!CalledFunction || CalledFunction->isIntrinsic()) |
| continue; |
| |
| StringRef CalleeName = CalledFunction->getName(); |
| // True if we are calling a heap allocation function that supports |
| // hot/cold variants. |
| bool IsAlloc = isAllocationWithHotColdVariant(CalledFunction, TLI); |
| // True for the first iteration below, indicating that we are looking at |
| // a leaf node. |
| bool IsLeaf = true; |
| for (const DILocation *DIL = I.getDebugLoc(); DIL; |
| DIL = DIL->getInlinedAt()) { |
| StringRef CallerName = DIL->getSubprogramLinkageName(); |
| assert(!CallerName.empty() && |
| "Be sure to enable -fdebug-info-for-profiling"); |
| uint64_t CallerGUID = IndexedMemProfRecord::getGUID(CallerName); |
| uint64_t CalleeGUID = IndexedMemProfRecord::getGUID(CalleeName); |
| // Pretend that we are calling a function with GUID == 0 if we are |
| // in the inline stack leading to a heap allocation function. |
| if (IsAlloc) { |
| if (IsLeaf) { |
| // For leaf nodes, set CalleeGUID to 0 without consulting |
| // IsPresentInProfile. |
| CalleeGUID = 0; |
| } else if (!IsPresentInProfile(CalleeGUID)) { |
| // In addition to the leaf case above, continue to set CalleeGUID |
| // to 0 as long as we don't see CalleeGUID in the profile. |
| CalleeGUID = 0; |
| } else { |
| // Once we encounter a callee that exists in the profile, stop |
| // setting CalleeGUID to 0. |
| IsAlloc = false; |
| } |
| } |
| |
| LineLocation Loc = {GetOffset(DIL), DIL->getColumn()}; |
| Calls[CallerGUID].emplace_back(Loc, CalleeGUID); |
| CalleeName = CallerName; |
| IsLeaf = false; |
| } |
| } |
| } |
| } |
| |
| // Sort each call list by the source location. |
| for (auto &[CallerGUID, CallList] : Calls) { |
| llvm::sort(CallList); |
| CallList.erase(llvm::unique(CallList), CallList.end()); |
| } |
| |
| return Calls; |
| } |
| |
| DenseMap<uint64_t, LocToLocMap> |
| memprof::computeUndriftMap(Module &M, IndexedInstrProfReader *MemProfReader, |
| const TargetLibraryInfo &TLI) { |
| DenseMap<uint64_t, LocToLocMap> UndriftMaps; |
| |
| DenseMap<uint64_t, SmallVector<memprof::CallEdgeTy, 0>> CallsFromProfile = |
| MemProfReader->getMemProfCallerCalleePairs(); |
| DenseMap<uint64_t, SmallVector<memprof::CallEdgeTy, 0>> CallsFromIR = |
| extractCallsFromIR(M, TLI, [&](uint64_t GUID) { |
| return CallsFromProfile.contains(GUID); |
| }); |
| |
| // Compute an undrift map for each CallerGUID. |
| for (const auto &[CallerGUID, IRAnchors] : CallsFromIR) { |
| auto It = CallsFromProfile.find(CallerGUID); |
| if (It == CallsFromProfile.end()) |
| continue; |
| const auto &ProfileAnchors = It->second; |
| |
| LocToLocMap Matchings; |
| longestCommonSequence<LineLocation, GlobalValue::GUID>( |
| ProfileAnchors, IRAnchors, std::equal_to<GlobalValue::GUID>(), |
| [&](LineLocation A, LineLocation B) { Matchings.try_emplace(A, B); }); |
| bool Inserted = UndriftMaps.try_emplace(CallerGUID, Matchings).second; |
| |
| // The insertion must succeed because we visit each GUID exactly once. |
| assert(Inserted); |
| (void)Inserted; |
| } |
| |
| return UndriftMaps; |
| } |
| |
| // Given a MemProfRecord, undrift all the source locations present in the |
| // record in place. |
| static void |
| undriftMemProfRecord(const DenseMap<uint64_t, LocToLocMap> &UndriftMaps, |
| memprof::MemProfRecord &MemProfRec) { |
| // Undrift a call stack in place. |
| auto UndriftCallStack = [&](std::vector<Frame> &CallStack) { |
| for (auto &F : CallStack) { |
| auto I = UndriftMaps.find(F.Function); |
| if (I == UndriftMaps.end()) |
| continue; |
| auto J = I->second.find(LineLocation(F.LineOffset, F.Column)); |
| if (J == I->second.end()) |
| continue; |
| auto &NewLoc = J->second; |
| F.LineOffset = NewLoc.LineOffset; |
| F.Column = NewLoc.Column; |
| } |
| }; |
| |
| for (auto &AS : MemProfRec.AllocSites) |
| UndriftCallStack(AS.CallStack); |
| |
| for (auto &CS : MemProfRec.CallSites) |
| UndriftCallStack(CS); |
| } |
| |
| static void |
| readMemprof(Module &M, Function &F, IndexedInstrProfReader *MemProfReader, |
| const TargetLibraryInfo &TLI, |
| std::map<uint64_t, AllocMatchInfo> &FullStackIdToAllocMatchInfo, |
| DenseMap<uint64_t, LocToLocMap> &UndriftMaps) { |
| auto &Ctx = M.getContext(); |
| // Previously we used getIRPGOFuncName() here. If F is local linkage, |
| // getIRPGOFuncName() returns FuncName with prefix 'FileName;'. But |
| // llvm-profdata uses FuncName in dwarf to create GUID which doesn't |
| // contain FileName's prefix. It caused local linkage function can't |
| // find MemProfRecord. So we use getName() now. |
| // 'unique-internal-linkage-names' can make MemProf work better for local |
| // linkage function. |
| auto FuncName = F.getName(); |
| auto FuncGUID = Function::getGUID(FuncName); |
| std::optional<memprof::MemProfRecord> MemProfRec; |
| auto Err = MemProfReader->getMemProfRecord(FuncGUID).moveInto(MemProfRec); |
| if (Err) { |
| handleAllErrors(std::move(Err), [&](const InstrProfError &IPE) { |
| auto Err = IPE.get(); |
| bool SkipWarning = false; |
| LLVM_DEBUG(dbgs() << "Error in reading profile for Func " << FuncName |
| << ": "); |
| if (Err == instrprof_error::unknown_function) { |
| NumOfMemProfMissing++; |
| SkipWarning = !PGOWarnMissing; |
| LLVM_DEBUG(dbgs() << "unknown function"); |
| } else if (Err == instrprof_error::hash_mismatch) { |
| NumOfMemProfMismatch++; |
| SkipWarning = |
| NoPGOWarnMismatch || |
| (NoPGOWarnMismatchComdatWeak && |
| (F.hasComdat() || |
| F.getLinkage() == GlobalValue::AvailableExternallyLinkage)); |
| LLVM_DEBUG(dbgs() << "hash mismatch (skip=" << SkipWarning << ")"); |
| } |
| |
| if (SkipWarning) |
| return; |
| |
| std::string Msg = (IPE.message() + Twine(" ") + F.getName().str() + |
| Twine(" Hash = ") + std::to_string(FuncGUID)) |
| .str(); |
| |
| Ctx.diagnose( |
| DiagnosticInfoPGOProfile(M.getName().data(), Msg, DS_Warning)); |
| }); |
| return; |
| } |
| |
| NumOfMemProfFunc++; |
| |
| // If requested, undrfit MemProfRecord so that the source locations in it |
| // match those in the IR. |
| if (SalvageStaleProfile) |
| undriftMemProfRecord(UndriftMaps, *MemProfRec); |
| |
| // Detect if there are non-zero column numbers in the profile. If not, |
| // treat all column numbers as 0 when matching (i.e. ignore any non-zero |
| // columns in the IR). The profiled binary might have been built with |
| // column numbers disabled, for example. |
| bool ProfileHasColumns = false; |
| |
| // Build maps of the location hash to all profile data with that leaf location |
| // (allocation info and the callsites). |
| std::map<uint64_t, std::set<const AllocationInfo *>> LocHashToAllocInfo; |
| // A hash function for std::unordered_set<ArrayRef<Frame>> to work. |
| struct CallStackHash { |
| size_t operator()(ArrayRef<Frame> CS) const { |
| return computeFullStackId(CS); |
| } |
| }; |
| // For the callsites we need to record slices of the frame array (see comments |
| // below where the map entries are added). |
| std::map<uint64_t, std::unordered_set<ArrayRef<Frame>, CallStackHash>> |
| LocHashToCallSites; |
| for (auto &AI : MemProfRec->AllocSites) { |
| NumOfMemProfAllocContextProfiles++; |
| // Associate the allocation info with the leaf frame. The later matching |
| // code will match any inlined call sequences in the IR with a longer prefix |
| // of call stack frames. |
| uint64_t StackId = computeStackId(AI.CallStack[0]); |
| LocHashToAllocInfo[StackId].insert(&AI); |
| ProfileHasColumns |= AI.CallStack[0].Column; |
| } |
| for (auto &CS : MemProfRec->CallSites) { |
| NumOfMemProfCallSiteProfiles++; |
| // Need to record all frames from leaf up to and including this function, |
| // as any of these may or may not have been inlined at this point. |
| unsigned Idx = 0; |
| for (auto &StackFrame : CS) { |
| uint64_t StackId = computeStackId(StackFrame); |
| LocHashToCallSites[StackId].insert(ArrayRef<Frame>(CS).drop_front(Idx++)); |
| ProfileHasColumns |= StackFrame.Column; |
| // Once we find this function, we can stop recording. |
| if (StackFrame.Function == FuncGUID) |
| break; |
| } |
| assert(Idx <= CS.size() && CS[Idx - 1].Function == FuncGUID); |
| } |
| |
| auto GetOffset = [](const DILocation *DIL) { |
| return (DIL->getLine() - DIL->getScope()->getSubprogram()->getLine()) & |
| 0xffff; |
| }; |
| |
| // Now walk the instructions, looking up the associated profile data using |
| // debug locations. |
| for (auto &BB : F) { |
| for (auto &I : BB) { |
| if (I.isDebugOrPseudoInst()) |
| continue; |
| // We are only interested in calls (allocation or interior call stack |
| // context calls). |
| auto *CI = dyn_cast<CallBase>(&I); |
| if (!CI) |
| continue; |
| auto *CalledFunction = CI->getCalledFunction(); |
| if (CalledFunction && CalledFunction->isIntrinsic()) |
| continue; |
| // List of call stack ids computed from the location hashes on debug |
| // locations (leaf to inlined at root). |
| SmallVector<uint64_t, 8> InlinedCallStack; |
| // Was the leaf location found in one of the profile maps? |
| bool LeafFound = false; |
| // If leaf was found in a map, iterators pointing to its location in both |
| // of the maps. It might exist in neither, one, or both (the latter case |
| // can happen because we don't currently have discriminators to |
| // distinguish the case when a single line/col maps to both an allocation |
| // and another callsite). |
| std::map<uint64_t, std::set<const AllocationInfo *>>::iterator |
| AllocInfoIter; |
| decltype(LocHashToCallSites)::iterator CallSitesIter; |
| for (const DILocation *DIL = I.getDebugLoc(); DIL != nullptr; |
| DIL = DIL->getInlinedAt()) { |
| // Use C++ linkage name if possible. Need to compile with |
| // -fdebug-info-for-profiling to get linkage name. |
| StringRef Name = DIL->getScope()->getSubprogram()->getLinkageName(); |
| if (Name.empty()) |
| Name = DIL->getScope()->getSubprogram()->getName(); |
| auto CalleeGUID = Function::getGUID(Name); |
| auto StackId = computeStackId(CalleeGUID, GetOffset(DIL), |
| ProfileHasColumns ? DIL->getColumn() : 0); |
| // Check if we have found the profile's leaf frame. If yes, collect |
| // the rest of the call's inlined context starting here. If not, see if |
| // we find a match further up the inlined context (in case the profile |
| // was missing debug frames at the leaf). |
| if (!LeafFound) { |
| AllocInfoIter = LocHashToAllocInfo.find(StackId); |
| CallSitesIter = LocHashToCallSites.find(StackId); |
| if (AllocInfoIter != LocHashToAllocInfo.end() || |
| CallSitesIter != LocHashToCallSites.end()) |
| LeafFound = true; |
| } |
| if (LeafFound) |
| InlinedCallStack.push_back(StackId); |
| } |
| // If leaf not in either of the maps, skip inst. |
| if (!LeafFound) |
| continue; |
| |
| // First add !memprof metadata from allocation info, if we found the |
| // instruction's leaf location in that map, and if the rest of the |
| // instruction's locations match the prefix Frame locations on an |
| // allocation context with the same leaf. |
| if (AllocInfoIter != LocHashToAllocInfo.end()) { |
| // Only consider allocations which support hinting. |
| if (!isAllocationWithHotColdVariant(CI->getCalledFunction(), TLI)) |
| continue; |
| // We may match this instruction's location list to multiple MIB |
| // contexts. Add them to a Trie specialized for trimming the contexts to |
| // the minimal needed to disambiguate contexts with unique behavior. |
| CallStackTrie AllocTrie; |
| uint64_t TotalSize = 0; |
| uint64_t TotalColdSize = 0; |
| for (auto *AllocInfo : AllocInfoIter->second) { |
| // Check the full inlined call stack against this one. |
| // If we found and thus matched all frames on the call, include |
| // this MIB. |
| if (stackFrameIncludesInlinedCallStack(AllocInfo->CallStack, |
| InlinedCallStack)) { |
| NumOfMemProfMatchedAllocContexts++; |
| uint64_t FullStackId = 0; |
| if (ClPrintMemProfMatchInfo || MemProfReportHintedSizes || |
| MinClonedColdBytePercent < 100) |
| FullStackId = computeFullStackId(AllocInfo->CallStack); |
| auto AllocType = addCallStack(AllocTrie, AllocInfo, FullStackId); |
| TotalSize += AllocInfo->Info.getTotalSize(); |
| if (AllocType == AllocationType::Cold) |
| TotalColdSize += AllocInfo->Info.getTotalSize(); |
| // Record information about the allocation if match info printing |
| // was requested. |
| if (ClPrintMemProfMatchInfo) { |
| assert(FullStackId != 0); |
| FullStackIdToAllocMatchInfo[FullStackId] = { |
| AllocInfo->Info.getTotalSize(), AllocType, /*Matched=*/true}; |
| } |
| } |
| } |
| // If the threshold for the percent of cold bytes is less than 100%, |
| // and not all bytes are cold, see if we should still hint this |
| // allocation as cold without context sensitivity. |
| if (TotalColdSize < TotalSize && MinMatchedColdBytePercent < 100 && |
| TotalColdSize * 100 >= MinMatchedColdBytePercent * TotalSize) { |
| AllocTrie.addSingleAllocTypeAttribute(CI, AllocationType::Cold, |
| "dominant"); |
| continue; |
| } |
| |
| // We might not have matched any to the full inlined call stack. |
| // But if we did, create and attach metadata, or a function attribute if |
| // all contexts have identical profiled behavior. |
| if (!AllocTrie.empty()) { |
| NumOfMemProfMatchedAllocs++; |
| // MemprofMDAttached will be false if a function attribute was |
| // attached. |
| bool MemprofMDAttached = AllocTrie.buildAndAttachMIBMetadata(CI); |
| assert(MemprofMDAttached == I.hasMetadata(LLVMContext::MD_memprof)); |
| if (MemprofMDAttached) { |
| // Add callsite metadata for the instruction's location list so that |
| // it simpler later on to identify which part of the MIB contexts |
| // are from this particular instruction (including during inlining, |
| // when the callsite metadata will be updated appropriately). |
| // FIXME: can this be changed to strip out the matching stack |
| // context ids from the MIB contexts and not add any callsite |
| // metadata here to save space? |
| addCallsiteMetadata(I, InlinedCallStack, Ctx); |
| } |
| } |
| continue; |
| } |
| |
| // Otherwise, add callsite metadata. If we reach here then we found the |
| // instruction's leaf location in the callsites map and not the allocation |
| // map. |
| assert(CallSitesIter != LocHashToCallSites.end()); |
| for (auto CallStackIdx : CallSitesIter->second) { |
| // If we found and thus matched all frames on the call, create and |
| // attach call stack metadata. |
| if (stackFrameIncludesInlinedCallStack(CallStackIdx, |
| InlinedCallStack)) { |
| NumOfMemProfMatchedCallSites++; |
| addCallsiteMetadata(I, InlinedCallStack, Ctx); |
| // Only need to find one with a matching call stack and add a single |
| // callsite metadata. |
| break; |
| } |
| } |
| } |
| } |
| } |
| |
| MemProfUsePass::MemProfUsePass(std::string MemoryProfileFile, |
| IntrusiveRefCntPtr<vfs::FileSystem> FS) |
| : MemoryProfileFileName(MemoryProfileFile), FS(FS) { |
| if (!FS) |
| this->FS = vfs::getRealFileSystem(); |
| } |
| |
| PreservedAnalyses MemProfUsePass::run(Module &M, ModuleAnalysisManager &AM) { |
| // Return immediately if the module doesn't contain any function. |
| if (M.empty()) |
| return PreservedAnalyses::all(); |
| |
| LLVM_DEBUG(dbgs() << "Read in memory profile:"); |
| auto &Ctx = M.getContext(); |
| auto ReaderOrErr = IndexedInstrProfReader::create(MemoryProfileFileName, *FS); |
| if (Error E = ReaderOrErr.takeError()) { |
| handleAllErrors(std::move(E), [&](const ErrorInfoBase &EI) { |
| Ctx.diagnose( |
| DiagnosticInfoPGOProfile(MemoryProfileFileName.data(), EI.message())); |
| }); |
| return PreservedAnalyses::all(); |
| } |
| |
| std::unique_ptr<IndexedInstrProfReader> MemProfReader = |
| std::move(ReaderOrErr.get()); |
| if (!MemProfReader) { |
| Ctx.diagnose(DiagnosticInfoPGOProfile( |
| MemoryProfileFileName.data(), StringRef("Cannot get MemProfReader"))); |
| return PreservedAnalyses::all(); |
| } |
| |
| if (!MemProfReader->hasMemoryProfile()) { |
| Ctx.diagnose(DiagnosticInfoPGOProfile(MemoryProfileFileName.data(), |
| "Not a memory profile")); |
| return PreservedAnalyses::all(); |
| } |
| |
| auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); |
| |
| TargetLibraryInfo &TLI = FAM.getResult<TargetLibraryAnalysis>(*M.begin()); |
| DenseMap<uint64_t, LocToLocMap> UndriftMaps; |
| if (SalvageStaleProfile) |
| UndriftMaps = computeUndriftMap(M, MemProfReader.get(), TLI); |
| |
| // Map from the stack has of each allocation context in the function profiles |
| // to the total profiled size (bytes), allocation type, and whether we matched |
| // it to an allocation in the IR. |
| std::map<uint64_t, AllocMatchInfo> FullStackIdToAllocMatchInfo; |
| |
| for (auto &F : M) { |
| if (F.isDeclaration()) |
| continue; |
| |
| const TargetLibraryInfo &TLI = FAM.getResult<TargetLibraryAnalysis>(F); |
| readMemprof(M, F, MemProfReader.get(), TLI, FullStackIdToAllocMatchInfo, |
| UndriftMaps); |
| } |
| |
| if (ClPrintMemProfMatchInfo) { |
| for (const auto &[Id, Info] : FullStackIdToAllocMatchInfo) |
| errs() << "MemProf " << getAllocTypeAttributeString(Info.AllocType) |
| << " context with id " << Id << " has total profiled size " |
| << Info.TotalSize << (Info.Matched ? " is" : " not") |
| << " matched\n"; |
| } |
| |
| return PreservedAnalyses::none(); |
| } |