blob: ab0c0665d511c419f11b3a5fa299c3975132a60c [file] [log] [blame]
//! Check the validity invariant of a given value, and tell the user
//! where in the value it got violated.
//! In const context, this goes even further and tries to approximate const safety.
//! That's useful because it means other passes (e.g. promotion) can rely on `const`s
//! to be const-safe.
use std::borrow::Cow;
use std::fmt::Write;
use std::hash::Hash;
use std::num::NonZero;
use either::{Left, Right};
use hir::def::DefKind;
use rustc_abi::{
BackendRepr, FieldIdx, FieldsShape, Scalar as ScalarAbi, Size, VariantIdx, Variants,
WrappingRange,
};
use rustc_ast::Mutability;
use rustc_data_structures::fx::FxHashSet;
use rustc_hir as hir;
use rustc_middle::bug;
use rustc_middle::mir::interpret::ValidationErrorKind::{self, *};
use rustc_middle::mir::interpret::{
ExpectedKind, InterpErrorKind, InvalidMetaKind, Misalignment, PointerKind, Provenance,
UnsupportedOpInfo, ValidationErrorInfo, alloc_range, interp_ok,
};
use rustc_middle::ty::layout::{LayoutCx, TyAndLayout};
use rustc_middle::ty::{self, Ty};
use rustc_span::{Symbol, sym};
use tracing::trace;
use super::machine::AllocMap;
use super::{
AllocId, CheckInAllocMsg, GlobalAlloc, ImmTy, Immediate, InterpCx, InterpResult, MPlaceTy,
Machine, MemPlaceMeta, PlaceTy, Pointer, Projectable, Scalar, ValueVisitor, err_ub,
format_interp_error,
};
use crate::enter_trace_span;
// for the validation errors
#[rustfmt::skip]
use super::InterpErrorKind::UndefinedBehavior as Ub;
use super::InterpErrorKind::Unsupported as Unsup;
use super::UndefinedBehaviorInfo::*;
use super::UnsupportedOpInfo::*;
macro_rules! err_validation_failure {
($where:expr, $kind: expr) => {{
let where_ = &$where;
let path = if !where_.is_empty() {
let mut path = String::new();
write_path(&mut path, where_);
Some(path)
} else {
None
};
err_ub!(ValidationError(ValidationErrorInfo { path, kind: $kind }))
}};
}
macro_rules! throw_validation_failure {
($where:expr, $kind: expr) => {
do yeet err_validation_failure!($where, $kind)
};
}
/// If $e throws an error matching the pattern, throw a validation failure.
/// Other errors are passed back to the caller, unchanged -- and if they reach the root of
/// the visitor, we make sure only validation errors and `InvalidProgram` errors are left.
/// This lets you use the patterns as a kind of validation list, asserting which errors
/// can possibly happen:
///
/// ```ignore(illustrative)
/// let v = try_validation!(some_fn(), some_path, {
/// Foo | Bar | Baz => { "some failure" },
/// });
/// ```
///
/// The patterns must be of type `UndefinedBehaviorInfo`.
/// An additional expected parameter can also be added to the failure message:
///
/// ```ignore(illustrative)
/// let v = try_validation!(some_fn(), some_path, {
/// Foo | Bar | Baz => { "some failure" } expected { "something that wasn't a failure" },
/// });
/// ```
///
/// An additional nicety is that both parameters actually take format args, so you can just write
/// the format string in directly:
///
/// ```ignore(illustrative)
/// let v = try_validation!(some_fn(), some_path, {
/// Foo | Bar | Baz => { "{:?}", some_failure } expected { "{}", expected_value },
/// });
/// ```
///
macro_rules! try_validation {
($e:expr, $where:expr,
$( $( $p:pat_param )|+ => $kind: expr ),+ $(,)?
) => {{
$e.map_err_kind(|e| {
// We catch the error and turn it into a validation failure. We are okay with
// allocation here as this can only slow down builds that fail anyway.
match e {
$(
$($p)|+ => {
err_validation_failure!(
$where,
$kind
)
}
),+,
e => e,
}
})?
}};
}
/// We want to show a nice path to the invalid field for diagnostics,
/// but avoid string operations in the happy case where no error happens.
/// So we track a `Vec<PathElem>` where `PathElem` contains all the data we
/// need to later print something for the user.
#[derive(Copy, Clone, Debug)]
pub enum PathElem {
Field(Symbol),
Variant(Symbol),
CoroutineState(VariantIdx),
CapturedVar(Symbol),
ArrayElem(usize),
TupleElem(usize),
Deref,
EnumTag,
CoroutineTag,
DynDowncast,
Vtable,
}
/// Extra things to check for during validation of CTFE results.
#[derive(Copy, Clone)]
pub enum CtfeValidationMode {
/// Validation of a `static`
Static { mutbl: Mutability },
/// Validation of a promoted.
Promoted,
/// Validation of a `const`.
/// `allow_immutable_unsafe_cell` says whether we allow `UnsafeCell` in immutable memory (which is the
/// case for the top-level allocation of a `const`, where this is fine because the allocation will be
/// copied at each use site).
Const { allow_immutable_unsafe_cell: bool },
}
impl CtfeValidationMode {
fn allow_immutable_unsafe_cell(self) -> bool {
match self {
CtfeValidationMode::Static { .. } => false,
CtfeValidationMode::Promoted { .. } => false,
CtfeValidationMode::Const { allow_immutable_unsafe_cell, .. } => {
allow_immutable_unsafe_cell
}
}
}
}
/// State for tracking recursive validation of references
pub struct RefTracking<T, PATH = ()> {
seen: FxHashSet<T>,
todo: Vec<(T, PATH)>,
}
impl<T: Clone + Eq + Hash + std::fmt::Debug, PATH: Default> RefTracking<T, PATH> {
pub fn empty() -> Self {
RefTracking { seen: FxHashSet::default(), todo: vec![] }
}
pub fn new(val: T) -> Self {
let mut ref_tracking_for_consts =
RefTracking { seen: FxHashSet::default(), todo: vec![(val.clone(), PATH::default())] };
ref_tracking_for_consts.seen.insert(val);
ref_tracking_for_consts
}
pub fn next(&mut self) -> Option<(T, PATH)> {
self.todo.pop()
}
fn track(&mut self, val: T, path: impl FnOnce() -> PATH) {
if self.seen.insert(val.clone()) {
trace!("Recursing below ptr {:#?}", val);
let path = path();
// Remember to come back to this later.
self.todo.push((val, path));
}
}
}
// FIXME make this translatable as well?
/// Format a path
fn write_path(out: &mut String, path: &[PathElem]) {
use self::PathElem::*;
for elem in path.iter() {
match elem {
Field(name) => write!(out, ".{name}"),
EnumTag => write!(out, ".<enum-tag>"),
Variant(name) => write!(out, ".<enum-variant({name})>"),
CoroutineTag => write!(out, ".<coroutine-tag>"),
CoroutineState(idx) => write!(out, ".<coroutine-state({})>", idx.index()),
CapturedVar(name) => write!(out, ".<captured-var({name})>"),
TupleElem(idx) => write!(out, ".{idx}"),
ArrayElem(idx) => write!(out, "[{idx}]"),
// `.<deref>` does not match Rust syntax, but it is more readable for long paths -- and
// some of the other items here also are not Rust syntax. Actually we can't
// even use the usual syntax because we are just showing the projections,
// not the root.
Deref => write!(out, ".<deref>"),
DynDowncast => write!(out, ".<dyn-downcast>"),
Vtable => write!(out, ".<vtable>"),
}
.unwrap()
}
}
/// Represents a set of `Size` values as a sorted list of ranges.
// These are (offset, length) pairs, and they are sorted and mutually disjoint,
// and never adjacent (i.e. there's always a gap between two of them).
#[derive(Debug, Clone)]
pub struct RangeSet(Vec<(Size, Size)>);
impl RangeSet {
fn add_range(&mut self, offset: Size, size: Size) {
if size.bytes() == 0 {
// No need to track empty ranges.
return;
}
let v = &mut self.0;
// We scan for a partition point where the left partition is all the elements that end
// strictly before we start. Those are elements that are too "low" to merge with us.
let idx =
v.partition_point(|&(other_offset, other_size)| other_offset + other_size < offset);
// Now we want to either merge with the first element of the second partition, or insert ourselves before that.
if let Some(&(other_offset, other_size)) = v.get(idx)
&& offset + size >= other_offset
{
// Their end is >= our start (otherwise it would not be in the 2nd partition) and
// our end is >= their start. This means we can merge the ranges.
let new_start = other_offset.min(offset);
let mut new_end = (other_offset + other_size).max(offset + size);
// We grew to the right, so merge with overlapping/adjacent elements.
// (We also may have grown to the left, but that can never make us adjacent with
// anything there since we selected the first such candidate via `partition_point`.)
let mut scan_right = 1;
while let Some(&(next_offset, next_size)) = v.get(idx + scan_right)
&& new_end >= next_offset
{
// Increase our size to absorb the next element.
new_end = new_end.max(next_offset + next_size);
// Look at the next element.
scan_right += 1;
}
// Update the element we grew.
v[idx] = (new_start, new_end - new_start);
// Remove the elements we absorbed (if any).
if scan_right > 1 {
drop(v.drain((idx + 1)..(idx + scan_right)));
}
} else {
// Insert new element.
v.insert(idx, (offset, size));
}
}
}
struct ValidityVisitor<'rt, 'tcx, M: Machine<'tcx>> {
/// The `path` may be pushed to, but the part that is present when a function
/// starts must not be changed! `visit_fields` and `visit_array` rely on
/// this stack discipline.
path: Vec<PathElem>,
ref_tracking: Option<&'rt mut RefTracking<MPlaceTy<'tcx, M::Provenance>, Vec<PathElem>>>,
/// `None` indicates this is not validating for CTFE (but for runtime).
ctfe_mode: Option<CtfeValidationMode>,
ecx: &'rt mut InterpCx<'tcx, M>,
/// Whether provenance should be reset outside of pointers (emulating the effect of a typed
/// copy).
reset_provenance_and_padding: bool,
/// This tracks which byte ranges in this value contain data; the remaining bytes are padding.
/// The ideal representation here would be pointer-length pairs, but to keep things more compact
/// we only store a (range) set of offsets -- the base pointer is the same throughout the entire
/// visit, after all.
/// If this is `Some`, then `reset_provenance_and_padding` must be true (but not vice versa:
/// we might not track data vs padding bytes if the operand isn't stored in memory anyway).
data_bytes: Option<RangeSet>,
}
impl<'rt, 'tcx, M: Machine<'tcx>> ValidityVisitor<'rt, 'tcx, M> {
fn aggregate_field_path_elem(&mut self, layout: TyAndLayout<'tcx>, field: usize) -> PathElem {
// First, check if we are projecting to a variant.
match layout.variants {
Variants::Multiple { tag_field, .. } => {
if tag_field.as_usize() == field {
return match layout.ty.kind() {
ty::Adt(def, ..) if def.is_enum() => PathElem::EnumTag,
ty::Coroutine(..) => PathElem::CoroutineTag,
_ => bug!("non-variant type {:?}", layout.ty),
};
}
}
Variants::Single { .. } | Variants::Empty => {}
}
// Now we know we are projecting to a field, so figure out which one.
match layout.ty.kind() {
// coroutines, closures, and coroutine-closures all have upvars that may be named.
ty::Closure(def_id, _) | ty::Coroutine(def_id, _) | ty::CoroutineClosure(def_id, _) => {
let mut name = None;
// FIXME this should be more descriptive i.e. CapturePlace instead of CapturedVar
// https://github.com/rust-lang/project-rfc-2229/issues/46
if let Some(local_def_id) = def_id.as_local() {
let captures = self.ecx.tcx.closure_captures(local_def_id);
if let Some(captured_place) = captures.get(field) {
// Sometimes the index is beyond the number of upvars (seen
// for a coroutine).
let var_hir_id = captured_place.get_root_variable();
let node = self.ecx.tcx.hir_node(var_hir_id);
if let hir::Node::Pat(pat) = node
&& let hir::PatKind::Binding(_, _, ident, _) = pat.kind
{
name = Some(ident.name);
}
}
}
PathElem::CapturedVar(name.unwrap_or_else(|| {
// Fall back to showing the field index.
sym::integer(field)
}))
}
// tuples
ty::Tuple(_) => PathElem::TupleElem(field),
// enums
ty::Adt(def, ..) if def.is_enum() => {
// we might be projecting *to* a variant, or to a field *in* a variant.
match layout.variants {
Variants::Single { index } => {
// Inside a variant
PathElem::Field(def.variant(index).fields[FieldIdx::from_usize(field)].name)
}
Variants::Empty => panic!("there is no field in Variants::Empty types"),
Variants::Multiple { .. } => bug!("we handled variants above"),
}
}
// other ADTs
ty::Adt(def, _) => {
PathElem::Field(def.non_enum_variant().fields[FieldIdx::from_usize(field)].name)
}
// arrays/slices
ty::Array(..) | ty::Slice(..) => PathElem::ArrayElem(field),
// dyn traits
ty::Dynamic(..) => {
assert_eq!(field, 0);
PathElem::DynDowncast
}
// nothing else has an aggregate layout
_ => bug!("aggregate_field_path_elem: got non-aggregate type {:?}", layout.ty),
}
}
fn with_elem<R>(
&mut self,
elem: PathElem,
f: impl FnOnce(&mut Self) -> InterpResult<'tcx, R>,
) -> InterpResult<'tcx, R> {
// Remember the old state
let path_len = self.path.len();
// Record new element
self.path.push(elem);
// Perform operation
let r = f(self)?;
// Undo changes
self.path.truncate(path_len);
// Done
interp_ok(r)
}
fn read_immediate(
&self,
val: &PlaceTy<'tcx, M::Provenance>,
expected: ExpectedKind,
) -> InterpResult<'tcx, ImmTy<'tcx, M::Provenance>> {
interp_ok(try_validation!(
self.ecx.read_immediate(val),
self.path,
Ub(InvalidUninitBytes(_)) =>
Uninit { expected },
// The `Unsup` cases can only occur during CTFE
Unsup(ReadPointerAsInt(_)) =>
PointerAsInt { expected },
Unsup(ReadPartialPointer(_)) =>
PartialPointer,
))
}
fn read_scalar(
&self,
val: &PlaceTy<'tcx, M::Provenance>,
expected: ExpectedKind,
) -> InterpResult<'tcx, Scalar<M::Provenance>> {
interp_ok(self.read_immediate(val, expected)?.to_scalar())
}
fn deref_pointer(
&mut self,
val: &PlaceTy<'tcx, M::Provenance>,
expected: ExpectedKind,
) -> InterpResult<'tcx, MPlaceTy<'tcx, M::Provenance>> {
// Not using `ecx.deref_pointer` since we want to use our `read_immediate` wrapper.
let imm = self.read_immediate(val, expected)?;
// Reset provenance: ensure slice tail metadata does not preserve provenance,
// and ensure all pointers do not preserve partial provenance.
if self.reset_provenance_and_padding {
if matches!(imm.layout.backend_repr, BackendRepr::Scalar(..)) {
// A thin pointer. If it has provenance, we don't have to do anything.
// If it does not, ensure we clear the provenance in memory.
if matches!(imm.to_scalar(), Scalar::Int(..)) {
self.ecx.clear_provenance(val)?;
}
} else {
// A wide pointer. This means we have to worry both about the pointer itself and the
// metadata. We do the lazy thing and just write back the value we got. Just
// clearing provenance in a targeted manner would be more efficient, but unless this
// is a perf hotspot it's just not worth the effort.
self.ecx.write_immediate_no_validate(*imm, val)?;
}
// The entire thing is data, not padding.
self.add_data_range_place(val);
}
// Now turn it into a place.
self.ecx.ref_to_mplace(&imm)
}
fn check_wide_ptr_meta(
&mut self,
meta: MemPlaceMeta<M::Provenance>,
pointee: TyAndLayout<'tcx>,
) -> InterpResult<'tcx> {
let tail = self.ecx.tcx.struct_tail_for_codegen(pointee.ty, self.ecx.typing_env);
match tail.kind() {
ty::Dynamic(data, _, ty::Dyn) => {
let vtable = meta.unwrap_meta().to_pointer(self.ecx)?;
// Make sure it is a genuine vtable pointer for the right trait.
try_validation!(
self.ecx.get_ptr_vtable_ty(vtable, Some(data)),
self.path,
Ub(DanglingIntPointer{ .. } | InvalidVTablePointer(..)) =>
InvalidVTablePtr { value: format!("{vtable}") },
Ub(InvalidVTableTrait { vtable_dyn_type, expected_dyn_type }) => {
InvalidMetaWrongTrait { vtable_dyn_type, expected_dyn_type }
},
);
}
ty::Slice(..) | ty::Str => {
let _len = meta.unwrap_meta().to_target_usize(self.ecx)?;
// We do not check that `len * elem_size <= isize::MAX`:
// that is only required for references, and there it falls out of the
// "dereferenceable" check performed by Stacked Borrows.
}
ty::Foreign(..) => {
// Unsized, but not wide.
}
_ => bug!("Unexpected unsized type tail: {:?}", tail),
}
interp_ok(())
}
/// Check a reference or `Box`.
fn check_safe_pointer(
&mut self,
value: &PlaceTy<'tcx, M::Provenance>,
ptr_kind: PointerKind,
) -> InterpResult<'tcx> {
let place = self.deref_pointer(value, ptr_kind.into())?;
// Handle wide pointers.
// Check metadata early, for better diagnostics
if place.layout.is_unsized() {
self.check_wide_ptr_meta(place.meta(), place.layout)?;
}
// Make sure this is dereferenceable and all.
let size_and_align = try_validation!(
self.ecx.size_and_align_of_val(&place),
self.path,
Ub(InvalidMeta(msg)) => match msg {
InvalidMetaKind::SliceTooBig => InvalidMetaSliceTooLarge { ptr_kind },
InvalidMetaKind::TooBig => InvalidMetaTooLarge { ptr_kind },
}
);
let (size, align) = size_and_align
// for the purpose of validity, consider foreign types to have
// alignment and size determined by the layout (size will be 0,
// alignment should take attributes into account).
.unwrap_or_else(|| (place.layout.size, place.layout.align.abi));
// Direct call to `check_ptr_access_align` checks alignment even on CTFE machines.
try_validation!(
self.ecx.check_ptr_access(
place.ptr(),
size,
CheckInAllocMsg::Dereferenceable, // will anyway be replaced by validity message
),
self.path,
Ub(DanglingIntPointer { addr: 0, .. }) => NullPtr { ptr_kind },
Ub(DanglingIntPointer { addr: i, .. }) => DanglingPtrNoProvenance {
ptr_kind,
// FIXME this says "null pointer" when null but we need translate
pointer: format!("{}", Pointer::<Option<AllocId>>::without_provenance(i))
},
Ub(PointerOutOfBounds { .. }) => DanglingPtrOutOfBounds {
ptr_kind
},
Ub(PointerUseAfterFree(..)) => DanglingPtrUseAfterFree {
ptr_kind,
},
);
try_validation!(
self.ecx.check_ptr_align(
place.ptr(),
align,
),
self.path,
Ub(AlignmentCheckFailed(Misalignment { required, has }, _msg)) => UnalignedPtr {
ptr_kind,
required_bytes: required.bytes(),
found_bytes: has.bytes()
},
);
// Make sure this is non-null. We checked dereferenceability above, but if `size` is zero
// that does not imply non-null.
if self.ecx.scalar_may_be_null(Scalar::from_maybe_pointer(place.ptr(), self.ecx))? {
throw_validation_failure!(self.path, NullPtr { ptr_kind })
}
// Do not allow references to uninhabited types.
if place.layout.is_uninhabited() {
let ty = place.layout.ty;
throw_validation_failure!(self.path, PtrToUninhabited { ptr_kind, ty })
}
// Recursive checking
if let Some(ref_tracking) = self.ref_tracking.as_deref_mut() {
// Proceed recursively even for ZST, no reason to skip them!
// `!` is a ZST and we want to validate it.
if let Some(ctfe_mode) = self.ctfe_mode {
let mut skip_recursive_check = false;
// CTFE imposes restrictions on what references can point to.
if let Ok((alloc_id, _offset, _prov)) =
self.ecx.ptr_try_get_alloc_id(place.ptr(), 0)
{
// Everything should be already interned.
let Some(global_alloc) = self.ecx.tcx.try_get_global_alloc(alloc_id) else {
if self.ecx.memory.alloc_map.contains_key(&alloc_id) {
// This can happen when interning didn't complete due to, e.g.
// missing `make_global`. This must mean other errors are already
// being reported.
self.ecx.tcx.dcx().delayed_bug(
"interning did not complete, there should be an error",
);
return interp_ok(());
}
// We can't have *any* references to non-existing allocations in const-eval
// as the rest of rustc isn't happy with them... so we throw an error, even
// though for zero-sized references this isn't really UB.
// A potential future alternative would be to resurrect this as a zero-sized allocation
// (which codegen will then compile to an aligned dummy pointer anyway).
throw_validation_failure!(self.path, DanglingPtrUseAfterFree { ptr_kind });
};
let (size, _align) =
global_alloc.size_and_align(*self.ecx.tcx, self.ecx.typing_env);
let alloc_actual_mutbl =
global_alloc.mutability(*self.ecx.tcx, self.ecx.typing_env);
match global_alloc {
GlobalAlloc::Static(did) => {
let DefKind::Static { nested, .. } = self.ecx.tcx.def_kind(did) else {
bug!()
};
assert!(!self.ecx.tcx.is_thread_local_static(did));
assert!(self.ecx.tcx.is_static(did));
match ctfe_mode {
CtfeValidationMode::Static { .. }
| CtfeValidationMode::Promoted { .. } => {
// We skip recursively checking other statics. These statics must be sound by
// themselves, and the only way to get broken statics here is by using
// unsafe code.
// The reasons we don't check other statics is twofold. For one, in all
// sound cases, the static was already validated on its own, and second, we
// trigger cycle errors if we try to compute the value of the other static
// and that static refers back to us (potentially through a promoted).
// This could miss some UB, but that's fine.
// We still walk nested allocations, as they are fundamentally part of this validation run.
// This means we will also recurse into nested statics of *other*
// statics, even though we do not recurse into other statics directly.
// That's somewhat inconsistent but harmless.
skip_recursive_check = !nested;
}
CtfeValidationMode::Const { .. } => {
// If this is mutable memory or an `extern static`, there's no point in checking it -- we'd
// just get errors trying to read the value.
if alloc_actual_mutbl.is_mut()
|| self.ecx.tcx.is_foreign_item(did)
{
skip_recursive_check = true;
}
}
}
}
_ => (),
}
// If this allocation has size zero, there is no actual mutability here.
if size != Size::ZERO {
// Determine whether this pointer expects to be pointing to something mutable.
let ptr_expected_mutbl = match ptr_kind {
PointerKind::Box => Mutability::Mut,
PointerKind::Ref(mutbl) => {
// We do not take into account interior mutability here since we cannot know if
// there really is an `UnsafeCell` inside `Option<UnsafeCell>` -- so we check
// that in the recursive descent behind this reference (controlled by
// `allow_immutable_unsafe_cell`).
mutbl
}
};
// Mutable pointer to immutable memory is no good.
if ptr_expected_mutbl == Mutability::Mut
&& alloc_actual_mutbl == Mutability::Not
{
// This can actually occur with transmutes.
throw_validation_failure!(self.path, MutableRefToImmutable);
}
// In a const, any kind of mutable reference is not good.
if matches!(self.ctfe_mode, Some(CtfeValidationMode::Const { .. })) {
if ptr_expected_mutbl == Mutability::Mut {
throw_validation_failure!(self.path, MutableRefInConst);
}
}
}
}
// Potentially skip recursive check.
if skip_recursive_check {
return interp_ok(());
}
} else {
// This is not CTFE, so it's Miri with recursive checking.
// FIXME: we do *not* check behind boxes, since creating a new box first creates it uninitialized
// and then puts the value in there, so briefly we have a box with uninit contents.
// FIXME: should we also skip `UnsafeCell` behind shared references? Currently that is not
// needed since validation reads bypass Stacked Borrows and data race checks.
if matches!(ptr_kind, PointerKind::Box) {
return interp_ok(());
}
}
let path = &self.path;
ref_tracking.track(place, || {
// We need to clone the path anyway, make sure it gets created
// with enough space for the additional `Deref`.
let mut new_path = Vec::with_capacity(path.len() + 1);
new_path.extend(path);
new_path.push(PathElem::Deref);
new_path
});
}
interp_ok(())
}
/// Check if this is a value of primitive type, and if yes check the validity of the value
/// at that type. Return `true` if the type is indeed primitive.
///
/// Note that not all of these have `FieldsShape::Primitive`, e.g. wide references.
fn try_visit_primitive(
&mut self,
value: &PlaceTy<'tcx, M::Provenance>,
) -> InterpResult<'tcx, bool> {
// Go over all the primitive types
let ty = value.layout.ty;
match ty.kind() {
ty::Bool => {
let scalar = self.read_scalar(value, ExpectedKind::Bool)?;
try_validation!(
scalar.to_bool(),
self.path,
Ub(InvalidBool(..)) => ValidationErrorKind::InvalidBool {
value: format!("{scalar:x}"),
}
);
if self.reset_provenance_and_padding {
self.ecx.clear_provenance(value)?;
self.add_data_range_place(value);
}
interp_ok(true)
}
ty::Char => {
let scalar = self.read_scalar(value, ExpectedKind::Char)?;
try_validation!(
scalar.to_char(),
self.path,
Ub(InvalidChar(..)) => ValidationErrorKind::InvalidChar {
value: format!("{scalar:x}"),
}
);
if self.reset_provenance_and_padding {
self.ecx.clear_provenance(value)?;
self.add_data_range_place(value);
}
interp_ok(true)
}
ty::Float(_) | ty::Int(_) | ty::Uint(_) => {
// NOTE: Keep this in sync with the array optimization for int/float
// types below!
self.read_scalar(
value,
if matches!(ty.kind(), ty::Float(..)) {
ExpectedKind::Float
} else {
ExpectedKind::Int
},
)?;
if self.reset_provenance_and_padding {
self.ecx.clear_provenance(value)?;
self.add_data_range_place(value);
}
interp_ok(true)
}
ty::RawPtr(..) => {
let place = self.deref_pointer(value, ExpectedKind::RawPtr)?;
if place.layout.is_unsized() {
self.check_wide_ptr_meta(place.meta(), place.layout)?;
}
interp_ok(true)
}
ty::Ref(_, _ty, mutbl) => {
self.check_safe_pointer(value, PointerKind::Ref(*mutbl))?;
interp_ok(true)
}
ty::FnPtr(..) => {
let scalar = self.read_scalar(value, ExpectedKind::FnPtr)?;
// If we check references recursively, also check that this points to a function.
if let Some(_) = self.ref_tracking {
let ptr = scalar.to_pointer(self.ecx)?;
let _fn = try_validation!(
self.ecx.get_ptr_fn(ptr),
self.path,
Ub(DanglingIntPointer{ .. } | InvalidFunctionPointer(..)) =>
InvalidFnPtr { value: format!("{ptr}") },
);
// FIXME: Check if the signature matches
} else {
// Otherwise (for standalone Miri), we have to still check it to be non-null.
if self.ecx.scalar_may_be_null(scalar)? {
throw_validation_failure!(self.path, NullFnPtr);
}
}
if self.reset_provenance_and_padding {
// Make sure we do not preserve partial provenance. This matches the thin
// pointer handling in `deref_pointer`.
if matches!(scalar, Scalar::Int(..)) {
self.ecx.clear_provenance(value)?;
}
self.add_data_range_place(value);
}
interp_ok(true)
}
ty::Never => throw_validation_failure!(self.path, NeverVal),
ty::Foreign(..) | ty::FnDef(..) => {
// Nothing to check.
interp_ok(true)
}
ty::UnsafeBinder(_) => todo!("FIXME(unsafe_binder)"),
// The above should be all the primitive types. The rest is compound, we
// check them by visiting their fields/variants.
ty::Adt(..)
| ty::Tuple(..)
| ty::Array(..)
| ty::Slice(..)
| ty::Str
| ty::Dynamic(..)
| ty::Closure(..)
| ty::Pat(..)
| ty::CoroutineClosure(..)
| ty::Coroutine(..) => interp_ok(false),
// Some types only occur during typechecking, they have no layout.
// We should not see them here and we could not check them anyway.
ty::Error(_)
| ty::Infer(..)
| ty::Placeholder(..)
| ty::Bound(..)
| ty::Param(..)
| ty::Alias(..)
| ty::CoroutineWitness(..) => bug!("Encountered invalid type {:?}", ty),
}
}
fn visit_scalar(
&mut self,
scalar: Scalar<M::Provenance>,
scalar_layout: ScalarAbi,
) -> InterpResult<'tcx> {
let size = scalar_layout.size(self.ecx);
let valid_range = scalar_layout.valid_range(self.ecx);
let WrappingRange { start, end } = valid_range;
let max_value = size.unsigned_int_max();
assert!(end <= max_value);
let bits = match scalar.try_to_scalar_int() {
Ok(int) => int.to_bits(size),
Err(_) => {
// So this is a pointer then, and casting to an int failed.
// Can only happen during CTFE.
// We support 2 kinds of ranges here: full range, and excluding zero.
if start == 1 && end == max_value {
// Only null is the niche. So make sure the ptr is NOT null.
if self.ecx.scalar_may_be_null(scalar)? {
throw_validation_failure!(
self.path,
NullablePtrOutOfRange { range: valid_range, max_value }
)
} else {
return interp_ok(());
}
} else if scalar_layout.is_always_valid(self.ecx) {
// Easy. (This is reachable if `enforce_number_validity` is set.)
return interp_ok(());
} else {
// Conservatively, we reject, because the pointer *could* have a bad
// value.
throw_validation_failure!(
self.path,
PtrOutOfRange { range: valid_range, max_value }
)
}
}
};
// Now compare.
if valid_range.contains(bits) {
interp_ok(())
} else {
throw_validation_failure!(
self.path,
OutOfRange { value: format!("{bits}"), range: valid_range, max_value }
)
}
}
fn in_mutable_memory(&self, val: &PlaceTy<'tcx, M::Provenance>) -> bool {
debug_assert!(self.ctfe_mode.is_some());
if let Some(mplace) = val.as_mplace_or_local().left() {
if let Some(alloc_id) = mplace.ptr().provenance.and_then(|p| p.get_alloc_id()) {
let tcx = *self.ecx.tcx;
// Everything must be already interned.
let mutbl = tcx.global_alloc(alloc_id).mutability(tcx, self.ecx.typing_env);
if let Some((_, alloc)) = self.ecx.memory.alloc_map.get(alloc_id) {
assert_eq!(alloc.mutability, mutbl);
}
mutbl.is_mut()
} else {
// No memory at all.
false
}
} else {
// A local variable -- definitely mutable.
true
}
}
/// Add the given pointer-length pair to the "data" range of this visit.
fn add_data_range(&mut self, ptr: Pointer<Option<M::Provenance>>, size: Size) {
if let Some(data_bytes) = self.data_bytes.as_mut() {
// We only have to store the offset, the rest is the same for all pointers here.
// The logic is agnostic to whether the offset is relative or absolute as long as
// it is consistent.
let (_prov, offset) = ptr.into_raw_parts();
// Add this.
data_bytes.add_range(offset, size);
};
}
/// Add the entire given place to the "data" range of this visit.
fn add_data_range_place(&mut self, place: &PlaceTy<'tcx, M::Provenance>) {
// Only sized places can be added this way.
debug_assert!(place.layout.is_sized());
if let Some(data_bytes) = self.data_bytes.as_mut() {
let offset = Self::data_range_offset(self.ecx, place);
data_bytes.add_range(offset, place.layout.size);
}
}
/// Convert a place into the offset it starts at, for the purpose of data_range tracking.
/// Must only be called if `data_bytes` is `Some(_)`.
fn data_range_offset(ecx: &InterpCx<'tcx, M>, place: &PlaceTy<'tcx, M::Provenance>) -> Size {
// The presence of `data_bytes` implies that our place is in memory.
let ptr = ecx
.place_to_op(place)
.expect("place must be in memory")
.as_mplace_or_imm()
.expect_left("place must be in memory")
.ptr();
let (_prov, offset) = ptr.into_raw_parts();
offset
}
fn reset_padding(&mut self, place: &PlaceTy<'tcx, M::Provenance>) -> InterpResult<'tcx> {
let Some(data_bytes) = self.data_bytes.as_mut() else { return interp_ok(()) };
// Our value must be in memory, otherwise we would not have set up `data_bytes`.
let mplace = self.ecx.force_allocation(place)?;
// Determine starting offset and size.
let (_prov, start_offset) = mplace.ptr().into_raw_parts();
let (size, _align) = self
.ecx
.size_and_align_of_val(&mplace)?
.unwrap_or((mplace.layout.size, mplace.layout.align.abi));
// If there is no padding at all, we can skip the rest: check for
// a single data range covering the entire value.
if data_bytes.0 == &[(start_offset, size)] {
return interp_ok(());
}
// Get a handle for the allocation. Do this only once, to avoid looking up the same
// allocation over and over again. (Though to be fair, iterating the value already does
// exactly that.)
let Some(mut alloc) = self.ecx.get_ptr_alloc_mut(mplace.ptr(), size)? else {
// A ZST, no padding to clear.
return interp_ok(());
};
// Add a "finalizer" data range at the end, so that the iteration below finds all gaps
// between ranges.
data_bytes.0.push((start_offset + size, Size::ZERO));
// Iterate, and reset gaps.
let mut padding_cleared_until = start_offset;
for &(offset, size) in data_bytes.0.iter() {
assert!(
offset >= padding_cleared_until,
"reset_padding on {}: previous field ended at offset {}, next field starts at {} (and has a size of {} bytes)",
mplace.layout.ty,
(padding_cleared_until - start_offset).bytes(),
(offset - start_offset).bytes(),
size.bytes(),
);
if offset > padding_cleared_until {
// We found padding. Adjust the range to be relative to `alloc`, and make it uninit.
let padding_start = padding_cleared_until - start_offset;
let padding_size = offset - padding_cleared_until;
let range = alloc_range(padding_start, padding_size);
trace!("reset_padding on {}: resetting padding range {range:?}", mplace.layout.ty);
alloc.write_uninit(range)?;
}
padding_cleared_until = offset + size;
}
assert!(padding_cleared_until == start_offset + size);
interp_ok(())
}
/// Computes the data range of this union type:
/// which bytes are inside a field (i.e., not padding.)
fn union_data_range<'e>(
ecx: &'e mut InterpCx<'tcx, M>,
layout: TyAndLayout<'tcx>,
) -> Cow<'e, RangeSet> {
assert!(layout.ty.is_union());
assert!(layout.is_sized(), "there are no unsized unions");
let layout_cx = LayoutCx::new(*ecx.tcx, ecx.typing_env);
return M::cached_union_data_range(ecx, layout.ty, || {
let mut out = RangeSet(Vec::new());
union_data_range_uncached(&layout_cx, layout, Size::ZERO, &mut out);
out
});
/// Helper for recursive traversal: add data ranges of the given type to `out`.
fn union_data_range_uncached<'tcx>(
cx: &LayoutCx<'tcx>,
layout: TyAndLayout<'tcx>,
base_offset: Size,
out: &mut RangeSet,
) {
// If this is a ZST, we don't contain any data. In particular, this helps us to quickly
// skip over huge arrays of ZST.
if layout.is_zst() {
return;
}
// Just recursively add all the fields of everything to the output.
match &layout.fields {
FieldsShape::Primitive => {
out.add_range(base_offset, layout.size);
}
&FieldsShape::Union(fields) => {
// Currently, all fields start at offset 0 (relative to `base_offset`).
for field in 0..fields.get() {
let field = layout.field(cx, field);
union_data_range_uncached(cx, field, base_offset, out);
}
}
&FieldsShape::Array { stride, count } => {
let elem = layout.field(cx, 0);
// Fast-path for large arrays of simple types that do not contain any padding.
if elem.backend_repr.is_scalar() {
out.add_range(base_offset, elem.size * count);
} else {
for idx in 0..count {
// This repeats the same computation for every array element... but the alternative
// is to allocate temporary storage for a dedicated `out` set for the array element,
// and replicating that N times. Is that better?
union_data_range_uncached(cx, elem, base_offset + idx * stride, out);
}
}
}
FieldsShape::Arbitrary { offsets, .. } => {
for (field, &offset) in offsets.iter_enumerated() {
let field = layout.field(cx, field.as_usize());
union_data_range_uncached(cx, field, base_offset + offset, out);
}
}
}
// Don't forget potential other variants.
match &layout.variants {
Variants::Single { .. } | Variants::Empty => {
// Fully handled above.
}
Variants::Multiple { variants, .. } => {
for variant in variants.indices() {
let variant = layout.for_variant(cx, variant);
union_data_range_uncached(cx, variant, base_offset, out);
}
}
}
}
}
}
impl<'rt, 'tcx, M: Machine<'tcx>> ValueVisitor<'tcx, M> for ValidityVisitor<'rt, 'tcx, M> {
type V = PlaceTy<'tcx, M::Provenance>;
#[inline(always)]
fn ecx(&self) -> &InterpCx<'tcx, M> {
self.ecx
}
fn read_discriminant(
&mut self,
val: &PlaceTy<'tcx, M::Provenance>,
) -> InterpResult<'tcx, VariantIdx> {
self.with_elem(PathElem::EnumTag, move |this| {
interp_ok(try_validation!(
this.ecx.read_discriminant(val),
this.path,
Ub(InvalidTag(val)) => InvalidEnumTag {
value: format!("{val:x}"),
},
Ub(UninhabitedEnumVariantRead(_)) => UninhabitedEnumVariant,
// Uninit / bad provenance are not possible since the field was already previously
// checked at its integer type.
))
})
}
#[inline]
fn visit_field(
&mut self,
old_val: &PlaceTy<'tcx, M::Provenance>,
field: usize,
new_val: &PlaceTy<'tcx, M::Provenance>,
) -> InterpResult<'tcx> {
let elem = self.aggregate_field_path_elem(old_val.layout, field);
self.with_elem(elem, move |this| this.visit_value(new_val))
}
#[inline]
fn visit_variant(
&mut self,
old_val: &PlaceTy<'tcx, M::Provenance>,
variant_id: VariantIdx,
new_val: &PlaceTy<'tcx, M::Provenance>,
) -> InterpResult<'tcx> {
let name = match old_val.layout.ty.kind() {
ty::Adt(adt, _) => PathElem::Variant(adt.variant(variant_id).name),
// Coroutines also have variants
ty::Coroutine(..) => PathElem::CoroutineState(variant_id),
_ => bug!("Unexpected type with variant: {:?}", old_val.layout.ty),
};
self.with_elem(name, move |this| this.visit_value(new_val))
}
#[inline(always)]
fn visit_union(
&mut self,
val: &PlaceTy<'tcx, M::Provenance>,
_fields: NonZero<usize>,
) -> InterpResult<'tcx> {
// Special check for CTFE validation, preventing `UnsafeCell` inside unions in immutable memory.
if self.ctfe_mode.is_some_and(|c| !c.allow_immutable_unsafe_cell()) {
// Unsized unions are currently not a thing, but let's keep this code consistent with
// the check in `visit_value`.
let zst = self.ecx.size_and_align_of_val(val)?.is_some_and(|(s, _a)| s.bytes() == 0);
if !zst && !val.layout.ty.is_freeze(*self.ecx.tcx, self.ecx.typing_env) {
if !self.in_mutable_memory(val) {
throw_validation_failure!(self.path, UnsafeCellInImmutable);
}
}
}
if self.reset_provenance_and_padding
&& let Some(data_bytes) = self.data_bytes.as_mut()
{
let base_offset = Self::data_range_offset(self.ecx, val);
// Determine and add data range for this union.
let union_data_range = Self::union_data_range(self.ecx, val.layout);
for &(offset, size) in union_data_range.0.iter() {
data_bytes.add_range(base_offset + offset, size);
}
}
interp_ok(())
}
#[inline]
fn visit_box(
&mut self,
_box_ty: Ty<'tcx>,
val: &PlaceTy<'tcx, M::Provenance>,
) -> InterpResult<'tcx> {
self.check_safe_pointer(val, PointerKind::Box)?;
interp_ok(())
}
#[inline]
fn visit_value(&mut self, val: &PlaceTy<'tcx, M::Provenance>) -> InterpResult<'tcx> {
trace!("visit_value: {:?}, {:?}", *val, val.layout);
// Check primitive types -- the leaves of our recursive descent.
// This is called even for enum discriminants (which are "fields" of their enum),
// so for integer-typed discriminants the provenance reset will happen here.
// We assume that the Scalar validity range does not restrict these values
// any further than `try_visit_primitive` does!
if self.try_visit_primitive(val)? {
return interp_ok(());
}
// Special check preventing `UnsafeCell` in the inner part of constants
if self.ctfe_mode.is_some_and(|c| !c.allow_immutable_unsafe_cell()) {
// Exclude ZST values. We need to compute the dynamic size/align to properly
// handle slices and trait objects.
let zst = self.ecx.size_and_align_of_val(val)?.is_some_and(|(s, _a)| s.bytes() == 0);
if !zst
&& let Some(def) = val.layout.ty.ty_adt_def()
&& def.is_unsafe_cell()
{
if !self.in_mutable_memory(val) {
throw_validation_failure!(self.path, UnsafeCellInImmutable);
}
}
}
// Recursively walk the value at its type. Apply optimizations for some large types.
match val.layout.ty.kind() {
ty::Str => {
let mplace = val.assert_mem_place(); // strings are unsized and hence never immediate
let len = mplace.len(self.ecx)?;
try_validation!(
self.ecx.read_bytes_ptr_strip_provenance(mplace.ptr(), Size::from_bytes(len)),
self.path,
Ub(InvalidUninitBytes(..)) => Uninit { expected: ExpectedKind::Str },
Unsup(ReadPointerAsInt(_)) => PointerAsInt { expected: ExpectedKind::Str }
);
}
ty::Array(tys, ..) | ty::Slice(tys)
// This optimization applies for types that can hold arbitrary non-provenance bytes (such as
// integer and floating point types).
// FIXME(wesleywiser) This logic could be extended further to arbitrary structs or
// tuples made up of integer/floating point types or inhabited ZSTs with no padding.
if matches!(tys.kind(), ty::Int(..) | ty::Uint(..) | ty::Float(..))
=>
{
let expected = if tys.is_integral() { ExpectedKind::Int } else { ExpectedKind::Float };
// Optimized handling for arrays of integer/float type.
// This is the length of the array/slice.
let len = val.len(self.ecx)?;
// This is the element type size.
let layout = self.ecx.layout_of(*tys)?;
// This is the size in bytes of the whole array. (This checks for overflow.)
let size = layout.size * len;
// If the size is 0, there is nothing to check.
// (`size` can only be 0 if `len` is 0, and empty arrays are always valid.)
if size == Size::ZERO {
return interp_ok(());
}
// Now that we definitely have a non-ZST array, we know it lives in memory -- except it may
// be an uninitialized local variable, those are also "immediate".
let mplace = match val.to_op(self.ecx)?.as_mplace_or_imm() {
Left(mplace) => mplace,
Right(imm) => match *imm {
Immediate::Uninit =>
throw_validation_failure!(self.path, Uninit { expected }),
Immediate::Scalar(..) | Immediate::ScalarPair(..) =>
bug!("arrays/slices can never have Scalar/ScalarPair layout"),
}
};
// Optimization: we just check the entire range at once.
// NOTE: Keep this in sync with the handling of integer and float
// types above, in `visit_primitive`.
// No need for an alignment check here, this is not an actual memory access.
let alloc = self.ecx.get_ptr_alloc(mplace.ptr(), size)?.expect("we already excluded size 0");
alloc.get_bytes_strip_provenance().map_err_kind(|kind| {
// Some error happened, try to provide a more detailed description.
// For some errors we might be able to provide extra information.
// (This custom logic does not fit the `try_validation!` macro.)
match kind {
Ub(InvalidUninitBytes(Some((_alloc_id, access)))) | Unsup(ReadPointerAsInt(Some((_alloc_id, access)))) => {
// Some byte was uninitialized, determine which
// element that byte belongs to so we can
// provide an index.
let i = usize::try_from(
access.bad.start.bytes() / layout.size.bytes(),
)
.unwrap();
self.path.push(PathElem::ArrayElem(i));
if matches!(kind, Ub(InvalidUninitBytes(_))) {
err_validation_failure!(self.path, Uninit { expected })
} else {
err_validation_failure!(self.path, PointerAsInt { expected })
}
}
// Propagate upwards (that will also check for unexpected errors).
err => err,
}
})?;
// Don't forget that these are all non-pointer types, and thus do not preserve
// provenance.
if self.reset_provenance_and_padding {
// We can't share this with above as above, we might be looking at read-only memory.
let mut alloc = self.ecx.get_ptr_alloc_mut(mplace.ptr(), size)?.expect("we already excluded size 0");
alloc.clear_provenance()?;
// Also, mark this as containing data, not padding.
self.add_data_range(mplace.ptr(), size);
}
}
// Fast path for arrays and slices of ZSTs. We only need to check a single ZST element
// of an array and not all of them, because there's only a single value of a specific
// ZST type, so either validation fails for all elements or none.
ty::Array(tys, ..) | ty::Slice(tys) if self.ecx.layout_of(*tys)?.is_zst() => {
// Validate just the first element (if any).
if val.len(self.ecx)? > 0 {
self.visit_field(val, 0, &self.ecx.project_index(val, 0)?)?;
}
}
ty::Pat(base, pat) => {
// First check that the base type is valid
self.visit_value(&val.transmute(self.ecx.layout_of(*base)?, self.ecx)?)?;
// When you extend this match, make sure to also add tests to
// tests/ui/type/pattern_types/validity.rs((
match **pat {
// Range patterns are precisely reflected into `valid_range` and thus
// handled fully by `visit_scalar` (called below).
ty::PatternKind::Range { .. } => {},
// FIXME(pattern_types): check that the value is covered by one of the variants.
// For now, we rely on layout computation setting the scalar's `valid_range` to
// match the pattern. However, this cannot always work; the layout may
// pessimistically cover actually illegal ranges and Miri would miss that UB.
// The consolation here is that codegen also will miss that UB, so at least
// we won't see optimizations actually breaking such programs.
ty::PatternKind::Or(_patterns) => {}
}
}
_ => {
// default handler
try_validation!(
self.walk_value(val),
self.path,
// It's not great to catch errors here, since we can't give a very good path,
// but it's better than ICEing.
Ub(InvalidVTableTrait { vtable_dyn_type, expected_dyn_type }) => {
InvalidMetaWrongTrait { vtable_dyn_type, expected_dyn_type }
},
);
}
}
// *After* all of this, check further information stored in the layout. We need to check
// this to handle types like `NonNull` where the `Scalar` info is more restrictive than what
// the fields say (`rustc_layout_scalar_valid_range_start`). But in most cases, this will
// just propagate what the fields say, and then we want the error to point at the field --
// so, we first recurse, then we do this check.
//
// FIXME: We could avoid some redundant checks here. For newtypes wrapping
// scalars, we do the same check on every "level" (e.g., first we check
// MyNewtype and then the scalar in there).
if val.layout.is_uninhabited() {
let ty = val.layout.ty;
throw_validation_failure!(self.path, UninhabitedVal { ty });
}
match val.layout.backend_repr {
BackendRepr::Scalar(scalar_layout) => {
if !scalar_layout.is_uninit_valid() {
// There is something to check here.
let scalar = self.read_scalar(val, ExpectedKind::InitScalar)?;
self.visit_scalar(scalar, scalar_layout)?;
}
}
BackendRepr::ScalarPair(a_layout, b_layout) => {
// We can only proceed if *both* scalars need to be initialized.
// FIXME: find a way to also check ScalarPair when one side can be uninit but
// the other must be init.
if !a_layout.is_uninit_valid() && !b_layout.is_uninit_valid() {
let (a, b) =
self.read_immediate(val, ExpectedKind::InitScalar)?.to_scalar_pair();
self.visit_scalar(a, a_layout)?;
self.visit_scalar(b, b_layout)?;
}
}
BackendRepr::SimdVector { .. } => {
// No checks here, we assume layout computation gets this right.
// (This is harder to check since Miri does not represent these as `Immediate`. We
// also cannot use field projections since this might be a newtype around a vector.)
}
BackendRepr::Memory { .. } => {
// Nothing to do.
}
}
interp_ok(())
}
}
impl<'tcx, M: Machine<'tcx>> InterpCx<'tcx, M> {
fn validate_operand_internal(
&mut self,
val: &PlaceTy<'tcx, M::Provenance>,
path: Vec<PathElem>,
ref_tracking: Option<&mut RefTracking<MPlaceTy<'tcx, M::Provenance>, Vec<PathElem>>>,
ctfe_mode: Option<CtfeValidationMode>,
reset_provenance_and_padding: bool,
) -> InterpResult<'tcx> {
trace!("validate_operand_internal: {:?}, {:?}", *val, val.layout.ty);
// Run the visitor.
self.run_for_validation_mut(|ecx| {
let reset_padding = reset_provenance_and_padding && {
// Check if `val` is actually stored in memory. If not, padding is not even
// represented and we need not reset it.
ecx.place_to_op(val)?.as_mplace_or_imm().is_left()
};
let mut v = ValidityVisitor {
path,
ref_tracking,
ctfe_mode,
ecx,
reset_provenance_and_padding,
data_bytes: reset_padding.then_some(RangeSet(Vec::new())),
};
v.visit_value(val)?;
v.reset_padding(val)?;
interp_ok(())
})
.map_err_info(|err| {
if !matches!(
err.kind(),
err_ub!(ValidationError { .. })
| InterpErrorKind::InvalidProgram(_)
| InterpErrorKind::Unsupported(UnsupportedOpInfo::ExternTypeField)
) {
bug!(
"Unexpected error during validation: {}",
format_interp_error(self.tcx.dcx(), err)
);
}
err
})
}
/// This function checks the data at `val` to be const-valid.
/// `val` is assumed to cover valid memory if it is an indirect operand.
/// It will error if the bits at the destination do not match the ones described by the layout.
///
/// `ref_tracking` is used to record references that we encounter so that they
/// can be checked recursively by an outside driving loop.
///
/// `constant` controls whether this must satisfy the rules for constants:
/// - no pointers to statics.
/// - no `UnsafeCell` or non-ZST `&mut`.
#[inline(always)]
pub(crate) fn const_validate_operand(
&mut self,
val: &PlaceTy<'tcx, M::Provenance>,
path: Vec<PathElem>,
ref_tracking: &mut RefTracking<MPlaceTy<'tcx, M::Provenance>, Vec<PathElem>>,
ctfe_mode: CtfeValidationMode,
) -> InterpResult<'tcx> {
self.validate_operand_internal(
val,
path,
Some(ref_tracking),
Some(ctfe_mode),
/*reset_provenance*/ false,
)
}
/// This function checks the data at `val` to be runtime-valid.
/// `val` is assumed to cover valid memory if it is an indirect operand.
/// It will error if the bits at the destination do not match the ones described by the layout.
#[inline(always)]
pub fn validate_operand(
&mut self,
val: &PlaceTy<'tcx, M::Provenance>,
recursive: bool,
reset_provenance_and_padding: bool,
) -> InterpResult<'tcx> {
let _trace = enter_trace_span!(
M,
"validate_operand",
"recursive={recursive}, reset_provenance_and_padding={reset_provenance_and_padding}, val={val:?}"
);
// Note that we *could* actually be in CTFE here with `-Zextra-const-ub-checks`, but it's
// still correct to not use `ctfe_mode`: that mode is for validation of the final constant
// value, it rules out things like `UnsafeCell` in awkward places.
if !recursive {
return self.validate_operand_internal(
val,
vec![],
None,
None,
reset_provenance_and_padding,
);
}
// Do a recursive check.
let mut ref_tracking = RefTracking::empty();
self.validate_operand_internal(
val,
vec![],
Some(&mut ref_tracking),
None,
reset_provenance_and_padding,
)?;
while let Some((mplace, path)) = ref_tracking.todo.pop() {
// Things behind reference do *not* have the provenance reset.
self.validate_operand_internal(
&mplace.into(),
path,
Some(&mut ref_tracking),
None,
/*reset_provenance_and_padding*/ false,
)?;
}
interp_ok(())
}
}