| use std::ffi::CString; |
| |
| use llvm::Linkage::*; |
| use rustc_abi::Align; |
| use rustc_codegen_ssa::back::write::CodegenContext; |
| use rustc_codegen_ssa::traits::BaseTypeCodegenMethods; |
| |
| use crate::builder::SBuilder; |
| use crate::common::AsCCharPtr; |
| use crate::llvm::AttributePlace::Function; |
| use crate::llvm::{self, Linkage, Type, Value}; |
| use crate::{LlvmCodegenBackend, SimpleCx, attributes}; |
| |
| pub(crate) fn handle_gpu_code<'ll>( |
| _cgcx: &CodegenContext<LlvmCodegenBackend>, |
| cx: &'ll SimpleCx<'_>, |
| ) { |
| // The offload memory transfer type for each kernel |
| let mut o_types = vec![]; |
| let mut kernels = vec![]; |
| let offload_entry_ty = add_tgt_offload_entry(&cx); |
| for num in 0..9 { |
| let kernel = cx.get_function(&format!("kernel_{num}")); |
| if let Some(kernel) = kernel { |
| o_types.push(gen_define_handling(&cx, kernel, offload_entry_ty, num)); |
| kernels.push(kernel); |
| } |
| } |
| |
| gen_call_handling(&cx, &kernels, &o_types); |
| } |
| |
| // What is our @1 here? A magic global, used in our data_{begin/update/end}_mapper: |
| // @0 = private unnamed_addr constant [23 x i8] c";unknown;unknown;0;0;;\00", align 1 |
| // @1 = private unnamed_addr constant %struct.ident_t { i32 0, i32 2, i32 0, i32 22, ptr @0 }, align 8 |
| fn generate_at_one<'ll>(cx: &'ll SimpleCx<'_>) -> &'ll llvm::Value { |
| // @0 = private unnamed_addr constant [23 x i8] c";unknown;unknown;0;0;;\00", align 1 |
| let unknown_txt = ";unknown;unknown;0;0;;"; |
| let c_entry_name = CString::new(unknown_txt).unwrap(); |
| let c_val = c_entry_name.as_bytes_with_nul(); |
| let initializer = crate::common::bytes_in_context(cx.llcx, c_val); |
| let at_zero = add_unnamed_global(&cx, &"", initializer, PrivateLinkage); |
| llvm::set_alignment(at_zero, Align::ONE); |
| |
| // @1 = private unnamed_addr constant %struct.ident_t { i32 0, i32 2, i32 0, i32 22, ptr @0 }, align 8 |
| let struct_ident_ty = cx.type_named_struct("struct.ident_t"); |
| let struct_elems = vec![ |
| cx.get_const_i32(0), |
| cx.get_const_i32(2), |
| cx.get_const_i32(0), |
| cx.get_const_i32(22), |
| at_zero, |
| ]; |
| let struct_elems_ty: Vec<_> = struct_elems.iter().map(|&x| cx.val_ty(x)).collect(); |
| let initializer = crate::common::named_struct(struct_ident_ty, &struct_elems); |
| cx.set_struct_body(struct_ident_ty, &struct_elems_ty, false); |
| let at_one = add_unnamed_global(&cx, &"", initializer, PrivateLinkage); |
| llvm::set_alignment(at_one, Align::EIGHT); |
| at_one |
| } |
| |
| pub(crate) fn add_tgt_offload_entry<'ll>(cx: &'ll SimpleCx<'_>) -> &'ll llvm::Type { |
| let offload_entry_ty = cx.type_named_struct("struct.__tgt_offload_entry"); |
| let tptr = cx.type_ptr(); |
| let ti64 = cx.type_i64(); |
| let ti32 = cx.type_i32(); |
| let ti16 = cx.type_i16(); |
| // For each kernel to run on the gpu, we will later generate one entry of this type. |
| // copied from LLVM |
| // typedef struct { |
| // uint64_t Reserved; |
| // uint16_t Version; |
| // uint16_t Kind; |
| // uint32_t Flags; Flags associated with the entry (see Target Region Entry Flags) |
| // void *Address; Address of global symbol within device image (function or global) |
| // char *SymbolName; |
| // uint64_t Size; Size of the entry info (0 if it is a function) |
| // uint64_t Data; |
| // void *AuxAddr; |
| // } __tgt_offload_entry; |
| let entry_elements = vec![ti64, ti16, ti16, ti32, tptr, tptr, ti64, ti64, tptr]; |
| cx.set_struct_body(offload_entry_ty, &entry_elements, false); |
| offload_entry_ty |
| } |
| |
| fn gen_tgt_kernel_global<'ll>(cx: &'ll SimpleCx<'_>) { |
| let kernel_arguments_ty = cx.type_named_struct("struct.__tgt_kernel_arguments"); |
| let tptr = cx.type_ptr(); |
| let ti64 = cx.type_i64(); |
| let ti32 = cx.type_i32(); |
| let tarr = cx.type_array(ti32, 3); |
| |
| // Taken from the LLVM APITypes.h declaration: |
| //struct KernelArgsTy { |
| // uint32_t Version = 0; // Version of this struct for ABI compatibility. |
| // uint32_t NumArgs = 0; // Number of arguments in each input pointer. |
| // void **ArgBasePtrs = |
| // nullptr; // Base pointer of each argument (e.g. a struct). |
| // void **ArgPtrs = nullptr; // Pointer to the argument data. |
| // int64_t *ArgSizes = nullptr; // Size of the argument data in bytes. |
| // int64_t *ArgTypes = nullptr; // Type of the data (e.g. to / from). |
| // void **ArgNames = nullptr; // Name of the data for debugging, possibly null. |
| // void **ArgMappers = nullptr; // User-defined mappers, possibly null. |
| // uint64_t Tripcount = |
| // 0; // Tripcount for the teams / distribute loop, 0 otherwise. |
| // struct { |
| // uint64_t NoWait : 1; // Was this kernel spawned with a `nowait` clause. |
| // uint64_t IsCUDA : 1; // Was this kernel spawned via CUDA. |
| // uint64_t Unused : 62; |
| // } Flags = {0, 0, 0}; |
| // // The number of teams (for x,y,z dimension). |
| // uint32_t NumTeams[3] = {0, 0, 0}; |
| // // The number of threads (for x,y,z dimension). |
| // uint32_t ThreadLimit[3] = {0, 0, 0}; |
| // uint32_t DynCGroupMem = 0; // Amount of dynamic cgroup memory requested. |
| //}; |
| let kernel_elements = |
| vec![ti32, ti32, tptr, tptr, tptr, tptr, tptr, tptr, ti64, ti64, tarr, tarr, ti32]; |
| |
| cx.set_struct_body(kernel_arguments_ty, &kernel_elements, false); |
| // For now we don't handle kernels, so for now we just add a global dummy |
| // to make sure that the __tgt_offload_entry is defined and handled correctly. |
| cx.declare_global("my_struct_global2", kernel_arguments_ty); |
| } |
| |
| fn gen_tgt_data_mappers<'ll>( |
| cx: &'ll SimpleCx<'_>, |
| ) -> (&'ll llvm::Value, &'ll llvm::Value, &'ll llvm::Value, &'ll llvm::Type) { |
| let tptr = cx.type_ptr(); |
| let ti64 = cx.type_i64(); |
| let ti32 = cx.type_i32(); |
| |
| let args = vec![tptr, ti64, ti32, tptr, tptr, tptr, tptr, tptr, tptr]; |
| let mapper_fn_ty = cx.type_func(&args, cx.type_void()); |
| let mapper_begin = "__tgt_target_data_begin_mapper"; |
| let mapper_update = "__tgt_target_data_update_mapper"; |
| let mapper_end = "__tgt_target_data_end_mapper"; |
| let begin_mapper_decl = declare_offload_fn(&cx, mapper_begin, mapper_fn_ty); |
| let update_mapper_decl = declare_offload_fn(&cx, mapper_update, mapper_fn_ty); |
| let end_mapper_decl = declare_offload_fn(&cx, mapper_end, mapper_fn_ty); |
| |
| let nounwind = llvm::AttributeKind::NoUnwind.create_attr(cx.llcx); |
| attributes::apply_to_llfn(begin_mapper_decl, Function, &[nounwind]); |
| attributes::apply_to_llfn(update_mapper_decl, Function, &[nounwind]); |
| attributes::apply_to_llfn(end_mapper_decl, Function, &[nounwind]); |
| |
| (begin_mapper_decl, update_mapper_decl, end_mapper_decl, mapper_fn_ty) |
| } |
| |
| fn add_priv_unnamed_arr<'ll>(cx: &SimpleCx<'ll>, name: &str, vals: &[u64]) -> &'ll llvm::Value { |
| let ti64 = cx.type_i64(); |
| let mut size_val = Vec::with_capacity(vals.len()); |
| for &val in vals { |
| size_val.push(cx.get_const_i64(val)); |
| } |
| let initializer = cx.const_array(ti64, &size_val); |
| add_unnamed_global(cx, name, initializer, PrivateLinkage) |
| } |
| |
| pub(crate) fn add_unnamed_global<'ll>( |
| cx: &SimpleCx<'ll>, |
| name: &str, |
| initializer: &'ll llvm::Value, |
| l: Linkage, |
| ) -> &'ll llvm::Value { |
| let llglobal = add_global(cx, name, initializer, l); |
| llvm::LLVMSetUnnamedAddress(llglobal, llvm::UnnamedAddr::Global); |
| llglobal |
| } |
| |
| pub(crate) fn add_global<'ll>( |
| cx: &SimpleCx<'ll>, |
| name: &str, |
| initializer: &'ll llvm::Value, |
| l: Linkage, |
| ) -> &'ll llvm::Value { |
| let c_name = CString::new(name).unwrap(); |
| let llglobal: &'ll llvm::Value = llvm::add_global(cx.llmod, cx.val_ty(initializer), &c_name); |
| llvm::set_global_constant(llglobal, true); |
| llvm::set_linkage(llglobal, l); |
| llvm::set_initializer(llglobal, initializer); |
| llglobal |
| } |
| |
| fn gen_define_handling<'ll>( |
| cx: &'ll SimpleCx<'_>, |
| kernel: &'ll llvm::Value, |
| offload_entry_ty: &'ll llvm::Type, |
| num: i64, |
| ) -> &'ll llvm::Value { |
| let types = cx.func_params_types(cx.get_type_of_global(kernel)); |
| // It seems like non-pointer values are automatically mapped. So here, we focus on pointer (or |
| // reference) types. |
| let num_ptr_types = types |
| .iter() |
| .map(|&x| matches!(cx.type_kind(x), rustc_codegen_ssa::common::TypeKind::Pointer)) |
| .count(); |
| |
| // We do not know their size anymore at this level, so hardcode a placeholder. |
| // A follow-up pr will track these from the frontend, where we still have Rust types. |
| // Then, we will be able to figure out that e.g. `&[f32;256]` will result in 4*256 bytes. |
| // I decided that 1024 bytes is a great placeholder value for now. |
| add_priv_unnamed_arr(&cx, &format!(".offload_sizes.{num}"), &vec![1024; num_ptr_types]); |
| // Here we figure out whether something needs to be copied to the gpu (=1), from the gpu (=2), |
| // or both to and from the gpu (=3). Other values shouldn't affect us for now. |
| // A non-mutable reference or pointer will be 1, an array that's not read, but fully overwritten |
| // will be 2. For now, everything is 3, until we have our frontend set up. |
| let o_types = |
| add_priv_unnamed_arr(&cx, &format!(".offload_maptypes.{num}"), &vec![3; num_ptr_types]); |
| // Next: For each function, generate these three entries. A weak constant, |
| // the llvm.rodata entry name, and the omp_offloading_entries value |
| |
| let name = format!(".kernel_{num}.region_id"); |
| let initializer = cx.get_const_i8(0); |
| let region_id = add_unnamed_global(&cx, &name, initializer, WeakAnyLinkage); |
| |
| let c_entry_name = CString::new(format!("kernel_{num}")).unwrap(); |
| let c_val = c_entry_name.as_bytes_with_nul(); |
| let offload_entry_name = format!(".offloading.entry_name.{num}"); |
| |
| let initializer = crate::common::bytes_in_context(cx.llcx, c_val); |
| let llglobal = add_unnamed_global(&cx, &offload_entry_name, initializer, InternalLinkage); |
| llvm::set_alignment(llglobal, Align::ONE); |
| llvm::set_section(llglobal, c".llvm.rodata.offloading"); |
| |
| // Not actively used yet, for calling real kernels |
| let name = format!(".offloading.entry.kernel_{num}"); |
| |
| // See the __tgt_offload_entry documentation above. |
| let reserved = cx.get_const_i64(0); |
| let version = cx.get_const_i16(1); |
| let kind = cx.get_const_i16(1); |
| let flags = cx.get_const_i32(0); |
| let size = cx.get_const_i64(0); |
| let data = cx.get_const_i64(0); |
| let aux_addr = cx.const_null(cx.type_ptr()); |
| let elems = vec![reserved, version, kind, flags, region_id, llglobal, size, data, aux_addr]; |
| |
| let initializer = crate::common::named_struct(offload_entry_ty, &elems); |
| let c_name = CString::new(name).unwrap(); |
| let llglobal = llvm::add_global(cx.llmod, offload_entry_ty, &c_name); |
| llvm::set_global_constant(llglobal, true); |
| llvm::set_linkage(llglobal, WeakAnyLinkage); |
| llvm::set_initializer(llglobal, initializer); |
| llvm::set_alignment(llglobal, Align::ONE); |
| let c_section_name = CString::new(".omp_offloading_entries").unwrap(); |
| llvm::set_section(llglobal, &c_section_name); |
| o_types |
| } |
| |
| fn declare_offload_fn<'ll>( |
| cx: &'ll SimpleCx<'_>, |
| name: &str, |
| ty: &'ll llvm::Type, |
| ) -> &'ll llvm::Value { |
| crate::declare::declare_simple_fn( |
| cx, |
| name, |
| llvm::CallConv::CCallConv, |
| llvm::UnnamedAddr::No, |
| llvm::Visibility::Default, |
| ty, |
| ) |
| } |
| |
| // For each kernel *call*, we now use some of our previous declared globals to move data to and from |
| // the gpu. We don't have a proper frontend yet, so we assume that every call to a kernel function |
| // from main is intended to run on the GPU. For now, we only handle the data transfer part of it. |
| // If two consecutive kernels use the same memory, we still move it to the host and back to the gpu. |
| // Since in our frontend users (by default) don't have to specify data transfer, this is something |
| // we should optimize in the future! We also assume that everything should be copied back and forth, |
| // but sometimes we can directly zero-allocate on the device and only move back, or if something is |
| // immutable, we might only copy it to the device, but not back. |
| // |
| // Current steps: |
| // 0. Alloca some variables for the following steps |
| // 1. set insert point before kernel call. |
| // 2. generate all the GEPS and stores, to be used in 3) |
| // 3. generate __tgt_target_data_begin calls to move data to the GPU |
| // |
| // unchanged: keep kernel call. Later move the kernel to the GPU |
| // |
| // 4. set insert point after kernel call. |
| // 5. generate all the GEPS and stores, to be used in 6) |
| // 6. generate __tgt_target_data_end calls to move data from the GPU |
| fn gen_call_handling<'ll>( |
| cx: &'ll SimpleCx<'_>, |
| _kernels: &[&'ll llvm::Value], |
| o_types: &[&'ll llvm::Value], |
| ) { |
| // %struct.__tgt_bin_desc = type { i32, ptr, ptr, ptr } |
| let tptr = cx.type_ptr(); |
| let ti32 = cx.type_i32(); |
| let tgt_bin_desc_ty = vec![ti32, tptr, tptr, tptr]; |
| let tgt_bin_desc = cx.type_named_struct("struct.__tgt_bin_desc"); |
| cx.set_struct_body(tgt_bin_desc, &tgt_bin_desc_ty, false); |
| |
| gen_tgt_kernel_global(&cx); |
| let (begin_mapper_decl, _, end_mapper_decl, fn_ty) = gen_tgt_data_mappers(&cx); |
| |
| let main_fn = cx.get_function("main"); |
| let Some(main_fn) = main_fn else { return }; |
| let kernel_name = "kernel_1"; |
| let call = unsafe { |
| llvm::LLVMRustGetFunctionCall(main_fn, kernel_name.as_c_char_ptr(), kernel_name.len()) |
| }; |
| let Some(kernel_call) = call else { |
| return; |
| }; |
| let kernel_call_bb = unsafe { llvm::LLVMGetInstructionParent(kernel_call) }; |
| let called = unsafe { llvm::LLVMGetCalledValue(kernel_call).unwrap() }; |
| let mut builder = SBuilder::build(cx, kernel_call_bb); |
| |
| let types = cx.func_params_types(cx.get_type_of_global(called)); |
| let num_args = types.len() as u64; |
| |
| // Step 0) |
| // %struct.__tgt_bin_desc = type { i32, ptr, ptr, ptr } |
| // %6 = alloca %struct.__tgt_bin_desc, align 8 |
| unsafe { llvm::LLVMRustPositionBuilderPastAllocas(builder.llbuilder, main_fn) }; |
| |
| let tgt_bin_desc_alloca = builder.direct_alloca(tgt_bin_desc, Align::EIGHT, "EmptyDesc"); |
| |
| let ty = cx.type_array(cx.type_ptr(), num_args); |
| // Baseptr are just the input pointer to the kernel, stored in a local alloca |
| let a1 = builder.direct_alloca(ty, Align::EIGHT, ".offload_baseptrs"); |
| // Ptrs are the result of a gep into the baseptr, at least for our trivial types. |
| let a2 = builder.direct_alloca(ty, Align::EIGHT, ".offload_ptrs"); |
| // These represent the sizes in bytes, e.g. the entry for `&[f64; 16]` will be 8*16. |
| let ty2 = cx.type_array(cx.type_i64(), num_args); |
| let a4 = builder.direct_alloca(ty2, Align::EIGHT, ".offload_sizes"); |
| // Now we allocate once per function param, a copy to be passed to one of our maps. |
| let mut vals = vec![]; |
| let mut geps = vec![]; |
| let i32_0 = cx.get_const_i32(0); |
| for (index, in_ty) in types.iter().enumerate() { |
| // get function arg, store it into the alloca, and read it. |
| let p = llvm::get_param(called, index as u32); |
| let name = llvm::get_value_name(p); |
| let name = str::from_utf8(&name).unwrap(); |
| let arg_name = format!("{name}.addr"); |
| let alloca = builder.direct_alloca(in_ty, Align::EIGHT, &arg_name); |
| |
| builder.store(p, alloca, Align::EIGHT); |
| let val = builder.load(in_ty, alloca, Align::EIGHT); |
| let gep = builder.inbounds_gep(cx.type_f32(), val, &[i32_0]); |
| vals.push(val); |
| geps.push(gep); |
| } |
| |
| // Step 1) |
| unsafe { llvm::LLVMRustPositionBefore(builder.llbuilder, kernel_call) }; |
| builder.memset(tgt_bin_desc_alloca, cx.get_const_i8(0), cx.get_const_i64(32), Align::EIGHT); |
| |
| let mapper_fn_ty = cx.type_func(&[cx.type_ptr()], cx.type_void()); |
| let register_lib_decl = declare_offload_fn(&cx, "__tgt_register_lib", mapper_fn_ty); |
| let unregister_lib_decl = declare_offload_fn(&cx, "__tgt_unregister_lib", mapper_fn_ty); |
| let init_ty = cx.type_func(&[], cx.type_void()); |
| let init_rtls_decl = declare_offload_fn(cx, "__tgt_init_all_rtls", init_ty); |
| |
| // call void @__tgt_register_lib(ptr noundef %6) |
| builder.call(mapper_fn_ty, register_lib_decl, &[tgt_bin_desc_alloca], None); |
| // call void @__tgt_init_all_rtls() |
| builder.call(init_ty, init_rtls_decl, &[], None); |
| |
| for i in 0..num_args { |
| let idx = cx.get_const_i32(i); |
| let gep1 = builder.inbounds_gep(ty, a1, &[i32_0, idx]); |
| builder.store(vals[i as usize], gep1, Align::EIGHT); |
| let gep2 = builder.inbounds_gep(ty, a2, &[i32_0, idx]); |
| builder.store(geps[i as usize], gep2, Align::EIGHT); |
| let gep3 = builder.inbounds_gep(ty2, a4, &[i32_0, idx]); |
| // As mentioned above, we don't use Rust type information yet. So for now we will just |
| // assume that we have 1024 bytes, 256 f32 values. |
| // FIXME(offload): write an offload frontend and handle arbitrary types. |
| builder.store(cx.get_const_i64(1024), gep3, Align::EIGHT); |
| } |
| |
| // For now we have a very simplistic indexing scheme into our |
| // offload_{baseptrs,ptrs,sizes}. We will probably improve this along with our gpu frontend pr. |
| fn get_geps<'a, 'll>( |
| builder: &mut SBuilder<'a, 'll>, |
| cx: &'ll SimpleCx<'ll>, |
| ty: &'ll Type, |
| ty2: &'ll Type, |
| a1: &'ll Value, |
| a2: &'ll Value, |
| a4: &'ll Value, |
| ) -> (&'ll Value, &'ll Value, &'ll Value) { |
| let i32_0 = cx.get_const_i32(0); |
| |
| let gep1 = builder.inbounds_gep(ty, a1, &[i32_0, i32_0]); |
| let gep2 = builder.inbounds_gep(ty, a2, &[i32_0, i32_0]); |
| let gep3 = builder.inbounds_gep(ty2, a4, &[i32_0, i32_0]); |
| (gep1, gep2, gep3) |
| } |
| |
| fn generate_mapper_call<'a, 'll>( |
| builder: &mut SBuilder<'a, 'll>, |
| cx: &'ll SimpleCx<'ll>, |
| geps: (&'ll Value, &'ll Value, &'ll Value), |
| o_type: &'ll Value, |
| fn_to_call: &'ll Value, |
| fn_ty: &'ll Type, |
| num_args: u64, |
| s_ident_t: &'ll Value, |
| ) { |
| let nullptr = cx.const_null(cx.type_ptr()); |
| let i64_max = cx.get_const_i64(u64::MAX); |
| let num_args = cx.get_const_i32(num_args); |
| let args = |
| vec![s_ident_t, i64_max, num_args, geps.0, geps.1, geps.2, o_type, nullptr, nullptr]; |
| builder.call(fn_ty, fn_to_call, &args, None); |
| } |
| |
| // Step 2) |
| let s_ident_t = generate_at_one(&cx); |
| let o = o_types[0]; |
| let geps = get_geps(&mut builder, &cx, ty, ty2, a1, a2, a4); |
| generate_mapper_call(&mut builder, &cx, geps, o, begin_mapper_decl, fn_ty, num_args, s_ident_t); |
| |
| // Step 3) |
| // Here we will add code for the actual kernel launches in a follow-up PR. |
| // FIXME(offload): launch kernels |
| |
| // Step 4) |
| unsafe { llvm::LLVMRustPositionAfter(builder.llbuilder, kernel_call) }; |
| |
| let geps = get_geps(&mut builder, &cx, ty, ty2, a1, a2, a4); |
| generate_mapper_call(&mut builder, &cx, geps, o, end_mapper_decl, fn_ty, num_args, s_ident_t); |
| |
| builder.call(mapper_fn_ty, unregister_lib_decl, &[tgt_bin_desc_alloca], None); |
| |
| // With this we generated the following begin and end mappers. We could easily generate the |
| // update mapper in an update. |
| // call void @__tgt_target_data_begin_mapper(ptr @1, i64 -1, i32 3, ptr %27, ptr %28, ptr %29, ptr @.offload_maptypes, ptr null, ptr null) |
| // call void @__tgt_target_data_update_mapper(ptr @1, i64 -1, i32 2, ptr %46, ptr %47, ptr %48, ptr @.offload_maptypes.1, ptr null, ptr null) |
| // call void @__tgt_target_data_end_mapper(ptr @1, i64 -1, i32 3, ptr %49, ptr %50, ptr %51, ptr @.offload_maptypes, ptr null, ptr null) |
| } |