blob: 184e8b769347d4190fc034496519117748ee8b74 [file] [log] [blame] [edit]
use core::iter::{Copied, Rev, TrustedLen};
use core::slice;
use super::{Drain, VecDeque};
use crate::alloc::Allocator;
#[cfg(not(test))]
use crate::vec;
// Specialization trait used for VecDeque::extend
pub(super) trait SpecExtend<T, I> {
fn spec_extend(&mut self, iter: I);
}
impl<T, I, A: Allocator> SpecExtend<T, I> for VecDeque<T, A>
where
I: Iterator<Item = T>,
{
default fn spec_extend(&mut self, mut iter: I) {
// This function should be the moral equivalent of:
//
// for item in iter {
// self.push_back(item);
// }
while let Some(element) = iter.next() {
let (lower, _) = iter.size_hint();
self.reserve(lower.saturating_add(1));
// SAFETY: We just reserved space for at least one element.
unsafe { self.push_unchecked(element) };
// Inner loop to avoid repeatedly calling `reserve`.
while self.len < self.capacity() {
let Some(element) = iter.next() else {
return;
};
// SAFETY: The loop condition guarantees that `self.len() < self.capacity()`.
unsafe { self.push_unchecked(element) };
}
}
}
}
impl<T, I, A: Allocator> SpecExtend<T, I> for VecDeque<T, A>
where
I: TrustedLen<Item = T>,
{
default fn spec_extend(&mut self, iter: I) {
// This is the case for a TrustedLen iterator.
let (low, high) = iter.size_hint();
if let Some(additional) = high {
debug_assert_eq!(
low,
additional,
"TrustedLen iterator's size hint is not exact: {:?}",
(low, high)
);
self.reserve(additional);
let written = unsafe {
self.write_iter_wrapping(self.to_physical_idx(self.len), iter, additional)
};
debug_assert_eq!(
additional, written,
"The number of items written to VecDeque doesn't match the TrustedLen size hint"
);
} else {
// Per TrustedLen contract a `None` upper bound means that the iterator length
// truly exceeds usize::MAX, which would eventually lead to a capacity overflow anyway.
// Since the other branch already panics eagerly (via `reserve()`) we do the same here.
// This avoids additional codegen for a fallback code path which would eventually
// panic anyway.
panic!("capacity overflow");
}
}
}
#[cfg(not(test))]
impl<T, A1: Allocator, A2: Allocator> SpecExtend<T, vec::IntoIter<T, A2>> for VecDeque<T, A1> {
fn spec_extend(&mut self, mut iterator: vec::IntoIter<T, A2>) {
let slice = iterator.as_slice();
self.reserve(slice.len());
unsafe {
self.copy_slice(self.to_physical_idx(self.len), slice);
self.len += slice.len();
}
iterator.forget_remaining_elements();
}
}
impl<'a, T: 'a, I, A: Allocator> SpecExtend<&'a T, I> for VecDeque<T, A>
where
I: Iterator<Item = &'a T>,
T: Copy,
{
default fn spec_extend(&mut self, iterator: I) {
self.spec_extend(iterator.copied())
}
}
impl<'a, T: 'a, A: Allocator> SpecExtend<&'a T, slice::Iter<'a, T>> for VecDeque<T, A>
where
T: Copy,
{
fn spec_extend(&mut self, iterator: slice::Iter<'a, T>) {
let slice = iterator.as_slice();
self.reserve(slice.len());
unsafe {
self.copy_slice(self.to_physical_idx(self.len), slice);
self.len += slice.len();
}
}
}
// Specialization trait used for VecDeque::extend_front
pub(super) trait SpecExtendFront<T, I> {
#[track_caller]
fn spec_extend_front(&mut self, iter: I);
}
impl<T, I, A: Allocator> SpecExtendFront<T, I> for VecDeque<T, A>
where
I: Iterator<Item = T>,
{
#[track_caller]
default fn spec_extend_front(&mut self, mut iter: I) {
// This function should be the moral equivalent of:
//
// for item in iter {
// self.push_front(item);
// }
while let Some(element) = iter.next() {
let (lower, _) = iter.size_hint();
self.reserve(lower.saturating_add(1));
// SAFETY: We just reserved space for at least one element.
unsafe { self.push_front_unchecked(element) };
// Inner loop to avoid repeatedly calling `reserve`.
while self.len < self.capacity() {
let Some(element) = iter.next() else {
return;
};
// SAFETY: The loop condition guarantees that `self.len() < self.capacity()`.
unsafe { self.push_front_unchecked(element) };
}
}
}
}
#[cfg(not(test))]
impl<T, A1: Allocator, A2: Allocator> SpecExtendFront<T, vec::IntoIter<T, A2>> for VecDeque<T, A1> {
#[track_caller]
fn spec_extend_front(&mut self, mut iterator: vec::IntoIter<T, A2>) {
let slice = iterator.as_slice();
self.reserve(slice.len());
// SAFETY: `slice.len()` space was just reserved and elements in the slice are forgotten after this call
unsafe { prepend_reversed(self, slice) };
iterator.forget_remaining_elements();
}
}
#[cfg(not(test))]
impl<T, A1: Allocator, A2: Allocator> SpecExtendFront<T, Rev<vec::IntoIter<T, A2>>>
for VecDeque<T, A1>
{
#[track_caller]
fn spec_extend_front(&mut self, iterator: Rev<vec::IntoIter<T, A2>>) {
let mut iterator = iterator.into_inner();
let slice = iterator.as_slice();
self.reserve(slice.len());
// SAFETY: `slice.len()` space was just reserved and elements in the slice are forgotten after this call
unsafe { prepend(self, slice) };
iterator.forget_remaining_elements();
}
}
impl<'a, T, A: Allocator> SpecExtendFront<T, Copied<slice::Iter<'a, T>>> for VecDeque<T, A>
where
Copied<slice::Iter<'a, T>>: Iterator<Item = T>,
{
#[track_caller]
fn spec_extend_front(&mut self, iter: Copied<slice::Iter<'a, T>>) {
let slice = iter.into_inner().as_slice();
self.reserve(slice.len());
// SAFETY: `slice.len()` space was just reserved and T is Copy because Copied<slice::Iter<'a, T>> is Iterator
unsafe { prepend_reversed(self, slice) };
}
}
impl<'a, T, A: Allocator> SpecExtendFront<T, Rev<Copied<slice::Iter<'a, T>>>> for VecDeque<T, A>
where
Rev<Copied<slice::Iter<'a, T>>>: Iterator<Item = T>,
{
#[track_caller]
fn spec_extend_front(&mut self, iter: Rev<Copied<slice::Iter<'a, T>>>) {
let slice = iter.into_inner().into_inner().as_slice();
self.reserve(slice.len());
// SAFETY: `slice.len()` space was just reserved and T is Copy because Rev<Copied<slice::Iter<'a, T>>> is Iterator
unsafe { prepend(self, slice) };
}
}
impl<'a, T, A1: Allocator, A2: Allocator> SpecExtendFront<T, Drain<'a, T, A2>> for VecDeque<T, A1> {
#[track_caller]
fn spec_extend_front(&mut self, mut iter: Drain<'a, T, A2>) {
if iter.remaining == 0 {
return;
}
self.reserve(iter.remaining);
unsafe {
// SAFETY: iter.remaining != 0.
let (left, right) = iter.as_slices();
// SAFETY:
// - `iter.remaining` space was reserved, `iter.remaining == left.len() + right.len()`.
// - The elements in `left` and `right` are forgotten after these calls.
prepend_reversed(self, &*left);
prepend_reversed(self, &*right);
}
iter.idx += iter.remaining;
iter.remaining = 0;
}
}
impl<'a, T, A1: Allocator, A2: Allocator> SpecExtendFront<T, Rev<Drain<'a, T, A2>>>
for VecDeque<T, A1>
{
#[track_caller]
fn spec_extend_front(&mut self, iter: Rev<Drain<'a, T, A2>>) {
let mut iter = iter.into_inner();
if iter.remaining == 0 {
return;
}
self.reserve(iter.remaining);
unsafe {
// SAFETY: iter.remaining != 0.
let (left, right) = iter.as_slices();
// SAFETY:
// - `iter.remaining` space was reserved, `iter.remaining == left.len() + right.len()`.
// - The elements in `left` and `right` are forgotten after these calls.
prepend(self, &*right);
prepend(self, &*left);
}
iter.idx += iter.remaining;
iter.remaining = 0;
}
}
/// Prepends elements of `slice` to `deque` using a copy.
///
/// # Safety
///
/// - `deque` must have space for `slice.len()` new elements.
/// - Elements of `slice` will be copied into the deque, make sure to forget the elements if `T` is not `Copy`.
unsafe fn prepend<T, A: Allocator>(deque: &mut VecDeque<T, A>, slice: &[T]) {
unsafe {
deque.head = deque.wrap_sub(deque.head, slice.len());
deque.copy_slice(deque.head, slice);
deque.len += slice.len();
}
}
/// Prepends elements of `slice` to `deque` in reverse order using a copy.
///
/// # Safety
///
/// - `deque` must have space for `slice.len()` new elements.
/// - Elements of `slice` will be copied into the deque, make sure to forget the elements if `T` is not `Copy`.
unsafe fn prepend_reversed<T, A: Allocator>(deque: &mut VecDeque<T, A>, slice: &[T]) {
unsafe {
deque.head = deque.wrap_sub(deque.head, slice.len());
deque.copy_slice_reversed(deque.head, slice);
deque.len += slice.len();
}
}