| // FIXME(f16_f128): only tested on platforms that have symbols and aren't buggy |
| #![cfg(target_has_reliable_f16)] |
| |
| use std::f16::consts; |
| |
| /// Tolerance for results on the order of 10.0e-2 |
| #[allow(unused)] |
| const TOL_N2: f16 = 0.0001; |
| |
| /// Tolerance for results on the order of 10.0e+0 |
| #[allow(unused)] |
| const TOL_0: f16 = 0.01; |
| |
| /// Tolerance for results on the order of 10.0e+2 |
| #[allow(unused)] |
| const TOL_P2: f16 = 0.5; |
| |
| /// Tolerance for results on the order of 10.0e+4 |
| #[allow(unused)] |
| const TOL_P4: f16 = 10.0; |
| |
| /// Compare by representation |
| #[allow(unused_macros)] |
| macro_rules! assert_f16_biteq { |
| ($a:expr, $b:expr) => { |
| let (l, r): (&f16, &f16) = (&$a, &$b); |
| let lb = l.to_bits(); |
| let rb = r.to_bits(); |
| assert_eq!(lb, rb, "float {l:?} ({lb:#04x}) is not bitequal to {r:?} ({rb:#04x})"); |
| }; |
| } |
| |
| #[test] |
| #[cfg(not(miri))] |
| #[cfg(target_has_reliable_f16_math)] |
| fn test_powf() { |
| let nan: f16 = f16::NAN; |
| let inf: f16 = f16::INFINITY; |
| let neg_inf: f16 = f16::NEG_INFINITY; |
| assert_eq!(1.0f16.powf(1.0), 1.0); |
| assert_approx_eq!(3.4f16.powf(4.5), 246.408183, TOL_P2); |
| assert_approx_eq!(2.7f16.powf(-3.2), 0.041652, TOL_N2); |
| assert_approx_eq!((-3.1f16).powf(2.0), 9.61, TOL_P2); |
| assert_approx_eq!(5.9f16.powf(-2.0), 0.028727, TOL_N2); |
| assert_eq!(8.3f16.powf(0.0), 1.0); |
| assert!(nan.powf(2.0).is_nan()); |
| assert_eq!(inf.powf(2.0), inf); |
| assert_eq!(neg_inf.powf(3.0), neg_inf); |
| } |
| |
| #[test] |
| #[cfg(not(miri))] |
| #[cfg(target_has_reliable_f16_math)] |
| fn test_exp() { |
| assert_eq!(1.0, 0.0f16.exp()); |
| assert_approx_eq!(2.718282, 1.0f16.exp(), TOL_0); |
| assert_approx_eq!(148.413159, 5.0f16.exp(), TOL_0); |
| |
| let inf: f16 = f16::INFINITY; |
| let neg_inf: f16 = f16::NEG_INFINITY; |
| let nan: f16 = f16::NAN; |
| assert_eq!(inf, inf.exp()); |
| assert_eq!(0.0, neg_inf.exp()); |
| assert!(nan.exp().is_nan()); |
| } |
| |
| #[test] |
| #[cfg(not(miri))] |
| #[cfg(target_has_reliable_f16_math)] |
| fn test_exp2() { |
| assert_eq!(32.0, 5.0f16.exp2()); |
| assert_eq!(1.0, 0.0f16.exp2()); |
| |
| let inf: f16 = f16::INFINITY; |
| let neg_inf: f16 = f16::NEG_INFINITY; |
| let nan: f16 = f16::NAN; |
| assert_eq!(inf, inf.exp2()); |
| assert_eq!(0.0, neg_inf.exp2()); |
| assert!(nan.exp2().is_nan()); |
| } |
| |
| #[test] |
| #[cfg(not(miri))] |
| #[cfg(target_has_reliable_f16_math)] |
| fn test_ln() { |
| let nan: f16 = f16::NAN; |
| let inf: f16 = f16::INFINITY; |
| let neg_inf: f16 = f16::NEG_INFINITY; |
| assert_approx_eq!(1.0f16.exp().ln(), 1.0, TOL_0); |
| assert!(nan.ln().is_nan()); |
| assert_eq!(inf.ln(), inf); |
| assert!(neg_inf.ln().is_nan()); |
| assert!((-2.3f16).ln().is_nan()); |
| assert_eq!((-0.0f16).ln(), neg_inf); |
| assert_eq!(0.0f16.ln(), neg_inf); |
| assert_approx_eq!(4.0f16.ln(), 1.386294, TOL_0); |
| } |
| |
| #[test] |
| #[cfg(not(miri))] |
| #[cfg(target_has_reliable_f16_math)] |
| fn test_log() { |
| let nan: f16 = f16::NAN; |
| let inf: f16 = f16::INFINITY; |
| let neg_inf: f16 = f16::NEG_INFINITY; |
| assert_eq!(10.0f16.log(10.0), 1.0); |
| assert_approx_eq!(2.3f16.log(3.5), 0.664858, TOL_0); |
| assert_eq!(1.0f16.exp().log(1.0f16.exp()), 1.0); |
| assert!(1.0f16.log(1.0).is_nan()); |
| assert!(1.0f16.log(-13.9).is_nan()); |
| assert!(nan.log(2.3).is_nan()); |
| assert_eq!(inf.log(10.0), inf); |
| assert!(neg_inf.log(8.8).is_nan()); |
| assert!((-2.3f16).log(0.1).is_nan()); |
| assert_eq!((-0.0f16).log(2.0), neg_inf); |
| assert_eq!(0.0f16.log(7.0), neg_inf); |
| } |
| |
| #[test] |
| #[cfg(not(miri))] |
| #[cfg(target_has_reliable_f16_math)] |
| fn test_log2() { |
| let nan: f16 = f16::NAN; |
| let inf: f16 = f16::INFINITY; |
| let neg_inf: f16 = f16::NEG_INFINITY; |
| assert_approx_eq!(10.0f16.log2(), 3.321928, TOL_0); |
| assert_approx_eq!(2.3f16.log2(), 1.201634, TOL_0); |
| assert_approx_eq!(1.0f16.exp().log2(), 1.442695, TOL_0); |
| assert!(nan.log2().is_nan()); |
| assert_eq!(inf.log2(), inf); |
| assert!(neg_inf.log2().is_nan()); |
| assert!((-2.3f16).log2().is_nan()); |
| assert_eq!((-0.0f16).log2(), neg_inf); |
| assert_eq!(0.0f16.log2(), neg_inf); |
| } |
| |
| #[test] |
| #[cfg(not(miri))] |
| #[cfg(target_has_reliable_f16_math)] |
| fn test_log10() { |
| let nan: f16 = f16::NAN; |
| let inf: f16 = f16::INFINITY; |
| let neg_inf: f16 = f16::NEG_INFINITY; |
| assert_eq!(10.0f16.log10(), 1.0); |
| assert_approx_eq!(2.3f16.log10(), 0.361728, TOL_0); |
| assert_approx_eq!(1.0f16.exp().log10(), 0.434294, TOL_0); |
| assert_eq!(1.0f16.log10(), 0.0); |
| assert!(nan.log10().is_nan()); |
| assert_eq!(inf.log10(), inf); |
| assert!(neg_inf.log10().is_nan()); |
| assert!((-2.3f16).log10().is_nan()); |
| assert_eq!((-0.0f16).log10(), neg_inf); |
| assert_eq!(0.0f16.log10(), neg_inf); |
| } |
| |
| #[test] |
| #[cfg(not(miri))] |
| #[cfg(target_has_reliable_f16_math)] |
| fn test_asinh() { |
| assert_eq!(0.0f16.asinh(), 0.0f16); |
| assert_eq!((-0.0f16).asinh(), -0.0f16); |
| |
| let inf: f16 = f16::INFINITY; |
| let neg_inf: f16 = f16::NEG_INFINITY; |
| let nan: f16 = f16::NAN; |
| assert_eq!(inf.asinh(), inf); |
| assert_eq!(neg_inf.asinh(), neg_inf); |
| assert!(nan.asinh().is_nan()); |
| assert!((-0.0f16).asinh().is_sign_negative()); |
| // issue 63271 |
| assert_approx_eq!(2.0f16.asinh(), 1.443635475178810342493276740273105f16, TOL_0); |
| assert_approx_eq!((-2.0f16).asinh(), -1.443635475178810342493276740273105f16, TOL_0); |
| // regression test for the catastrophic cancellation fixed in 72486 |
| assert_approx_eq!((-200.0f16).asinh(), -5.991470797049389, TOL_0); |
| |
| // test for low accuracy from issue 104548 |
| assert_approx_eq!(10.0f16, 10.0f16.sinh().asinh(), TOL_0); |
| // mul needed for approximate comparison to be meaningful |
| assert_approx_eq!(1.0f16, 1e-3f16.sinh().asinh() * 1e3f16, TOL_0); |
| } |
| |
| #[test] |
| #[cfg(not(miri))] |
| #[cfg(target_has_reliable_f16_math)] |
| fn test_acosh() { |
| assert_eq!(1.0f16.acosh(), 0.0f16); |
| assert!(0.999f16.acosh().is_nan()); |
| |
| let inf: f16 = f16::INFINITY; |
| let neg_inf: f16 = f16::NEG_INFINITY; |
| let nan: f16 = f16::NAN; |
| assert_eq!(inf.acosh(), inf); |
| assert!(neg_inf.acosh().is_nan()); |
| assert!(nan.acosh().is_nan()); |
| assert_approx_eq!(2.0f16.acosh(), 1.31695789692481670862504634730796844f16, TOL_0); |
| assert_approx_eq!(3.0f16.acosh(), 1.76274717403908605046521864995958461f16, TOL_0); |
| |
| // test for low accuracy from issue 104548 |
| assert_approx_eq!(10.0f16, 10.0f16.cosh().acosh(), TOL_P2); |
| } |
| |
| #[test] |
| #[cfg(not(miri))] |
| #[cfg(target_has_reliable_f16_math)] |
| fn test_atanh() { |
| assert_eq!(0.0f16.atanh(), 0.0f16); |
| assert_eq!((-0.0f16).atanh(), -0.0f16); |
| |
| let inf: f16 = f16::INFINITY; |
| let neg_inf: f16 = f16::NEG_INFINITY; |
| let nan: f16 = f16::NAN; |
| assert_eq!(1.0f16.atanh(), inf); |
| assert_eq!((-1.0f16).atanh(), neg_inf); |
| assert!(2f16.atanh().atanh().is_nan()); |
| assert!((-2f16).atanh().atanh().is_nan()); |
| assert!(inf.atanh().is_nan()); |
| assert!(neg_inf.atanh().is_nan()); |
| assert!(nan.atanh().is_nan()); |
| assert_approx_eq!(0.5f16.atanh(), 0.54930614433405484569762261846126285f16, TOL_0); |
| assert_approx_eq!((-0.5f16).atanh(), -0.54930614433405484569762261846126285f16, TOL_0); |
| } |
| |
| #[test] |
| #[cfg(not(miri))] |
| #[cfg(target_has_reliable_f16_math)] |
| fn test_gamma() { |
| // precision can differ among platforms |
| assert_approx_eq!(1.0f16.gamma(), 1.0f16, TOL_0); |
| assert_approx_eq!(2.0f16.gamma(), 1.0f16, TOL_0); |
| assert_approx_eq!(3.0f16.gamma(), 2.0f16, TOL_0); |
| assert_approx_eq!(4.0f16.gamma(), 6.0f16, TOL_0); |
| assert_approx_eq!(5.0f16.gamma(), 24.0f16, TOL_0); |
| assert_approx_eq!(0.5f16.gamma(), consts::PI.sqrt(), TOL_0); |
| assert_approx_eq!((-0.5f16).gamma(), -2.0 * consts::PI.sqrt(), TOL_0); |
| assert_eq!(0.0f16.gamma(), f16::INFINITY); |
| assert_eq!((-0.0f16).gamma(), f16::NEG_INFINITY); |
| assert!((-1.0f16).gamma().is_nan()); |
| assert!((-2.0f16).gamma().is_nan()); |
| assert!(f16::NAN.gamma().is_nan()); |
| assert!(f16::NEG_INFINITY.gamma().is_nan()); |
| assert_eq!(f16::INFINITY.gamma(), f16::INFINITY); |
| assert_eq!(171.71f16.gamma(), f16::INFINITY); |
| } |
| |
| #[test] |
| #[cfg(not(miri))] |
| #[cfg(target_has_reliable_f16_math)] |
| fn test_ln_gamma() { |
| assert_approx_eq!(1.0f16.ln_gamma().0, 0.0f16, TOL_0); |
| assert_eq!(1.0f16.ln_gamma().1, 1); |
| assert_approx_eq!(2.0f16.ln_gamma().0, 0.0f16, TOL_0); |
| assert_eq!(2.0f16.ln_gamma().1, 1); |
| assert_approx_eq!(3.0f16.ln_gamma().0, 2.0f16.ln(), TOL_0); |
| assert_eq!(3.0f16.ln_gamma().1, 1); |
| assert_approx_eq!((-0.5f16).ln_gamma().0, (2.0 * consts::PI.sqrt()).ln(), TOL_0); |
| assert_eq!((-0.5f16).ln_gamma().1, -1); |
| } |
| |
| #[test] |
| fn test_real_consts() { |
| // FIXME(f16_f128): add math tests when available |
| |
| let pi: f16 = consts::PI; |
| let frac_pi_2: f16 = consts::FRAC_PI_2; |
| let frac_pi_3: f16 = consts::FRAC_PI_3; |
| let frac_pi_4: f16 = consts::FRAC_PI_4; |
| let frac_pi_6: f16 = consts::FRAC_PI_6; |
| let frac_pi_8: f16 = consts::FRAC_PI_8; |
| let frac_1_pi: f16 = consts::FRAC_1_PI; |
| let frac_2_pi: f16 = consts::FRAC_2_PI; |
| |
| assert_approx_eq!(frac_pi_2, pi / 2f16, TOL_0); |
| assert_approx_eq!(frac_pi_3, pi / 3f16, TOL_0); |
| assert_approx_eq!(frac_pi_4, pi / 4f16, TOL_0); |
| assert_approx_eq!(frac_pi_6, pi / 6f16, TOL_0); |
| assert_approx_eq!(frac_pi_8, pi / 8f16, TOL_0); |
| assert_approx_eq!(frac_1_pi, 1f16 / pi, TOL_0); |
| assert_approx_eq!(frac_2_pi, 2f16 / pi, TOL_0); |
| |
| #[cfg(not(miri))] |
| #[cfg(target_has_reliable_f16_math)] |
| { |
| let frac_2_sqrtpi: f16 = consts::FRAC_2_SQRT_PI; |
| let sqrt2: f16 = consts::SQRT_2; |
| let frac_1_sqrt2: f16 = consts::FRAC_1_SQRT_2; |
| let e: f16 = consts::E; |
| let log2_e: f16 = consts::LOG2_E; |
| let log10_e: f16 = consts::LOG10_E; |
| let ln_2: f16 = consts::LN_2; |
| let ln_10: f16 = consts::LN_10; |
| |
| assert_approx_eq!(frac_2_sqrtpi, 2f16 / pi.sqrt(), TOL_0); |
| assert_approx_eq!(sqrt2, 2f16.sqrt(), TOL_0); |
| assert_approx_eq!(frac_1_sqrt2, 1f16 / 2f16.sqrt(), TOL_0); |
| assert_approx_eq!(log2_e, e.log2(), TOL_0); |
| assert_approx_eq!(log10_e, e.log10(), TOL_0); |
| assert_approx_eq!(ln_2, 2f16.ln(), TOL_0); |
| assert_approx_eq!(ln_10, 10f16.ln(), TOL_0); |
| } |
| } |