blob: 7e9d920d92f853d5116e41c0ea9d7570635e1b3f [file] [log] [blame]
use crate::cell::UnsafeCell;
use crate::fmt;
use crate::marker::PhantomData;
use crate::mem::{self, ManuallyDrop};
use crate::ops::{Deref, DerefMut};
use crate::ptr::NonNull;
use crate::sync::{LockResult, PoisonError, TryLockError, TryLockResult, poison};
use crate::sys::sync as sys;
/// A mutual exclusion primitive useful for protecting shared data
///
/// This mutex will block threads waiting for the lock to become available. The
/// mutex can be created via a [`new`] constructor. Each mutex has a type parameter
/// which represents the data that it is protecting. The data can only be accessed
/// through the RAII guards returned from [`lock`] and [`try_lock`], which
/// guarantees that the data is only ever accessed when the mutex is locked.
///
/// # Poisoning
///
/// The mutexes in this module implement a strategy called "poisoning" where a
/// mutex becomes poisoned if it recognizes that the thread holding it has
/// panicked.
///
/// Once a mutex is poisoned, all other threads are unable to access the data by
/// default as it is likely tainted (some invariant is not being upheld). For a
/// mutex, this means that the [`lock`] and [`try_lock`] methods return a
/// [`Result`] which indicates whether a mutex has been poisoned or not. Most
/// usage of a mutex will simply [`unwrap()`] these results, propagating panics
/// among threads to ensure that a possibly invalid invariant is not witnessed.
///
/// Poisoning is only advisory: the [`PoisonError`] type has an [`into_inner`]
/// method which will return the guard that would have otherwise been returned
/// on a successful lock. This allows access to the data, despite the lock being
/// poisoned.
///
/// In addition, the panic detection is not ideal, so even unpoisoned mutexes
/// need to be handled with care, since certain panics may have been skipped.
/// Here is a non-exhaustive list of situations where this might occur:
///
/// - If a mutex is locked while a panic is underway, e.g. within a [`Drop`]
/// implementation or a [panic hook], panicking for the second time while the
/// lock is held will leave the mutex unpoisoned. Note that while double panic
/// usually aborts the program, [`catch_unwind`] can prevent this.
///
/// - Locking and unlocking the mutex across different panic contexts, e.g. by
/// storing the guard to a [`Cell`] within [`Drop::drop`] and accessing it
/// outside, or vice versa, can affect poisoning status in an unexpected way.
///
/// - Foreign exceptions do not currently trigger poisoning even in absence of
/// other panics.
///
/// While this rarely happens in realistic code, `unsafe` code cannot rely on
/// poisoning for soundness, since the behavior of poisoning can depend on
/// outside context. Here's an example of **incorrect** use of poisoning:
///
/// ```rust
/// use std::sync::Mutex;
///
/// struct MutexBox<T> {
/// data: Mutex<*mut T>,
/// }
///
/// impl<T> MutexBox<T> {
/// pub fn new(value: T) -> Self {
/// Self {
/// data: Mutex::new(Box::into_raw(Box::new(value))),
/// }
/// }
///
/// pub fn replace_with(&self, f: impl FnOnce(T) -> T) {
/// let ptr = self.data.lock().expect("poisoned");
/// // While `f` is running, the data is moved out of `*ptr`. If `f`
/// // panics, `*ptr` keeps pointing at a dropped value. The intention
/// // is that this will poison the mutex, so the following calls to
/// // `replace_with` will panic without reading `*ptr`. But since
/// // poisoning is not guaranteed to occur if this is run from a panic
/// // hook, this can lead to use-after-free.
/// unsafe {
/// (*ptr).write(f((*ptr).read()));
/// }
/// }
/// }
/// ```
///
/// [`new`]: Self::new
/// [`lock`]: Self::lock
/// [`try_lock`]: Self::try_lock
/// [`unwrap()`]: Result::unwrap
/// [`PoisonError`]: super::PoisonError
/// [`into_inner`]: super::PoisonError::into_inner
/// [panic hook]: crate::panic::set_hook
/// [`catch_unwind`]: crate::panic::catch_unwind
/// [`Cell`]: crate::cell::Cell
///
/// # Examples
///
/// ```
/// use std::sync::{Arc, Mutex};
/// use std::thread;
/// use std::sync::mpsc::channel;
///
/// const N: usize = 10;
///
/// // Spawn a few threads to increment a shared variable (non-atomically), and
/// // let the main thread know once all increments are done.
/// //
/// // Here we're using an Arc to share memory among threads, and the data inside
/// // the Arc is protected with a mutex.
/// let data = Arc::new(Mutex::new(0));
///
/// let (tx, rx) = channel();
/// for _ in 0..N {
/// let (data, tx) = (Arc::clone(&data), tx.clone());
/// thread::spawn(move || {
/// // The shared state can only be accessed once the lock is held.
/// // Our non-atomic increment is safe because we're the only thread
/// // which can access the shared state when the lock is held.
/// //
/// // We unwrap() the return value to assert that we are not expecting
/// // threads to ever fail while holding the lock.
/// let mut data = data.lock().unwrap();
/// *data += 1;
/// if *data == N {
/// tx.send(()).unwrap();
/// }
/// // the lock is unlocked here when `data` goes out of scope.
/// });
/// }
///
/// rx.recv().unwrap();
/// ```
///
/// To recover from a poisoned mutex:
///
/// ```
/// use std::sync::{Arc, Mutex};
/// use std::thread;
///
/// let lock = Arc::new(Mutex::new(0_u32));
/// let lock2 = Arc::clone(&lock);
///
/// let _ = thread::spawn(move || -> () {
/// // This thread will acquire the mutex first, unwrapping the result of
/// // `lock` because the lock has not been poisoned.
/// let _guard = lock2.lock().unwrap();
///
/// // This panic while holding the lock (`_guard` is in scope) will poison
/// // the mutex.
/// panic!();
/// }).join();
///
/// // The lock is poisoned by this point, but the returned result can be
/// // pattern matched on to return the underlying guard on both branches.
/// let mut guard = match lock.lock() {
/// Ok(guard) => guard,
/// Err(poisoned) => poisoned.into_inner(),
/// };
///
/// *guard += 1;
/// ```
///
/// To unlock a mutex guard sooner than the end of the enclosing scope,
/// either create an inner scope or drop the guard manually.
///
/// ```
/// use std::sync::{Arc, Mutex};
/// use std::thread;
///
/// const N: usize = 3;
///
/// let data_mutex = Arc::new(Mutex::new(vec![1, 2, 3, 4]));
/// let res_mutex = Arc::new(Mutex::new(0));
///
/// let mut threads = Vec::with_capacity(N);
/// (0..N).for_each(|_| {
/// let data_mutex_clone = Arc::clone(&data_mutex);
/// let res_mutex_clone = Arc::clone(&res_mutex);
///
/// threads.push(thread::spawn(move || {
/// // Here we use a block to limit the lifetime of the lock guard.
/// let result = {
/// let mut data = data_mutex_clone.lock().unwrap();
/// // This is the result of some important and long-ish work.
/// let result = data.iter().fold(0, |acc, x| acc + x * 2);
/// data.push(result);
/// result
/// // The mutex guard gets dropped here, together with any other values
/// // created in the critical section.
/// };
/// // The guard created here is a temporary dropped at the end of the statement, i.e.
/// // the lock would not remain being held even if the thread did some additional work.
/// *res_mutex_clone.lock().unwrap() += result;
/// }));
/// });
///
/// let mut data = data_mutex.lock().unwrap();
/// // This is the result of some important and long-ish work.
/// let result = data.iter().fold(0, |acc, x| acc + x * 2);
/// data.push(result);
/// // We drop the `data` explicitly because it's not necessary anymore and the
/// // thread still has work to do. This allows other threads to start working on
/// // the data immediately, without waiting for the rest of the unrelated work
/// // to be done here.
/// //
/// // It's even more important here than in the threads because we `.join` the
/// // threads after that. If we had not dropped the mutex guard, a thread could
/// // be waiting forever for it, causing a deadlock.
/// // As in the threads, a block could have been used instead of calling the
/// // `drop` function.
/// drop(data);
/// // Here the mutex guard is not assigned to a variable and so, even if the
/// // scope does not end after this line, the mutex is still released: there is
/// // no deadlock.
/// *res_mutex.lock().unwrap() += result;
///
/// threads.into_iter().for_each(|thread| {
/// thread
/// .join()
/// .expect("The thread creating or execution failed !")
/// });
///
/// assert_eq!(*res_mutex.lock().unwrap(), 800);
/// ```
///
#[stable(feature = "rust1", since = "1.0.0")]
#[cfg_attr(not(test), rustc_diagnostic_item = "Mutex")]
pub struct Mutex<T: ?Sized> {
inner: sys::Mutex,
poison: poison::Flag,
data: UnsafeCell<T>,
}
/// `T` must be `Send` for a [`Mutex`] to be `Send` because it is possible to acquire
/// the owned `T` from the `Mutex` via [`into_inner`].
///
/// [`into_inner`]: Mutex::into_inner
#[stable(feature = "rust1", since = "1.0.0")]
unsafe impl<T: ?Sized + Send> Send for Mutex<T> {}
/// `T` must be `Send` for [`Mutex`] to be `Sync`.
/// This ensures that the protected data can be accessed safely from multiple threads
/// without causing data races or other unsafe behavior.
///
/// [`Mutex<T>`] provides mutable access to `T` to one thread at a time. However, it's essential
/// for `T` to be `Send` because it's not safe for non-`Send` structures to be accessed in
/// this manner. For instance, consider [`Rc`], a non-atomic reference counted smart pointer,
/// which is not `Send`. With `Rc`, we can have multiple copies pointing to the same heap
/// allocation with a non-atomic reference count. If we were to use `Mutex<Rc<_>>`, it would
/// only protect one instance of `Rc` from shared access, leaving other copies vulnerable
/// to potential data races.
///
/// Also note that it is not necessary for `T` to be `Sync` as `&T` is only made available
/// to one thread at a time if `T` is not `Sync`.
///
/// [`Rc`]: crate::rc::Rc
#[stable(feature = "rust1", since = "1.0.0")]
unsafe impl<T: ?Sized + Send> Sync for Mutex<T> {}
/// An RAII implementation of a "scoped lock" of a mutex. When this structure is
/// dropped (falls out of scope), the lock will be unlocked.
///
/// The data protected by the mutex can be accessed through this guard via its
/// [`Deref`] and [`DerefMut`] implementations.
///
/// This structure is created by the [`lock`] and [`try_lock`] methods on
/// [`Mutex`].
///
/// [`lock`]: Mutex::lock
/// [`try_lock`]: Mutex::try_lock
#[must_use = "if unused the Mutex will immediately unlock"]
#[must_not_suspend = "holding a MutexGuard across suspend \
points can cause deadlocks, delays, \
and cause Futures to not implement `Send`"]
#[stable(feature = "rust1", since = "1.0.0")]
#[clippy::has_significant_drop]
#[cfg_attr(not(test), rustc_diagnostic_item = "MutexGuard")]
pub struct MutexGuard<'a, T: ?Sized + 'a> {
lock: &'a Mutex<T>,
poison: poison::Guard,
}
/// A [`MutexGuard`] is not `Send` to maximize platform portability.
///
/// On platforms that use POSIX threads (commonly referred to as pthreads) there is a requirement to
/// release mutex locks on the same thread they were acquired.
/// For this reason, [`MutexGuard`] must not implement `Send` to prevent it being dropped from
/// another thread.
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized> !Send for MutexGuard<'_, T> {}
/// `T` must be `Sync` for a [`MutexGuard<T>`] to be `Sync`
/// because it is possible to get a `&T` from `&MutexGuard` (via `Deref`).
#[stable(feature = "mutexguard", since = "1.19.0")]
unsafe impl<T: ?Sized + Sync> Sync for MutexGuard<'_, T> {}
/// An RAII mutex guard returned by `MutexGuard::map`, which can point to a
/// subfield of the protected data. When this structure is dropped (falls out
/// of scope), the lock will be unlocked.
///
/// The main difference between `MappedMutexGuard` and [`MutexGuard`] is that the
/// former cannot be used with [`Condvar`], since that
/// could introduce soundness issues if the locked object is modified by another
/// thread while the `Mutex` is unlocked.
///
/// The data protected by the mutex can be accessed through this guard via its
/// [`Deref`] and [`DerefMut`] implementations.
///
/// This structure is created by the [`map`] and [`filter_map`] methods on
/// [`MutexGuard`].
///
/// [`map`]: MutexGuard::map
/// [`filter_map`]: MutexGuard::filter_map
/// [`Condvar`]: crate::sync::Condvar
#[must_use = "if unused the Mutex will immediately unlock"]
#[must_not_suspend = "holding a MappedMutexGuard across suspend \
points can cause deadlocks, delays, \
and cause Futures to not implement `Send`"]
#[unstable(feature = "mapped_lock_guards", issue = "117108")]
#[clippy::has_significant_drop]
pub struct MappedMutexGuard<'a, T: ?Sized + 'a> {
// NB: we use a pointer instead of `&'a mut T` to avoid `noalias` violations, because a
// `MappedMutexGuard` argument doesn't hold uniqueness for its whole scope, only until it drops.
// `NonNull` is covariant over `T`, so we add a `PhantomData<&'a mut T>` field
// below for the correct variance over `T` (invariance).
data: NonNull<T>,
inner: &'a sys::Mutex,
poison_flag: &'a poison::Flag,
poison: poison::Guard,
_variance: PhantomData<&'a mut T>,
}
#[unstable(feature = "mapped_lock_guards", issue = "117108")]
impl<T: ?Sized> !Send for MappedMutexGuard<'_, T> {}
#[unstable(feature = "mapped_lock_guards", issue = "117108")]
unsafe impl<T: ?Sized + Sync> Sync for MappedMutexGuard<'_, T> {}
impl<T> Mutex<T> {
/// Creates a new mutex in an unlocked state ready for use.
///
/// # Examples
///
/// ```
/// use std::sync::Mutex;
///
/// let mutex = Mutex::new(0);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_stable(feature = "const_locks", since = "1.63.0")]
#[inline]
pub const fn new(t: T) -> Mutex<T> {
Mutex { inner: sys::Mutex::new(), poison: poison::Flag::new(), data: UnsafeCell::new(t) }
}
/// Returns the contained value by cloning it.
///
/// # Errors
///
/// If another user of this mutex panicked while holding the mutex, then
/// this call will return an error instead.
///
/// # Examples
///
/// ```
/// #![feature(lock_value_accessors)]
///
/// use std::sync::Mutex;
///
/// let mut mutex = Mutex::new(7);
///
/// assert_eq!(mutex.get_cloned().unwrap(), 7);
/// ```
#[unstable(feature = "lock_value_accessors", issue = "133407")]
pub fn get_cloned(&self) -> Result<T, PoisonError<()>>
where
T: Clone,
{
match self.lock() {
Ok(guard) => Ok((*guard).clone()),
Err(_) => Err(PoisonError::new(())),
}
}
/// Sets the contained value.
///
/// # Errors
///
/// If another user of this mutex panicked while holding the mutex, then
/// this call will return an error containing the provided `value` instead.
///
/// # Examples
///
/// ```
/// #![feature(lock_value_accessors)]
///
/// use std::sync::Mutex;
///
/// let mut mutex = Mutex::new(7);
///
/// assert_eq!(mutex.get_cloned().unwrap(), 7);
/// mutex.set(11).unwrap();
/// assert_eq!(mutex.get_cloned().unwrap(), 11);
/// ```
#[unstable(feature = "lock_value_accessors", issue = "133407")]
pub fn set(&self, value: T) -> Result<(), PoisonError<T>> {
if mem::needs_drop::<T>() {
// If the contained value has non-trivial destructor, we
// call that destructor after the lock being released.
self.replace(value).map(drop)
} else {
match self.lock() {
Ok(mut guard) => {
*guard = value;
Ok(())
}
Err(_) => Err(PoisonError::new(value)),
}
}
}
/// Replaces the contained value with `value`, and returns the old contained value.
///
/// # Errors
///
/// If another user of this mutex panicked while holding the mutex, then
/// this call will return an error containing the provided `value` instead.
///
/// # Examples
///
/// ```
/// #![feature(lock_value_accessors)]
///
/// use std::sync::Mutex;
///
/// let mut mutex = Mutex::new(7);
///
/// assert_eq!(mutex.replace(11).unwrap(), 7);
/// assert_eq!(mutex.get_cloned().unwrap(), 11);
/// ```
#[unstable(feature = "lock_value_accessors", issue = "133407")]
pub fn replace(&self, value: T) -> LockResult<T> {
match self.lock() {
Ok(mut guard) => Ok(mem::replace(&mut *guard, value)),
Err(_) => Err(PoisonError::new(value)),
}
}
}
impl<T: ?Sized> Mutex<T> {
/// Acquires a mutex, blocking the current thread until it is able to do so.
///
/// This function will block the local thread until it is available to acquire
/// the mutex. Upon returning, the thread is the only thread with the lock
/// held. An RAII guard is returned to allow scoped unlock of the lock. When
/// the guard goes out of scope, the mutex will be unlocked.
///
/// The exact behavior on locking a mutex in the thread which already holds
/// the lock is left unspecified. However, this function will not return on
/// the second call (it might panic or deadlock, for example).
///
/// # Errors
///
/// If another user of this mutex panicked while holding the mutex, then
/// this call will return an error once the mutex is acquired. The acquired
/// mutex guard will be contained in the returned error.
///
/// # Panics
///
/// This function might panic when called if the lock is already held by
/// the current thread.
///
/// # Examples
///
/// ```
/// use std::sync::{Arc, Mutex};
/// use std::thread;
///
/// let mutex = Arc::new(Mutex::new(0));
/// let c_mutex = Arc::clone(&mutex);
///
/// thread::spawn(move || {
/// *c_mutex.lock().unwrap() = 10;
/// }).join().expect("thread::spawn failed");
/// assert_eq!(*mutex.lock().unwrap(), 10);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn lock(&self) -> LockResult<MutexGuard<'_, T>> {
unsafe {
self.inner.lock();
MutexGuard::new(self)
}
}
/// Attempts to acquire this lock.
///
/// If the lock could not be acquired at this time, then [`Err`] is returned.
/// Otherwise, an RAII guard is returned. The lock will be unlocked when the
/// guard is dropped.
///
/// This function does not block.
///
/// # Errors
///
/// If another user of this mutex panicked while holding the mutex, then
/// this call will return the [`Poisoned`] error if the mutex would
/// otherwise be acquired. An acquired lock guard will be contained
/// in the returned error.
///
/// If the mutex could not be acquired because it is already locked, then
/// this call will return the [`WouldBlock`] error.
///
/// [`Poisoned`]: TryLockError::Poisoned
/// [`WouldBlock`]: TryLockError::WouldBlock
///
/// # Examples
///
/// ```
/// use std::sync::{Arc, Mutex};
/// use std::thread;
///
/// let mutex = Arc::new(Mutex::new(0));
/// let c_mutex = Arc::clone(&mutex);
///
/// thread::spawn(move || {
/// let mut lock = c_mutex.try_lock();
/// if let Ok(ref mut mutex) = lock {
/// **mutex = 10;
/// } else {
/// println!("try_lock failed");
/// }
/// }).join().expect("thread::spawn failed");
/// assert_eq!(*mutex.lock().unwrap(), 10);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn try_lock(&self) -> TryLockResult<MutexGuard<'_, T>> {
unsafe {
if self.inner.try_lock() {
Ok(MutexGuard::new(self)?)
} else {
Err(TryLockError::WouldBlock)
}
}
}
/// Determines whether the mutex is poisoned.
///
/// If another thread is active, the mutex can still become poisoned at any
/// time. You should not trust a `false` value for program correctness
/// without additional synchronization.
///
/// # Examples
///
/// ```
/// use std::sync::{Arc, Mutex};
/// use std::thread;
///
/// let mutex = Arc::new(Mutex::new(0));
/// let c_mutex = Arc::clone(&mutex);
///
/// let _ = thread::spawn(move || {
/// let _lock = c_mutex.lock().unwrap();
/// panic!(); // the mutex gets poisoned
/// }).join();
/// assert_eq!(mutex.is_poisoned(), true);
/// ```
#[inline]
#[stable(feature = "sync_poison", since = "1.2.0")]
pub fn is_poisoned(&self) -> bool {
self.poison.get()
}
/// Clear the poisoned state from a mutex.
///
/// If the mutex is poisoned, it will remain poisoned until this function is called. This
/// allows recovering from a poisoned state and marking that it has recovered. For example, if
/// the value is overwritten by a known-good value, then the mutex can be marked as
/// un-poisoned. Or possibly, the value could be inspected to determine if it is in a
/// consistent state, and if so the poison is removed.
///
/// # Examples
///
/// ```
/// use std::sync::{Arc, Mutex};
/// use std::thread;
///
/// let mutex = Arc::new(Mutex::new(0));
/// let c_mutex = Arc::clone(&mutex);
///
/// let _ = thread::spawn(move || {
/// let _lock = c_mutex.lock().unwrap();
/// panic!(); // the mutex gets poisoned
/// }).join();
///
/// assert_eq!(mutex.is_poisoned(), true);
/// let x = mutex.lock().unwrap_or_else(|mut e| {
/// **e.get_mut() = 1;
/// mutex.clear_poison();
/// e.into_inner()
/// });
/// assert_eq!(mutex.is_poisoned(), false);
/// assert_eq!(*x, 1);
/// ```
#[inline]
#[stable(feature = "mutex_unpoison", since = "1.77.0")]
pub fn clear_poison(&self) {
self.poison.clear();
}
/// Consumes this mutex, returning the underlying data.
///
/// # Errors
///
/// If another user of this mutex panicked while holding the mutex, then
/// this call will return an error containing the underlying data
/// instead.
///
/// # Examples
///
/// ```
/// use std::sync::Mutex;
///
/// let mutex = Mutex::new(0);
/// assert_eq!(mutex.into_inner().unwrap(), 0);
/// ```
#[stable(feature = "mutex_into_inner", since = "1.6.0")]
pub fn into_inner(self) -> LockResult<T>
where
T: Sized,
{
let data = self.data.into_inner();
poison::map_result(self.poison.borrow(), |()| data)
}
/// Returns a mutable reference to the underlying data.
///
/// Since this call borrows the `Mutex` mutably, no actual locking needs to
/// take place -- the mutable borrow statically guarantees no new locks can be acquired
/// while this reference exists. Note that this method does not clear any previous abandoned locks
/// (e.g., via [`forget()`] on a [`MutexGuard`]).
///
/// # Errors
///
/// If another user of this mutex panicked while holding the mutex, then
/// this call will return an error containing a mutable reference to the
/// underlying data instead.
///
/// # Examples
///
/// ```
/// use std::sync::Mutex;
///
/// let mut mutex = Mutex::new(0);
/// *mutex.get_mut().unwrap() = 10;
/// assert_eq!(*mutex.lock().unwrap(), 10);
/// ```
///
/// [`forget()`]: mem::forget
#[stable(feature = "mutex_get_mut", since = "1.6.0")]
pub fn get_mut(&mut self) -> LockResult<&mut T> {
let data = self.data.get_mut();
poison::map_result(self.poison.borrow(), |()| data)
}
/// Returns a raw pointer to the underlying data.
///
/// The returned pointer is always non-null and properly aligned, but it is
/// the user's responsibility to ensure that any reads and writes through it
/// are properly synchronized to avoid data races, and that it is not read
/// or written through after the mutex is dropped.
#[unstable(feature = "mutex_data_ptr", issue = "140368")]
pub fn data_ptr(&self) -> *mut T {
self.data.get()
}
}
#[stable(feature = "mutex_from", since = "1.24.0")]
impl<T> From<T> for Mutex<T> {
/// Creates a new mutex in an unlocked state ready for use.
/// This is equivalent to [`Mutex::new`].
fn from(t: T) -> Self {
Mutex::new(t)
}
}
#[stable(feature = "mutex_default", since = "1.10.0")]
impl<T: ?Sized + Default> Default for Mutex<T> {
/// Creates a `Mutex<T>`, with the `Default` value for T.
fn default() -> Mutex<T> {
Mutex::new(Default::default())
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized + fmt::Debug> fmt::Debug for Mutex<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let mut d = f.debug_struct("Mutex");
match self.try_lock() {
Ok(guard) => {
d.field("data", &&*guard);
}
Err(TryLockError::Poisoned(err)) => {
d.field("data", &&**err.get_ref());
}
Err(TryLockError::WouldBlock) => {
d.field("data", &"<locked>");
}
}
d.field("poisoned", &self.poison.get());
d.finish_non_exhaustive()
}
}
impl<'mutex, T: ?Sized> MutexGuard<'mutex, T> {
unsafe fn new(lock: &'mutex Mutex<T>) -> LockResult<MutexGuard<'mutex, T>> {
poison::map_result(lock.poison.guard(), |guard| MutexGuard { lock, poison: guard })
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized> Deref for MutexGuard<'_, T> {
type Target = T;
fn deref(&self) -> &T {
unsafe { &*self.lock.data.get() }
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized> DerefMut for MutexGuard<'_, T> {
fn deref_mut(&mut self) -> &mut T {
unsafe { &mut *self.lock.data.get() }
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized> Drop for MutexGuard<'_, T> {
#[inline]
fn drop(&mut self) {
unsafe {
self.lock.poison.done(&self.poison);
self.lock.inner.unlock();
}
}
}
#[stable(feature = "std_debug", since = "1.16.0")]
impl<T: ?Sized + fmt::Debug> fmt::Debug for MutexGuard<'_, T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Debug::fmt(&**self, f)
}
}
#[stable(feature = "std_guard_impls", since = "1.20.0")]
impl<T: ?Sized + fmt::Display> fmt::Display for MutexGuard<'_, T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
(**self).fmt(f)
}
}
/// For use in [`nonpoison::condvar`](super::condvar).
pub(super) fn guard_lock<'a, T: ?Sized>(guard: &MutexGuard<'a, T>) -> &'a sys::Mutex {
&guard.lock.inner
}
/// For use in [`nonpoison::condvar`](super::condvar).
pub(super) fn guard_poison<'a, T: ?Sized>(guard: &MutexGuard<'a, T>) -> &'a poison::Flag {
&guard.lock.poison
}
impl<'a, T: ?Sized> MutexGuard<'a, T> {
/// Makes a [`MappedMutexGuard`] for a component of the borrowed data, e.g.
/// an enum variant.
///
/// The `Mutex` is already locked, so this cannot fail.
///
/// This is an associated function that needs to be used as
/// `MutexGuard::map(...)`. A method would interfere with methods of the
/// same name on the contents of the `MutexGuard` used through `Deref`.
#[unstable(feature = "mapped_lock_guards", issue = "117108")]
pub fn map<U, F>(orig: Self, f: F) -> MappedMutexGuard<'a, U>
where
F: FnOnce(&mut T) -> &mut U,
U: ?Sized,
{
// SAFETY: the conditions of `MutexGuard::new` were satisfied when the original guard
// was created, and have been upheld throughout `map` and/or `filter_map`.
// The signature of the closure guarantees that it will not "leak" the lifetime of the reference
// passed to it. If the closure panics, the guard will be dropped.
let data = NonNull::from(f(unsafe { &mut *orig.lock.data.get() }));
let orig = ManuallyDrop::new(orig);
MappedMutexGuard {
data,
inner: &orig.lock.inner,
poison_flag: &orig.lock.poison,
poison: orig.poison.clone(),
_variance: PhantomData,
}
}
/// Makes a [`MappedMutexGuard`] for a component of the borrowed data. The
/// original guard is returned as an `Err(...)` if the closure returns
/// `None`.
///
/// The `Mutex` is already locked, so this cannot fail.
///
/// This is an associated function that needs to be used as
/// `MutexGuard::filter_map(...)`. A method would interfere with methods of the
/// same name on the contents of the `MutexGuard` used through `Deref`.
#[unstable(feature = "mapped_lock_guards", issue = "117108")]
pub fn filter_map<U, F>(orig: Self, f: F) -> Result<MappedMutexGuard<'a, U>, Self>
where
F: FnOnce(&mut T) -> Option<&mut U>,
U: ?Sized,
{
// SAFETY: the conditions of `MutexGuard::new` were satisfied when the original guard
// was created, and have been upheld throughout `map` and/or `filter_map`.
// The signature of the closure guarantees that it will not "leak" the lifetime of the reference
// passed to it. If the closure panics, the guard will be dropped.
match f(unsafe { &mut *orig.lock.data.get() }) {
Some(data) => {
let data = NonNull::from(data);
let orig = ManuallyDrop::new(orig);
Ok(MappedMutexGuard {
data,
inner: &orig.lock.inner,
poison_flag: &orig.lock.poison,
poison: orig.poison.clone(),
_variance: PhantomData,
})
}
None => Err(orig),
}
}
}
#[unstable(feature = "mapped_lock_guards", issue = "117108")]
impl<T: ?Sized> Deref for MappedMutexGuard<'_, T> {
type Target = T;
fn deref(&self) -> &T {
unsafe { self.data.as_ref() }
}
}
#[unstable(feature = "mapped_lock_guards", issue = "117108")]
impl<T: ?Sized> DerefMut for MappedMutexGuard<'_, T> {
fn deref_mut(&mut self) -> &mut T {
unsafe { self.data.as_mut() }
}
}
#[unstable(feature = "mapped_lock_guards", issue = "117108")]
impl<T: ?Sized> Drop for MappedMutexGuard<'_, T> {
#[inline]
fn drop(&mut self) {
unsafe {
self.poison_flag.done(&self.poison);
self.inner.unlock();
}
}
}
#[unstable(feature = "mapped_lock_guards", issue = "117108")]
impl<T: ?Sized + fmt::Debug> fmt::Debug for MappedMutexGuard<'_, T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Debug::fmt(&**self, f)
}
}
#[unstable(feature = "mapped_lock_guards", issue = "117108")]
impl<T: ?Sized + fmt::Display> fmt::Display for MappedMutexGuard<'_, T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
(**self).fmt(f)
}
}
impl<'a, T: ?Sized> MappedMutexGuard<'a, T> {
/// Makes a [`MappedMutexGuard`] for a component of the borrowed data, e.g.
/// an enum variant.
///
/// The `Mutex` is already locked, so this cannot fail.
///
/// This is an associated function that needs to be used as
/// `MappedMutexGuard::map(...)`. A method would interfere with methods of the
/// same name on the contents of the `MutexGuard` used through `Deref`.
#[unstable(feature = "mapped_lock_guards", issue = "117108")]
pub fn map<U, F>(mut orig: Self, f: F) -> MappedMutexGuard<'a, U>
where
F: FnOnce(&mut T) -> &mut U,
U: ?Sized,
{
// SAFETY: the conditions of `MutexGuard::new` were satisfied when the original guard
// was created, and have been upheld throughout `map` and/or `filter_map`.
// The signature of the closure guarantees that it will not "leak" the lifetime of the reference
// passed to it. If the closure panics, the guard will be dropped.
let data = NonNull::from(f(unsafe { orig.data.as_mut() }));
let orig = ManuallyDrop::new(orig);
MappedMutexGuard {
data,
inner: orig.inner,
poison_flag: orig.poison_flag,
poison: orig.poison.clone(),
_variance: PhantomData,
}
}
/// Makes a [`MappedMutexGuard`] for a component of the borrowed data. The
/// original guard is returned as an `Err(...)` if the closure returns
/// `None`.
///
/// The `Mutex` is already locked, so this cannot fail.
///
/// This is an associated function that needs to be used as
/// `MappedMutexGuard::filter_map(...)`. A method would interfere with methods of the
/// same name on the contents of the `MutexGuard` used through `Deref`.
#[unstable(feature = "mapped_lock_guards", issue = "117108")]
pub fn filter_map<U, F>(mut orig: Self, f: F) -> Result<MappedMutexGuard<'a, U>, Self>
where
F: FnOnce(&mut T) -> Option<&mut U>,
U: ?Sized,
{
// SAFETY: the conditions of `MutexGuard::new` were satisfied when the original guard
// was created, and have been upheld throughout `map` and/or `filter_map`.
// The signature of the closure guarantees that it will not "leak" the lifetime of the reference
// passed to it. If the closure panics, the guard will be dropped.
match f(unsafe { orig.data.as_mut() }) {
Some(data) => {
let data = NonNull::from(data);
let orig = ManuallyDrop::new(orig);
Ok(MappedMutexGuard {
data,
inner: orig.inner,
poison_flag: orig.poison_flag,
poison: orig.poison.clone(),
_variance: PhantomData,
})
}
None => Err(orig),
}
}
}