blob: e5a7ad8f9b33188d5f5a4b0129a6dc8dd3a5d85c [file] [log] [blame] [edit]
use std::sync::Arc;
use std::sync::atomic::{AtomicBool, Ordering};
use std::sync::mpsc::channel;
use std::thread;
use std::time::Duration;
use super::nonpoison_and_poison_unwrap_test;
nonpoison_and_poison_unwrap_test!(
name: smoke,
test_body: {
use locks::Condvar;
let c = Condvar::new();
c.notify_one();
c.notify_all();
}
);
#[test]
#[cfg(not(any(target_os = "emscripten", target_os = "wasi")))] // No threads.
fn poison_notify_one() {
use std::sync::poison::{Condvar, Mutex};
let m = Arc::new(Mutex::new(()));
let m2 = m.clone();
let c = Arc::new(Condvar::new());
let c2 = c.clone();
let g = m.lock().unwrap();
let _t = thread::spawn(move || {
let _g = m2.lock().unwrap();
c2.notify_one();
});
let g = c.wait(g).unwrap();
drop(g);
}
#[test]
#[cfg(not(any(target_os = "emscripten", target_os = "wasi")))] // No threads.
fn nonpoison_notify_one() {
use std::sync::nonpoison::{Condvar, Mutex};
let m = Arc::new(Mutex::new(()));
let m2 = m.clone();
let c = Arc::new(Condvar::new());
let c2 = c.clone();
let mut g = m.lock();
let _t = thread::spawn(move || {
let _g = m2.lock();
c2.notify_one();
});
c.wait(&mut g);
drop(g);
}
#[test]
#[cfg(not(any(target_os = "emscripten", target_os = "wasi")))] // No threads.
fn poison_notify_all() {
use std::sync::poison::{Condvar, Mutex};
const N: usize = 10;
let data = Arc::new((Mutex::new(0), Condvar::new()));
let (tx, rx) = channel();
for _ in 0..N {
let data = data.clone();
let tx = tx.clone();
thread::spawn(move || {
let &(ref lock, ref cond) = &*data;
let mut cnt = lock.lock().unwrap();
*cnt += 1;
if *cnt == N {
tx.send(()).unwrap();
}
while *cnt != 0 {
cnt = cond.wait(cnt).unwrap();
}
tx.send(()).unwrap();
});
}
drop(tx);
let &(ref lock, ref cond) = &*data;
rx.recv().unwrap();
let mut cnt = lock.lock().unwrap();
*cnt = 0;
cond.notify_all();
drop(cnt);
for _ in 0..N {
rx.recv().unwrap();
}
}
#[test]
#[cfg(not(any(target_os = "emscripten", target_os = "wasi")))] // No threads.
fn nonpoison_notify_all() {
use std::sync::nonpoison::{Condvar, Mutex};
const N: usize = 10;
let data = Arc::new((Mutex::new(0), Condvar::new()));
let (tx, rx) = channel();
for _ in 0..N {
let data = data.clone();
let tx = tx.clone();
thread::spawn(move || {
let &(ref lock, ref cond) = &*data;
let mut cnt = lock.lock();
*cnt += 1;
if *cnt == N {
tx.send(()).unwrap();
}
while *cnt != 0 {
cond.wait(&mut cnt);
}
tx.send(()).unwrap();
});
}
drop(tx);
let &(ref lock, ref cond) = &*data;
rx.recv().unwrap();
let mut cnt = lock.lock();
*cnt = 0;
cond.notify_all();
drop(cnt);
for _ in 0..N {
rx.recv().unwrap();
}
}
#[test]
#[cfg(not(any(target_os = "emscripten", target_os = "wasi")))] // No threads.
fn poison_test_mutex_arc_condvar() {
use std::sync::poison::{Condvar, Mutex};
struct Packet<T>(Arc<(Mutex<T>, Condvar)>);
let packet = Packet(Arc::new((Mutex::new(false), Condvar::new())));
let packet2 = Packet(packet.0.clone());
let (tx, rx) = channel();
let _t = thread::spawn(move || {
// Wait until our parent has taken the lock.
rx.recv().unwrap();
let &(ref lock, ref cvar) = &*packet2.0;
// Set the data to `true` and wake up our parent.
let mut guard = lock.lock().unwrap();
*guard = true;
cvar.notify_one();
});
let &(ref lock, ref cvar) = &*packet.0;
let mut guard = lock.lock().unwrap();
// Wake up our child.
tx.send(()).unwrap();
// Wait until our child has set the data to `true`.
assert!(!*guard);
while !*guard {
guard = cvar.wait(guard).unwrap();
}
}
#[test]
#[cfg(not(any(target_os = "emscripten", target_os = "wasi")))] // No threads.
fn nonpoison_test_mutex_arc_condvar() {
use std::sync::nonpoison::{Condvar, Mutex};
struct Packet<T>(Arc<(Mutex<T>, Condvar)>);
let packet = Packet(Arc::new((Mutex::new(false), Condvar::new())));
let packet2 = Packet(packet.0.clone());
let (tx, rx) = channel();
let _t = thread::spawn(move || {
// Wait until our parent has taken the lock.
rx.recv().unwrap();
let &(ref lock, ref cvar) = &*packet2.0;
// Set the data to `true` and wake up our parent.
let mut guard = lock.lock();
*guard = true;
cvar.notify_one();
});
let &(ref lock, ref cvar) = &*packet.0;
let mut guard = lock.lock();
// Wake up our child.
tx.send(()).unwrap();
// Wait until our child has set the data to `true`.
assert!(!*guard);
while !*guard {
cvar.wait(&mut guard);
}
}
#[test]
#[cfg(not(any(target_os = "emscripten", target_os = "wasi")))] // No threads.
fn poison_wait_while() {
use std::sync::poison::{Condvar, Mutex};
let pair = Arc::new((Mutex::new(false), Condvar::new()));
let pair2 = pair.clone();
// Inside of our lock, spawn a new thread, and then wait for it to start.
thread::spawn(move || {
let &(ref lock, ref cvar) = &*pair2;
let mut started = lock.lock().unwrap();
*started = true;
// We notify the condvar that the value has changed.
cvar.notify_one();
});
// Wait for the thread to start up.
let &(ref lock, ref cvar) = &*pair;
let guard = cvar.wait_while(lock.lock().unwrap(), |started| !*started).unwrap();
assert!(*guard);
}
#[test]
#[cfg(not(any(target_os = "emscripten", target_os = "wasi")))] // No threads.
fn nonpoison_wait_while() {
use std::sync::nonpoison::{Condvar, Mutex};
let pair = Arc::new((Mutex::new(false), Condvar::new()));
let pair2 = pair.clone();
// Inside of our lock, spawn a new thread, and then wait for it to start.
thread::spawn(move || {
let &(ref lock, ref cvar) = &*pair2;
let mut started = lock.lock();
*started = true;
// We notify the condvar that the value has changed.
cvar.notify_one();
});
// Wait for the thread to start up.
let &(ref lock, ref cvar) = &*pair;
let mut guard = lock.lock();
cvar.wait_while(&mut guard, |started| !*started);
assert!(*guard);
}
#[test]
#[cfg(not(any(target_os = "emscripten", target_os = "wasi")))] // No threads.
fn poison_wait_timeout_wait() {
use std::sync::poison::{Condvar, Mutex};
let m = Arc::new(Mutex::new(()));
let c = Arc::new(Condvar::new());
loop {
let g = m.lock().unwrap();
let (_g, no_timeout) = c.wait_timeout(g, Duration::from_millis(1)).unwrap();
// spurious wakeups mean this isn't necessarily true
// so execute test again, if not timeout
if !no_timeout.timed_out() {
continue;
}
break;
}
}
#[test]
#[cfg(not(any(target_os = "emscripten", target_os = "wasi")))] // No threads.
fn nonpoison_wait_timeout_wait() {
use std::sync::nonpoison::{Condvar, Mutex};
let m = Arc::new(Mutex::new(()));
let c = Arc::new(Condvar::new());
loop {
let mut g = m.lock();
let no_timeout = c.wait_timeout(&mut g, Duration::from_millis(1));
// spurious wakeups mean this isn't necessarily true
// so execute test again, if not timeout
if !no_timeout.timed_out() {
continue;
}
break;
}
}
#[test]
#[cfg(not(any(target_os = "emscripten", target_os = "wasi")))] // No threads.
fn poison_wait_timeout_while_wait() {
use std::sync::poison::{Condvar, Mutex};
let m = Arc::new(Mutex::new(()));
let c = Arc::new(Condvar::new());
let g = m.lock().unwrap();
let (_g, wait) = c.wait_timeout_while(g, Duration::from_millis(1), |_| true).unwrap();
// no spurious wakeups. ensure it timed-out
assert!(wait.timed_out());
}
#[test]
#[cfg(not(any(target_os = "emscripten", target_os = "wasi")))] // No threads.
fn nonpoison_wait_timeout_while_wait() {
use std::sync::nonpoison::{Condvar, Mutex};
let m = Arc::new(Mutex::new(()));
let c = Arc::new(Condvar::new());
let mut g = m.lock();
let wait = c.wait_timeout_while(&mut g, Duration::from_millis(1), |_| true);
// no spurious wakeups. ensure it timed-out
assert!(wait.timed_out());
}
#[test]
#[cfg(not(any(target_os = "emscripten", target_os = "wasi")))] // No threads.
fn poison_wait_timeout_while_instant_satisfy() {
use std::sync::poison::{Condvar, Mutex};
let m = Arc::new(Mutex::new(()));
let c = Arc::new(Condvar::new());
let g = m.lock().unwrap();
let (_g, wait) = c.wait_timeout_while(g, Duration::from_millis(0), |_| false).unwrap();
// ensure it didn't time-out even if we were not given any time.
assert!(!wait.timed_out());
}
#[test]
#[cfg(not(any(target_os = "emscripten", target_os = "wasi")))] // No threads.
fn nonpoison_wait_timeout_while_instant_satisfy() {
use std::sync::nonpoison::{Condvar, Mutex};
let m = Arc::new(Mutex::new(()));
let c = Arc::new(Condvar::new());
let mut g = m.lock();
let wait = c.wait_timeout_while(&mut g, Duration::from_millis(0), |_| false);
// ensure it didn't time-out even if we were not given any time.
assert!(!wait.timed_out());
}
#[test]
#[cfg(not(any(target_os = "emscripten", target_os = "wasi")))] // No threads.
fn poison_wait_timeout_while_wake() {
use std::sync::poison::{Condvar, Mutex};
let pair = Arc::new((Mutex::new(false), Condvar::new()));
let pair_copy = pair.clone();
let &(ref m, ref c) = &*pair;
let g = m.lock().unwrap();
let _t = thread::spawn(move || {
let &(ref lock, ref cvar) = &*pair_copy;
let mut started = lock.lock().unwrap();
thread::sleep(Duration::from_millis(1));
*started = true;
cvar.notify_one();
});
let (g2, wait) = c
.wait_timeout_while(g, Duration::from_millis(u64::MAX), |&mut notified| !notified)
.unwrap();
// ensure it didn't time-out even if we were not given any time.
assert!(!wait.timed_out());
assert!(*g2);
}
#[test]
#[cfg(not(any(target_os = "emscripten", target_os = "wasi")))] // No threads.
fn nonpoison_wait_timeout_while_wake() {
use std::sync::nonpoison::{Condvar, Mutex};
let pair = Arc::new((Mutex::new(false), Condvar::new()));
let pair_copy = pair.clone();
let &(ref m, ref c) = &*pair;
let mut g = m.lock();
let _t = thread::spawn(move || {
let &(ref lock, ref cvar) = &*pair_copy;
let mut started = lock.lock();
thread::sleep(Duration::from_millis(1));
*started = true;
cvar.notify_one();
});
let wait =
c.wait_timeout_while(&mut g, Duration::from_millis(u64::MAX), |&mut notified| !notified);
// ensure it didn't time-out even if we were not given any time.
assert!(!wait.timed_out());
assert!(*g);
}
#[test]
#[cfg(not(any(target_os = "emscripten", target_os = "wasi")))] // No threads.
fn poison_wait_timeout_wake() {
use std::sync::poison::{Condvar, Mutex};
let m = Arc::new(Mutex::new(()));
let c = Arc::new(Condvar::new());
loop {
let g = m.lock().unwrap();
let c2 = c.clone();
let m2 = m.clone();
let notified = Arc::new(AtomicBool::new(false));
let notified_copy = notified.clone();
let t = thread::spawn(move || {
let _g = m2.lock().unwrap();
thread::sleep(Duration::from_millis(1));
notified_copy.store(true, Ordering::Relaxed);
c2.notify_one();
});
let (g, timeout_res) = c.wait_timeout(g, Duration::from_millis(u64::MAX)).unwrap();
assert!(!timeout_res.timed_out());
// spurious wakeups mean this isn't necessarily true
// so execute test again, if not notified
if !notified.load(Ordering::Relaxed) {
t.join().unwrap();
continue;
}
drop(g);
t.join().unwrap();
break;
}
}
#[test]
#[cfg(not(any(target_os = "emscripten", target_os = "wasi")))] // No threads.
fn nonpoison_wait_timeout_wake() {
use std::sync::nonpoison::{Condvar, Mutex};
let m = Arc::new(Mutex::new(()));
let c = Arc::new(Condvar::new());
loop {
let mut g = m.lock();
let c2 = c.clone();
let m2 = m.clone();
let notified = Arc::new(AtomicBool::new(false));
let notified_copy = notified.clone();
let t = thread::spawn(move || {
let _g = m2.lock();
thread::sleep(Duration::from_millis(1));
notified_copy.store(true, Ordering::Relaxed);
c2.notify_one();
});
let timeout_res = c.wait_timeout(&mut g, Duration::from_millis(u64::MAX));
assert!(!timeout_res.timed_out());
// spurious wakeups mean this isn't necessarily true
// so execute test again, if not notified
if !notified.load(Ordering::Relaxed) {
t.join().unwrap();
continue;
}
drop(g);
t.join().unwrap();
break;
}
}
// Some platforms internally cast the timeout duration into nanoseconds.
// If they fail to consider overflow during the conversion (I'm looking
// at you, macOS), `wait_timeout` will return immediately and indicate a
// timeout for durations that are slightly longer than u64::MAX nanoseconds.
// `std` should guard against this by clamping the timeout.
// See #37440 for context.
#[test]
fn poison_timeout_nanoseconds() {
use std::sync::poison::{Condvar, Mutex};
let sent = Mutex::new(false);
let cond = Condvar::new();
thread::scope(|s| {
s.spawn(|| {
// Sleep so that the other thread has a chance to encounter the
// timeout.
thread::sleep(Duration::from_secs(2));
*sent.lock().unwrap() = true;
cond.notify_all();
});
let mut guard = sent.lock().unwrap();
// Loop until `sent` is set by the thread to guard against spurious
// wakeups. If the `wait_timeout` happens just before the signal by
// the other thread, such a spurious wakeup might prevent the
// miscalculated timeout from occurring, but this is basically just
// a smoke test anyway.
loop {
if *guard {
break;
}
// If there is internal overflow, this call will return almost
// immediately, before the other thread has reached the `notify_all`,
// and indicate a timeout.
let (g, res) = cond
.wait_timeout(guard, Duration::from_secs(u64::MAX.div_ceil(1_000_000_000)))
.unwrap();
assert!(!res.timed_out());
guard = g;
}
})
}
#[test]
fn nonpoison_timeout_nanoseconds() {
use std::sync::nonpoison::{Condvar, Mutex};
let sent = Mutex::new(false);
let cond = Condvar::new();
thread::scope(|s| {
s.spawn(|| {
// Sleep so that the other thread has a chance to encounter the
// timeout.
thread::sleep(Duration::from_secs(2));
sent.set(true);
cond.notify_all();
});
let mut guard = sent.lock();
// Loop until `sent` is set by the thread to guard against spurious
// wakeups. If the `wait_timeout` happens just before the signal by
// the other thread, such a spurious wakeup might prevent the
// miscalculated timeout from occurring, but this is basically just
// a smoke test anyway.
loop {
if *guard {
break;
}
// If there is internal overflow, this call will return almost
// immediately, before the other thread has reached the `notify_all`,
// and indicate a timeout.
let res = cond
.wait_timeout(&mut guard, Duration::from_secs(u64::MAX.div_ceil(1_000_000_000)));
assert!(!res.timed_out());
}
})
}
#[test]
#[cfg_attr(not(panic = "unwind"), ignore = "test requires unwinding support")]
fn test_arc_condvar_poison() {
use std::sync::poison::{Condvar, Mutex};
struct Packet<T>(Arc<(Mutex<T>, Condvar)>);
let packet = Packet(Arc::new((Mutex::new(1), Condvar::new())));
let packet2 = Packet(packet.0.clone());
let (tx, rx) = channel();
let _t = thread::spawn(move || -> () {
rx.recv().unwrap();
let &(ref lock, ref cvar) = &*packet2.0;
let _g = lock.lock().unwrap();
cvar.notify_one();
// Parent should fail when it wakes up.
panic!();
});
let &(ref lock, ref cvar) = &*packet.0;
let mut lock = lock.lock().unwrap();
tx.send(()).unwrap();
while *lock == 1 {
match cvar.wait(lock) {
Ok(l) => {
lock = l;
assert_eq!(*lock, 1);
}
Err(..) => break,
}
}
}