blob: 683d7b486171f0a2cc7fa970f240dbdaa82a60b5 [file] [log] [blame]
//! Functionality for statements, operands, places, and things that appear in them.
use tracing::{debug, instrument};
use super::interpret::GlobalAlloc;
use super::*;
use crate::ty::CoroutineArgsExt;
///////////////////////////////////////////////////////////////////////////
// Statements
/// A statement in a basic block, including information about its source code.
#[derive(Clone, TyEncodable, TyDecodable, HashStable, TypeFoldable, TypeVisitable)]
#[non_exhaustive]
pub struct Statement<'tcx> {
pub source_info: SourceInfo,
pub kind: StatementKind<'tcx>,
}
impl<'tcx> Statement<'tcx> {
/// Changes a statement to a nop. This is both faster than deleting instructions and avoids
/// invalidating statement indices in `Location`s.
pub fn make_nop(&mut self) {
self.kind = StatementKind::Nop
}
pub fn new(source_info: SourceInfo, kind: StatementKind<'tcx>) -> Self {
Statement { source_info, kind }
}
}
impl<'tcx> StatementKind<'tcx> {
/// Returns a simple string representation of a `StatementKind` variant, independent of any
/// values it might hold (e.g. `StatementKind::Assign` always returns `"Assign"`).
pub const fn name(&self) -> &'static str {
match self {
StatementKind::Assign(..) => "Assign",
StatementKind::FakeRead(..) => "FakeRead",
StatementKind::SetDiscriminant { .. } => "SetDiscriminant",
StatementKind::Deinit(..) => "Deinit",
StatementKind::StorageLive(..) => "StorageLive",
StatementKind::StorageDead(..) => "StorageDead",
StatementKind::Retag(..) => "Retag",
StatementKind::PlaceMention(..) => "PlaceMention",
StatementKind::AscribeUserType(..) => "AscribeUserType",
StatementKind::Coverage(..) => "Coverage",
StatementKind::Intrinsic(..) => "Intrinsic",
StatementKind::ConstEvalCounter => "ConstEvalCounter",
StatementKind::Nop => "Nop",
StatementKind::BackwardIncompatibleDropHint { .. } => "BackwardIncompatibleDropHint",
}
}
pub fn as_assign_mut(&mut self) -> Option<&mut (Place<'tcx>, Rvalue<'tcx>)> {
match self {
StatementKind::Assign(x) => Some(x),
_ => None,
}
}
pub fn as_assign(&self) -> Option<&(Place<'tcx>, Rvalue<'tcx>)> {
match self {
StatementKind::Assign(x) => Some(x),
_ => None,
}
}
}
///////////////////////////////////////////////////////////////////////////
// Places
#[derive(Copy, Clone, Debug, TypeFoldable, TypeVisitable)]
pub struct PlaceTy<'tcx> {
pub ty: Ty<'tcx>,
/// Downcast to a particular variant of an enum or a coroutine, if included.
pub variant_index: Option<VariantIdx>,
}
// At least on 64 bit systems, `PlaceTy` should not be larger than two or three pointers.
#[cfg(target_pointer_width = "64")]
rustc_data_structures::static_assert_size!(PlaceTy<'_>, 16);
impl<'tcx> PlaceTy<'tcx> {
#[inline]
pub fn from_ty(ty: Ty<'tcx>) -> PlaceTy<'tcx> {
PlaceTy { ty, variant_index: None }
}
/// `place_ty.field_ty(tcx, f)` computes the type of a given field.
///
/// Most clients of `PlaceTy` can instead just extract the relevant type
/// directly from their `PlaceElem`, but some instances of `ProjectionElem<V, T>`
/// do not carry a `Ty` for `T`.
///
/// Note that the resulting type has not been normalized.
#[instrument(level = "debug", skip(tcx), ret)]
pub fn field_ty(
tcx: TyCtxt<'tcx>,
self_ty: Ty<'tcx>,
variant_idx: Option<VariantIdx>,
f: FieldIdx,
) -> Ty<'tcx> {
if let Some(variant_index) = variant_idx {
match *self_ty.kind() {
ty::Adt(adt_def, args) if adt_def.is_enum() => {
adt_def.variant(variant_index).fields[f].ty(tcx, args)
}
ty::Coroutine(def_id, args) => {
let mut variants = args.as_coroutine().state_tys(def_id, tcx);
let Some(mut variant) = variants.nth(variant_index.into()) else {
bug!("variant {variant_index:?} of coroutine out of range: {self_ty:?}");
};
variant.nth(f.index()).unwrap_or_else(|| {
bug!("field {f:?} out of range of variant: {self_ty:?} {variant_idx:?}")
})
}
_ => bug!("can't downcast non-adt non-coroutine type: {self_ty:?}"),
}
} else {
match self_ty.kind() {
ty::Adt(adt_def, args) if !adt_def.is_enum() => {
adt_def.non_enum_variant().fields[f].ty(tcx, args)
}
ty::Closure(_, args) => args
.as_closure()
.upvar_tys()
.get(f.index())
.copied()
.unwrap_or_else(|| bug!("field {f:?} out of range: {self_ty:?}")),
ty::CoroutineClosure(_, args) => args
.as_coroutine_closure()
.upvar_tys()
.get(f.index())
.copied()
.unwrap_or_else(|| bug!("field {f:?} out of range: {self_ty:?}")),
// Only prefix fields (upvars and current state) are
// accessible without a variant index.
ty::Coroutine(_, args) => {
args.as_coroutine().prefix_tys().get(f.index()).copied().unwrap_or_else(|| {
bug!("field {f:?} out of range of prefixes for {self_ty}")
})
}
ty::Tuple(tys) => tys
.get(f.index())
.copied()
.unwrap_or_else(|| bug!("field {f:?} out of range: {self_ty:?}")),
_ => bug!("can't project out of {self_ty:?}"),
}
}
}
pub fn multi_projection_ty(
self,
tcx: TyCtxt<'tcx>,
elems: &[PlaceElem<'tcx>],
) -> PlaceTy<'tcx> {
elems.iter().fold(self, |place_ty, &elem| place_ty.projection_ty(tcx, elem))
}
/// Convenience wrapper around `projection_ty_core` for `PlaceElem`,
/// where we can just use the `Ty` that is already stored inline on
/// field projection elems.
pub fn projection_ty(self, tcx: TyCtxt<'tcx>, elem: PlaceElem<'tcx>) -> PlaceTy<'tcx> {
self.projection_ty_core(tcx, &elem, |ty| ty, |_, _, _, ty| ty, |ty| ty)
}
/// `place_ty.projection_ty_core(tcx, elem, |...| { ... })`
/// projects `place_ty` onto `elem`, returning the appropriate
/// `Ty` or downcast variant corresponding to that projection.
/// The `handle_field` callback must map a `FieldIdx` to its `Ty`,
/// (which should be trivial when `T` = `Ty`).
pub fn projection_ty_core<V, T>(
self,
tcx: TyCtxt<'tcx>,
elem: &ProjectionElem<V, T>,
mut structurally_normalize: impl FnMut(Ty<'tcx>) -> Ty<'tcx>,
mut handle_field: impl FnMut(Ty<'tcx>, Option<VariantIdx>, FieldIdx, T) -> Ty<'tcx>,
mut handle_opaque_cast_and_subtype: impl FnMut(T) -> Ty<'tcx>,
) -> PlaceTy<'tcx>
where
V: ::std::fmt::Debug,
T: ::std::fmt::Debug + Copy,
{
if self.variant_index.is_some() && !matches!(elem, ProjectionElem::Field(..)) {
bug!("cannot use non field projection on downcasted place")
}
let answer = match *elem {
ProjectionElem::Deref => {
let ty = structurally_normalize(self.ty).builtin_deref(true).unwrap_or_else(|| {
bug!("deref projection of non-dereferenceable ty {:?}", self)
});
PlaceTy::from_ty(ty)
}
ProjectionElem::Index(_) | ProjectionElem::ConstantIndex { .. } => {
PlaceTy::from_ty(structurally_normalize(self.ty).builtin_index().unwrap())
}
ProjectionElem::Subslice { from, to, from_end } => {
PlaceTy::from_ty(match structurally_normalize(self.ty).kind() {
ty::Slice(..) => self.ty,
ty::Array(inner, _) if !from_end => Ty::new_array(tcx, *inner, to - from),
ty::Array(inner, size) if from_end => {
let size = size
.try_to_target_usize(tcx)
.expect("expected subslice projection on fixed-size array");
let len = size - from - to;
Ty::new_array(tcx, *inner, len)
}
_ => bug!("cannot subslice non-array type: `{:?}`", self),
})
}
ProjectionElem::Downcast(_name, index) => {
PlaceTy { ty: self.ty, variant_index: Some(index) }
}
ProjectionElem::Field(f, fty) => PlaceTy::from_ty(handle_field(
structurally_normalize(self.ty),
self.variant_index,
f,
fty,
)),
ProjectionElem::OpaqueCast(ty) => PlaceTy::from_ty(handle_opaque_cast_and_subtype(ty)),
ProjectionElem::Subtype(ty) => PlaceTy::from_ty(handle_opaque_cast_and_subtype(ty)),
// FIXME(unsafe_binders): Rename `handle_opaque_cast_and_subtype` to be more general.
ProjectionElem::UnwrapUnsafeBinder(ty) => {
PlaceTy::from_ty(handle_opaque_cast_and_subtype(ty))
}
};
debug!("projection_ty self: {:?} elem: {:?} yields: {:?}", self, elem, answer);
answer
}
}
impl<V, T> ProjectionElem<V, T> {
/// Returns `true` if the target of this projection may refer to a different region of memory
/// than the base.
fn is_indirect(&self) -> bool {
match self {
Self::Deref => true,
Self::Field(_, _)
| Self::Index(_)
| Self::OpaqueCast(_)
| Self::Subtype(_)
| Self::ConstantIndex { .. }
| Self::Subslice { .. }
| Self::Downcast(_, _)
| Self::UnwrapUnsafeBinder(..) => false,
}
}
/// Returns `true` if the target of this projection always refers to the same memory region
/// whatever the state of the program.
pub fn is_stable_offset(&self) -> bool {
match self {
Self::Deref | Self::Index(_) => false,
Self::Field(_, _)
| Self::OpaqueCast(_)
| Self::Subtype(_)
| Self::ConstantIndex { .. }
| Self::Subslice { .. }
| Self::Downcast(_, _)
| Self::UnwrapUnsafeBinder(..) => true,
}
}
/// Returns `true` if this is a `Downcast` projection with the given `VariantIdx`.
pub fn is_downcast_to(&self, v: VariantIdx) -> bool {
matches!(*self, Self::Downcast(_, x) if x == v)
}
/// Returns `true` if this is a `Field` projection with the given index.
pub fn is_field_to(&self, f: FieldIdx) -> bool {
matches!(*self, Self::Field(x, _) if x == f)
}
/// Returns `true` if this is accepted inside `VarDebugInfoContents::Place`.
pub fn can_use_in_debuginfo(&self) -> bool {
match self {
Self::ConstantIndex { from_end: false, .. }
| Self::Deref
| Self::Downcast(_, _)
| Self::Field(_, _) => true,
Self::ConstantIndex { from_end: true, .. }
| Self::Index(_)
| Self::Subtype(_)
| Self::OpaqueCast(_)
| Self::Subslice { .. } => false,
// FIXME(unsafe_binders): Figure this out.
Self::UnwrapUnsafeBinder(..) => false,
}
}
}
/// Alias for projections as they appear in `UserTypeProjection`, where we
/// need neither the `V` parameter for `Index` nor the `T` for `Field`.
pub type ProjectionKind = ProjectionElem<(), ()>;
#[derive(Clone, Copy, PartialEq, Eq, Hash)]
pub struct PlaceRef<'tcx> {
pub local: Local,
pub projection: &'tcx [PlaceElem<'tcx>],
}
// Once we stop implementing `Ord` for `DefId`,
// this impl will be unnecessary. Until then, we'll
// leave this impl in place to prevent re-adding a
// dependency on the `Ord` impl for `DefId`
impl<'tcx> !PartialOrd for PlaceRef<'tcx> {}
impl<'tcx> Place<'tcx> {
// FIXME change this to a const fn by also making List::empty a const fn.
pub fn return_place() -> Place<'tcx> {
Place { local: RETURN_PLACE, projection: List::empty() }
}
/// Returns `true` if this `Place` contains a `Deref` projection.
///
/// If `Place::is_indirect` returns false, the caller knows that the `Place` refers to the
/// same region of memory as its base.
pub fn is_indirect(&self) -> bool {
self.projection.iter().any(|elem| elem.is_indirect())
}
/// Returns `true` if this `Place`'s first projection is `Deref`.
///
/// This is useful because for MIR phases `AnalysisPhase::PostCleanup` and later,
/// `Deref` projections can only occur as the first projection. In that case this method
/// is equivalent to `is_indirect`, but faster.
pub fn is_indirect_first_projection(&self) -> bool {
self.as_ref().is_indirect_first_projection()
}
/// Finds the innermost `Local` from this `Place`, *if* it is either a local itself or
/// a single deref of a local.
#[inline(always)]
pub fn local_or_deref_local(&self) -> Option<Local> {
self.as_ref().local_or_deref_local()
}
/// If this place represents a local variable like `_X` with no
/// projections, return `Some(_X)`.
#[inline(always)]
pub fn as_local(&self) -> Option<Local> {
self.as_ref().as_local()
}
#[inline]
pub fn as_ref(&self) -> PlaceRef<'tcx> {
PlaceRef { local: self.local, projection: self.projection }
}
/// Iterate over the projections in evaluation order, i.e., the first element is the base with
/// its projection and then subsequently more projections are added.
/// As a concrete example, given the place a.b.c, this would yield:
/// - (a, .b)
/// - (a.b, .c)
///
/// Given a place without projections, the iterator is empty.
#[inline]
pub fn iter_projections(
self,
) -> impl Iterator<Item = (PlaceRef<'tcx>, PlaceElem<'tcx>)> + DoubleEndedIterator {
self.as_ref().iter_projections()
}
/// Generates a new place by appending `more_projections` to the existing ones
/// and interning the result.
pub fn project_deeper(self, more_projections: &[PlaceElem<'tcx>], tcx: TyCtxt<'tcx>) -> Self {
if more_projections.is_empty() {
return self;
}
self.as_ref().project_deeper(more_projections, tcx)
}
pub fn ty_from<D: ?Sized>(
local: Local,
projection: &[PlaceElem<'tcx>],
local_decls: &D,
tcx: TyCtxt<'tcx>,
) -> PlaceTy<'tcx>
where
D: HasLocalDecls<'tcx>,
{
PlaceTy::from_ty(local_decls.local_decls()[local].ty).multi_projection_ty(tcx, projection)
}
pub fn ty<D: ?Sized>(&self, local_decls: &D, tcx: TyCtxt<'tcx>) -> PlaceTy<'tcx>
where
D: HasLocalDecls<'tcx>,
{
Place::ty_from(self.local, self.projection, local_decls, tcx)
}
}
impl From<Local> for Place<'_> {
#[inline]
fn from(local: Local) -> Self {
Place { local, projection: List::empty() }
}
}
impl<'tcx> PlaceRef<'tcx> {
/// Finds the innermost `Local` from this `Place`, *if* it is either a local itself or
/// a single deref of a local.
pub fn local_or_deref_local(&self) -> Option<Local> {
match *self {
PlaceRef { local, projection: [] }
| PlaceRef { local, projection: [ProjectionElem::Deref] } => Some(local),
_ => None,
}
}
/// Returns `true` if this `Place` contains a `Deref` projection.
///
/// If `Place::is_indirect` returns false, the caller knows that the `Place` refers to the
/// same region of memory as its base.
pub fn is_indirect(&self) -> bool {
self.projection.iter().any(|elem| elem.is_indirect())
}
/// Returns `true` if this `Place`'s first projection is `Deref`.
///
/// This is useful because for MIR phases `AnalysisPhase::PostCleanup` and later,
/// `Deref` projections can only occur as the first projection. In that case this method
/// is equivalent to `is_indirect`, but faster.
pub fn is_indirect_first_projection(&self) -> bool {
// To make sure this is not accidentally used in wrong mir phase
debug_assert!(
self.projection.is_empty() || !self.projection[1..].contains(&PlaceElem::Deref)
);
self.projection.first() == Some(&PlaceElem::Deref)
}
/// If this place represents a local variable like `_X` with no
/// projections, return `Some(_X)`.
#[inline]
pub fn as_local(&self) -> Option<Local> {
match *self {
PlaceRef { local, projection: [] } => Some(local),
_ => None,
}
}
#[inline]
pub fn to_place(&self, tcx: TyCtxt<'tcx>) -> Place<'tcx> {
Place { local: self.local, projection: tcx.mk_place_elems(self.projection) }
}
#[inline]
pub fn last_projection(&self) -> Option<(PlaceRef<'tcx>, PlaceElem<'tcx>)> {
if let &[ref proj_base @ .., elem] = self.projection {
Some((PlaceRef { local: self.local, projection: proj_base }, elem))
} else {
None
}
}
/// Iterate over the projections in evaluation order, i.e., the first element is the base with
/// its projection and then subsequently more projections are added.
/// As a concrete example, given the place a.b.c, this would yield:
/// - (a, .b)
/// - (a.b, .c)
///
/// Given a place without projections, the iterator is empty.
#[inline]
pub fn iter_projections(
self,
) -> impl Iterator<Item = (PlaceRef<'tcx>, PlaceElem<'tcx>)> + DoubleEndedIterator {
self.projection.iter().enumerate().map(move |(i, proj)| {
let base = PlaceRef { local: self.local, projection: &self.projection[..i] };
(base, *proj)
})
}
/// Generates a new place by appending `more_projections` to the existing ones
/// and interning the result.
pub fn project_deeper(
self,
more_projections: &[PlaceElem<'tcx>],
tcx: TyCtxt<'tcx>,
) -> Place<'tcx> {
let mut v: Vec<PlaceElem<'tcx>>;
let new_projections = if self.projection.is_empty() {
more_projections
} else {
v = Vec::with_capacity(self.projection.len() + more_projections.len());
v.extend(self.projection);
v.extend(more_projections);
&v
};
Place { local: self.local, projection: tcx.mk_place_elems(new_projections) }
}
pub fn ty<D: ?Sized>(&self, local_decls: &D, tcx: TyCtxt<'tcx>) -> PlaceTy<'tcx>
where
D: HasLocalDecls<'tcx>,
{
Place::ty_from(self.local, self.projection, local_decls, tcx)
}
}
impl From<Local> for PlaceRef<'_> {
#[inline]
fn from(local: Local) -> Self {
PlaceRef { local, projection: &[] }
}
}
///////////////////////////////////////////////////////////////////////////
// Operands
impl<'tcx> Operand<'tcx> {
/// Convenience helper to make a constant that refers to the fn
/// with given `DefId` and args. Since this is used to synthesize
/// MIR, assumes `user_ty` is None.
pub fn function_handle(
tcx: TyCtxt<'tcx>,
def_id: DefId,
args: impl IntoIterator<Item = GenericArg<'tcx>>,
span: Span,
) -> Self {
let ty = Ty::new_fn_def(tcx, def_id, args);
Operand::Constant(Box::new(ConstOperand {
span,
user_ty: None,
const_: Const::Val(ConstValue::ZeroSized, ty),
}))
}
pub fn is_move(&self) -> bool {
matches!(self, Operand::Move(..))
}
/// Convenience helper to make a literal-like constant from a given scalar value.
/// Since this is used to synthesize MIR, assumes `user_ty` is None.
pub fn const_from_scalar(
tcx: TyCtxt<'tcx>,
ty: Ty<'tcx>,
val: Scalar,
span: Span,
) -> Operand<'tcx> {
debug_assert!({
let typing_env = ty::TypingEnv::fully_monomorphized();
let type_size = tcx
.layout_of(typing_env.as_query_input(ty))
.unwrap_or_else(|e| panic!("could not compute layout for {ty:?}: {e:?}"))
.size;
let scalar_size = match val {
Scalar::Int(int) => int.size(),
_ => panic!("Invalid scalar type {val:?}"),
};
scalar_size == type_size
});
Operand::Constant(Box::new(ConstOperand {
span,
user_ty: None,
const_: Const::Val(ConstValue::Scalar(val), ty),
}))
}
pub fn to_copy(&self) -> Self {
match *self {
Operand::Copy(_) | Operand::Constant(_) => self.clone(),
Operand::Move(place) => Operand::Copy(place),
}
}
/// Returns the `Place` that is the target of this `Operand`, or `None` if this `Operand` is a
/// constant.
pub fn place(&self) -> Option<Place<'tcx>> {
match self {
Operand::Copy(place) | Operand::Move(place) => Some(*place),
Operand::Constant(_) => None,
}
}
/// Returns the `ConstOperand` that is the target of this `Operand`, or `None` if this `Operand` is a
/// place.
pub fn constant(&self) -> Option<&ConstOperand<'tcx>> {
match self {
Operand::Constant(x) => Some(&**x),
Operand::Copy(_) | Operand::Move(_) => None,
}
}
/// Gets the `ty::FnDef` from an operand if it's a constant function item.
///
/// While this is unlikely in general, it's the normal case of what you'll
/// find as the `func` in a [`TerminatorKind::Call`].
pub fn const_fn_def(&self) -> Option<(DefId, GenericArgsRef<'tcx>)> {
let const_ty = self.constant()?.const_.ty();
if let ty::FnDef(def_id, args) = *const_ty.kind() { Some((def_id, args)) } else { None }
}
pub fn ty<D: ?Sized>(&self, local_decls: &D, tcx: TyCtxt<'tcx>) -> Ty<'tcx>
where
D: HasLocalDecls<'tcx>,
{
match self {
&Operand::Copy(ref l) | &Operand::Move(ref l) => l.ty(local_decls, tcx).ty,
Operand::Constant(c) => c.const_.ty(),
}
}
pub fn span<D: ?Sized>(&self, local_decls: &D) -> Span
where
D: HasLocalDecls<'tcx>,
{
match self {
&Operand::Copy(ref l) | &Operand::Move(ref l) => {
local_decls.local_decls()[l.local].source_info.span
}
Operand::Constant(c) => c.span,
}
}
}
impl<'tcx> ConstOperand<'tcx> {
pub fn check_static_ptr(&self, tcx: TyCtxt<'_>) -> Option<DefId> {
match self.const_.try_to_scalar() {
Some(Scalar::Ptr(ptr, _size)) => match tcx.global_alloc(ptr.provenance.alloc_id()) {
GlobalAlloc::Static(def_id) => {
assert!(!tcx.is_thread_local_static(def_id));
Some(def_id)
}
_ => None,
},
_ => None,
}
}
#[inline]
pub fn ty(&self) -> Ty<'tcx> {
self.const_.ty()
}
}
///////////////////////////////////////////////////////////////////////////
/// Rvalues
pub enum RvalueInitializationState {
Shallow,
Deep,
}
impl<'tcx> Rvalue<'tcx> {
/// Returns true if rvalue can be safely removed when the result is unused.
#[inline]
pub fn is_safe_to_remove(&self) -> bool {
match self {
// Pointer to int casts may be side-effects due to exposing the provenance.
// While the model is undecided, we should be conservative. See
// <https://www.ralfj.de/blog/2022/04/11/provenance-exposed.html>
Rvalue::Cast(CastKind::PointerExposeProvenance, _, _) => false,
Rvalue::Use(_)
| Rvalue::CopyForDeref(_)
| Rvalue::Repeat(_, _)
| Rvalue::Ref(_, _, _)
| Rvalue::ThreadLocalRef(_)
| Rvalue::RawPtr(_, _)
| Rvalue::Len(_)
| Rvalue::Cast(
CastKind::IntToInt
| CastKind::FloatToInt
| CastKind::FloatToFloat
| CastKind::IntToFloat
| CastKind::FnPtrToPtr
| CastKind::PtrToPtr
| CastKind::PointerCoercion(_, _)
| CastKind::PointerWithExposedProvenance
| CastKind::Transmute,
_,
_,
)
| Rvalue::BinaryOp(_, _)
| Rvalue::NullaryOp(_, _)
| Rvalue::UnaryOp(_, _)
| Rvalue::Discriminant(_)
| Rvalue::Aggregate(_, _)
| Rvalue::ShallowInitBox(_, _)
| Rvalue::WrapUnsafeBinder(_, _) => true,
}
}
pub fn ty<D: ?Sized>(&self, local_decls: &D, tcx: TyCtxt<'tcx>) -> Ty<'tcx>
where
D: HasLocalDecls<'tcx>,
{
match *self {
Rvalue::Use(ref operand) => operand.ty(local_decls, tcx),
Rvalue::Repeat(ref operand, count) => {
Ty::new_array_with_const_len(tcx, operand.ty(local_decls, tcx), count)
}
Rvalue::ThreadLocalRef(did) => tcx.thread_local_ptr_ty(did),
Rvalue::Ref(reg, bk, ref place) => {
let place_ty = place.ty(local_decls, tcx).ty;
Ty::new_ref(tcx, reg, place_ty, bk.to_mutbl_lossy())
}
Rvalue::RawPtr(kind, ref place) => {
let place_ty = place.ty(local_decls, tcx).ty;
Ty::new_ptr(tcx, place_ty, kind.to_mutbl_lossy())
}
Rvalue::Len(..) => tcx.types.usize,
Rvalue::Cast(.., ty) => ty,
Rvalue::BinaryOp(op, box (ref lhs, ref rhs)) => {
let lhs_ty = lhs.ty(local_decls, tcx);
let rhs_ty = rhs.ty(local_decls, tcx);
op.ty(tcx, lhs_ty, rhs_ty)
}
Rvalue::UnaryOp(op, ref operand) => {
let arg_ty = operand.ty(local_decls, tcx);
op.ty(tcx, arg_ty)
}
Rvalue::Discriminant(ref place) => place.ty(local_decls, tcx).ty.discriminant_ty(tcx),
Rvalue::NullaryOp(NullOp::SizeOf | NullOp::AlignOf | NullOp::OffsetOf(..), _) => {
tcx.types.usize
}
Rvalue::NullaryOp(NullOp::ContractChecks, _)
| Rvalue::NullaryOp(NullOp::UbChecks, _) => tcx.types.bool,
Rvalue::Aggregate(ref ak, ref ops) => match **ak {
AggregateKind::Array(ty) => Ty::new_array(tcx, ty, ops.len() as u64),
AggregateKind::Tuple => {
Ty::new_tup_from_iter(tcx, ops.iter().map(|op| op.ty(local_decls, tcx)))
}
AggregateKind::Adt(did, _, args, _, _) => tcx.type_of(did).instantiate(tcx, args),
AggregateKind::Closure(did, args) => Ty::new_closure(tcx, did, args),
AggregateKind::Coroutine(did, args) => Ty::new_coroutine(tcx, did, args),
AggregateKind::CoroutineClosure(did, args) => {
Ty::new_coroutine_closure(tcx, did, args)
}
AggregateKind::RawPtr(ty, mutability) => Ty::new_ptr(tcx, ty, mutability),
},
Rvalue::ShallowInitBox(_, ty) => Ty::new_box(tcx, ty),
Rvalue::CopyForDeref(ref place) => place.ty(local_decls, tcx).ty,
Rvalue::WrapUnsafeBinder(_, ty) => ty,
}
}
#[inline]
/// Returns `true` if this rvalue is deeply initialized (most rvalues) or
/// whether its only shallowly initialized (`Rvalue::Box`).
pub fn initialization_state(&self) -> RvalueInitializationState {
match *self {
Rvalue::ShallowInitBox(_, _) => RvalueInitializationState::Shallow,
_ => RvalueInitializationState::Deep,
}
}
}
impl BorrowKind {
pub fn mutability(&self) -> Mutability {
match *self {
BorrowKind::Shared | BorrowKind::Fake(_) => Mutability::Not,
BorrowKind::Mut { .. } => Mutability::Mut,
}
}
/// Returns whether borrows represented by this kind are allowed to be split into separate
/// Reservation and Activation phases.
pub fn allows_two_phase_borrow(&self) -> bool {
match *self {
BorrowKind::Shared
| BorrowKind::Fake(_)
| BorrowKind::Mut { kind: MutBorrowKind::Default | MutBorrowKind::ClosureCapture } => {
false
}
BorrowKind::Mut { kind: MutBorrowKind::TwoPhaseBorrow } => true,
}
}
pub fn to_mutbl_lossy(self) -> hir::Mutability {
match self {
BorrowKind::Mut { .. } => hir::Mutability::Mut,
BorrowKind::Shared => hir::Mutability::Not,
// We have no type corresponding to a shallow borrow, so use
// `&` as an approximation.
BorrowKind::Fake(_) => hir::Mutability::Not,
}
}
}
impl<'tcx> NullOp<'tcx> {
pub fn ty(&self, tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
match self {
NullOp::SizeOf | NullOp::AlignOf | NullOp::OffsetOf(_) => tcx.types.usize,
NullOp::UbChecks | NullOp::ContractChecks => tcx.types.bool,
}
}
}
impl<'tcx> UnOp {
pub fn ty(&self, tcx: TyCtxt<'tcx>, arg_ty: Ty<'tcx>) -> Ty<'tcx> {
match self {
UnOp::Not | UnOp::Neg => arg_ty,
UnOp::PtrMetadata => arg_ty.pointee_metadata_ty_or_projection(tcx),
}
}
}
impl<'tcx> BinOp {
pub fn ty(&self, tcx: TyCtxt<'tcx>, lhs_ty: Ty<'tcx>, rhs_ty: Ty<'tcx>) -> Ty<'tcx> {
// FIXME: handle SIMD correctly
match self {
&BinOp::Add
| &BinOp::AddUnchecked
| &BinOp::Sub
| &BinOp::SubUnchecked
| &BinOp::Mul
| &BinOp::MulUnchecked
| &BinOp::Div
| &BinOp::Rem
| &BinOp::BitXor
| &BinOp::BitAnd
| &BinOp::BitOr => {
// these should be integers or floats of the same size.
assert_eq!(lhs_ty, rhs_ty);
lhs_ty
}
&BinOp::AddWithOverflow | &BinOp::SubWithOverflow | &BinOp::MulWithOverflow => {
// these should be integers of the same size.
assert_eq!(lhs_ty, rhs_ty);
Ty::new_tup(tcx, &[lhs_ty, tcx.types.bool])
}
&BinOp::Shl
| &BinOp::ShlUnchecked
| &BinOp::Shr
| &BinOp::ShrUnchecked
| &BinOp::Offset => {
lhs_ty // lhs_ty can be != rhs_ty
}
&BinOp::Eq | &BinOp::Lt | &BinOp::Le | &BinOp::Ne | &BinOp::Ge | &BinOp::Gt => {
tcx.types.bool
}
&BinOp::Cmp => {
// these should be integer-like types of the same size.
assert_eq!(lhs_ty, rhs_ty);
tcx.ty_ordering_enum(DUMMY_SP)
}
}
}
pub(crate) fn to_hir_binop(self) -> hir::BinOpKind {
match self {
// HIR `+`/`-`/`*` can map to either of these MIR BinOp, depending
// on whether overflow checks are enabled or not.
BinOp::Add | BinOp::AddWithOverflow => hir::BinOpKind::Add,
BinOp::Sub | BinOp::SubWithOverflow => hir::BinOpKind::Sub,
BinOp::Mul | BinOp::MulWithOverflow => hir::BinOpKind::Mul,
BinOp::Div => hir::BinOpKind::Div,
BinOp::Rem => hir::BinOpKind::Rem,
BinOp::BitXor => hir::BinOpKind::BitXor,
BinOp::BitAnd => hir::BinOpKind::BitAnd,
BinOp::BitOr => hir::BinOpKind::BitOr,
BinOp::Shl => hir::BinOpKind::Shl,
BinOp::Shr => hir::BinOpKind::Shr,
BinOp::Eq => hir::BinOpKind::Eq,
BinOp::Ne => hir::BinOpKind::Ne,
BinOp::Lt => hir::BinOpKind::Lt,
BinOp::Gt => hir::BinOpKind::Gt,
BinOp::Le => hir::BinOpKind::Le,
BinOp::Ge => hir::BinOpKind::Ge,
// We don't have HIR syntax for these.
BinOp::Cmp
| BinOp::AddUnchecked
| BinOp::SubUnchecked
| BinOp::MulUnchecked
| BinOp::ShlUnchecked
| BinOp::ShrUnchecked
| BinOp::Offset => {
unreachable!()
}
}
}
/// If this is a `FooWithOverflow`, return `Some(Foo)`.
pub fn overflowing_to_wrapping(self) -> Option<BinOp> {
Some(match self {
BinOp::AddWithOverflow => BinOp::Add,
BinOp::SubWithOverflow => BinOp::Sub,
BinOp::MulWithOverflow => BinOp::Mul,
_ => return None,
})
}
/// Returns whether this is a `FooWithOverflow`
pub fn is_overflowing(self) -> bool {
self.overflowing_to_wrapping().is_some()
}
/// If this is a `Foo`, return `Some(FooWithOverflow)`.
pub fn wrapping_to_overflowing(self) -> Option<BinOp> {
Some(match self {
BinOp::Add => BinOp::AddWithOverflow,
BinOp::Sub => BinOp::SubWithOverflow,
BinOp::Mul => BinOp::MulWithOverflow,
_ => return None,
})
}
}
impl From<Mutability> for RawPtrKind {
fn from(other: Mutability) -> Self {
match other {
Mutability::Mut => RawPtrKind::Mut,
Mutability::Not => RawPtrKind::Const,
}
}
}
impl RawPtrKind {
pub fn is_fake(self) -> bool {
match self {
RawPtrKind::Mut | RawPtrKind::Const => false,
RawPtrKind::FakeForPtrMetadata => true,
}
}
pub fn to_mutbl_lossy(self) -> Mutability {
match self {
RawPtrKind::Mut => Mutability::Mut,
RawPtrKind::Const => Mutability::Not,
// We have no type corresponding to a fake borrow, so use
// `*const` as an approximation.
RawPtrKind::FakeForPtrMetadata => Mutability::Not,
}
}
pub fn ptr_str(self) -> &'static str {
match self {
RawPtrKind::Mut => "mut",
RawPtrKind::Const => "const",
RawPtrKind::FakeForPtrMetadata => "const (fake)",
}
}
}