blob: 1280ab1442a09aa75900aa4167e8cca88e1486ea [file] [log] [blame]
use std::ffi::CString;
use llvm::Linkage::*;
use rustc_abi::Align;
use rustc_codegen_ssa::back::write::CodegenContext;
use rustc_codegen_ssa::traits::BaseTypeCodegenMethods;
use crate::builder::SBuilder;
use crate::common::AsCCharPtr;
use crate::llvm::AttributePlace::Function;
use crate::llvm::{self, Linkage, Type, Value};
use crate::{LlvmCodegenBackend, SimpleCx, attributes};
pub(crate) fn handle_gpu_code<'ll>(
_cgcx: &CodegenContext<LlvmCodegenBackend>,
cx: &'ll SimpleCx<'_>,
) {
// The offload memory transfer type for each kernel
let mut o_types = vec![];
let mut kernels = vec![];
let offload_entry_ty = add_tgt_offload_entry(&cx);
for num in 0..9 {
let kernel = cx.get_function(&format!("kernel_{num}"));
if let Some(kernel) = kernel {
o_types.push(gen_define_handling(&cx, kernel, offload_entry_ty, num));
kernels.push(kernel);
}
}
gen_call_handling(&cx, &kernels, &o_types);
}
// What is our @1 here? A magic global, used in our data_{begin/update/end}_mapper:
// @0 = private unnamed_addr constant [23 x i8] c";unknown;unknown;0;0;;\00", align 1
// @1 = private unnamed_addr constant %struct.ident_t { i32 0, i32 2, i32 0, i32 22, ptr @0 }, align 8
fn generate_at_one<'ll>(cx: &'ll SimpleCx<'_>) -> &'ll llvm::Value {
// @0 = private unnamed_addr constant [23 x i8] c";unknown;unknown;0;0;;\00", align 1
let unknown_txt = ";unknown;unknown;0;0;;";
let c_entry_name = CString::new(unknown_txt).unwrap();
let c_val = c_entry_name.as_bytes_with_nul();
let initializer = crate::common::bytes_in_context(cx.llcx, c_val);
let at_zero = add_unnamed_global(&cx, &"", initializer, PrivateLinkage);
llvm::set_alignment(at_zero, Align::ONE);
// @1 = private unnamed_addr constant %struct.ident_t { i32 0, i32 2, i32 0, i32 22, ptr @0 }, align 8
let struct_ident_ty = cx.type_named_struct("struct.ident_t");
let struct_elems = vec![
cx.get_const_i32(0),
cx.get_const_i32(2),
cx.get_const_i32(0),
cx.get_const_i32(22),
at_zero,
];
let struct_elems_ty: Vec<_> = struct_elems.iter().map(|&x| cx.val_ty(x)).collect();
let initializer = crate::common::named_struct(struct_ident_ty, &struct_elems);
cx.set_struct_body(struct_ident_ty, &struct_elems_ty, false);
let at_one = add_unnamed_global(&cx, &"", initializer, PrivateLinkage);
llvm::set_alignment(at_one, Align::EIGHT);
at_one
}
pub(crate) fn add_tgt_offload_entry<'ll>(cx: &'ll SimpleCx<'_>) -> &'ll llvm::Type {
let offload_entry_ty = cx.type_named_struct("struct.__tgt_offload_entry");
let tptr = cx.type_ptr();
let ti64 = cx.type_i64();
let ti32 = cx.type_i32();
let ti16 = cx.type_i16();
// For each kernel to run on the gpu, we will later generate one entry of this type.
// copied from LLVM
// typedef struct {
// uint64_t Reserved;
// uint16_t Version;
// uint16_t Kind;
// uint32_t Flags; Flags associated with the entry (see Target Region Entry Flags)
// void *Address; Address of global symbol within device image (function or global)
// char *SymbolName;
// uint64_t Size; Size of the entry info (0 if it is a function)
// uint64_t Data;
// void *AuxAddr;
// } __tgt_offload_entry;
let entry_elements = vec![ti64, ti16, ti16, ti32, tptr, tptr, ti64, ti64, tptr];
cx.set_struct_body(offload_entry_ty, &entry_elements, false);
offload_entry_ty
}
fn gen_tgt_kernel_global<'ll>(cx: &'ll SimpleCx<'_>) {
let kernel_arguments_ty = cx.type_named_struct("struct.__tgt_kernel_arguments");
let tptr = cx.type_ptr();
let ti64 = cx.type_i64();
let ti32 = cx.type_i32();
let tarr = cx.type_array(ti32, 3);
// Taken from the LLVM APITypes.h declaration:
//struct KernelArgsTy {
// uint32_t Version = 0; // Version of this struct for ABI compatibility.
// uint32_t NumArgs = 0; // Number of arguments in each input pointer.
// void **ArgBasePtrs =
// nullptr; // Base pointer of each argument (e.g. a struct).
// void **ArgPtrs = nullptr; // Pointer to the argument data.
// int64_t *ArgSizes = nullptr; // Size of the argument data in bytes.
// int64_t *ArgTypes = nullptr; // Type of the data (e.g. to / from).
// void **ArgNames = nullptr; // Name of the data for debugging, possibly null.
// void **ArgMappers = nullptr; // User-defined mappers, possibly null.
// uint64_t Tripcount =
// 0; // Tripcount for the teams / distribute loop, 0 otherwise.
// struct {
// uint64_t NoWait : 1; // Was this kernel spawned with a `nowait` clause.
// uint64_t IsCUDA : 1; // Was this kernel spawned via CUDA.
// uint64_t Unused : 62;
// } Flags = {0, 0, 0};
// // The number of teams (for x,y,z dimension).
// uint32_t NumTeams[3] = {0, 0, 0};
// // The number of threads (for x,y,z dimension).
// uint32_t ThreadLimit[3] = {0, 0, 0};
// uint32_t DynCGroupMem = 0; // Amount of dynamic cgroup memory requested.
//};
let kernel_elements =
vec![ti32, ti32, tptr, tptr, tptr, tptr, tptr, tptr, ti64, ti64, tarr, tarr, ti32];
cx.set_struct_body(kernel_arguments_ty, &kernel_elements, false);
// For now we don't handle kernels, so for now we just add a global dummy
// to make sure that the __tgt_offload_entry is defined and handled correctly.
cx.declare_global("my_struct_global2", kernel_arguments_ty);
}
fn gen_tgt_data_mappers<'ll>(
cx: &'ll SimpleCx<'_>,
) -> (&'ll llvm::Value, &'ll llvm::Value, &'ll llvm::Value, &'ll llvm::Type) {
let tptr = cx.type_ptr();
let ti64 = cx.type_i64();
let ti32 = cx.type_i32();
let args = vec![tptr, ti64, ti32, tptr, tptr, tptr, tptr, tptr, tptr];
let mapper_fn_ty = cx.type_func(&args, cx.type_void());
let mapper_begin = "__tgt_target_data_begin_mapper";
let mapper_update = "__tgt_target_data_update_mapper";
let mapper_end = "__tgt_target_data_end_mapper";
let begin_mapper_decl = declare_offload_fn(&cx, mapper_begin, mapper_fn_ty);
let update_mapper_decl = declare_offload_fn(&cx, mapper_update, mapper_fn_ty);
let end_mapper_decl = declare_offload_fn(&cx, mapper_end, mapper_fn_ty);
let nounwind = llvm::AttributeKind::NoUnwind.create_attr(cx.llcx);
attributes::apply_to_llfn(begin_mapper_decl, Function, &[nounwind]);
attributes::apply_to_llfn(update_mapper_decl, Function, &[nounwind]);
attributes::apply_to_llfn(end_mapper_decl, Function, &[nounwind]);
(begin_mapper_decl, update_mapper_decl, end_mapper_decl, mapper_fn_ty)
}
fn add_priv_unnamed_arr<'ll>(cx: &SimpleCx<'ll>, name: &str, vals: &[u64]) -> &'ll llvm::Value {
let ti64 = cx.type_i64();
let mut size_val = Vec::with_capacity(vals.len());
for &val in vals {
size_val.push(cx.get_const_i64(val));
}
let initializer = cx.const_array(ti64, &size_val);
add_unnamed_global(cx, name, initializer, PrivateLinkage)
}
pub(crate) fn add_unnamed_global<'ll>(
cx: &SimpleCx<'ll>,
name: &str,
initializer: &'ll llvm::Value,
l: Linkage,
) -> &'ll llvm::Value {
let llglobal = add_global(cx, name, initializer, l);
llvm::LLVMSetUnnamedAddress(llglobal, llvm::UnnamedAddr::Global);
llglobal
}
pub(crate) fn add_global<'ll>(
cx: &SimpleCx<'ll>,
name: &str,
initializer: &'ll llvm::Value,
l: Linkage,
) -> &'ll llvm::Value {
let c_name = CString::new(name).unwrap();
let llglobal: &'ll llvm::Value = llvm::add_global(cx.llmod, cx.val_ty(initializer), &c_name);
llvm::set_global_constant(llglobal, true);
llvm::set_linkage(llglobal, l);
llvm::set_initializer(llglobal, initializer);
llglobal
}
fn gen_define_handling<'ll>(
cx: &'ll SimpleCx<'_>,
kernel: &'ll llvm::Value,
offload_entry_ty: &'ll llvm::Type,
num: i64,
) -> &'ll llvm::Value {
let types = cx.func_params_types(cx.get_type_of_global(kernel));
// It seems like non-pointer values are automatically mapped. So here, we focus on pointer (or
// reference) types.
let num_ptr_types = types
.iter()
.map(|&x| matches!(cx.type_kind(x), rustc_codegen_ssa::common::TypeKind::Pointer))
.count();
// We do not know their size anymore at this level, so hardcode a placeholder.
// A follow-up pr will track these from the frontend, where we still have Rust types.
// Then, we will be able to figure out that e.g. `&[f32;256]` will result in 4*256 bytes.
// I decided that 1024 bytes is a great placeholder value for now.
add_priv_unnamed_arr(&cx, &format!(".offload_sizes.{num}"), &vec![1024; num_ptr_types]);
// Here we figure out whether something needs to be copied to the gpu (=1), from the gpu (=2),
// or both to and from the gpu (=3). Other values shouldn't affect us for now.
// A non-mutable reference or pointer will be 1, an array that's not read, but fully overwritten
// will be 2. For now, everything is 3, until we have our frontend set up.
let o_types =
add_priv_unnamed_arr(&cx, &format!(".offload_maptypes.{num}"), &vec![3; num_ptr_types]);
// Next: For each function, generate these three entries. A weak constant,
// the llvm.rodata entry name, and the omp_offloading_entries value
let name = format!(".kernel_{num}.region_id");
let initializer = cx.get_const_i8(0);
let region_id = add_unnamed_global(&cx, &name, initializer, WeakAnyLinkage);
let c_entry_name = CString::new(format!("kernel_{num}")).unwrap();
let c_val = c_entry_name.as_bytes_with_nul();
let offload_entry_name = format!(".offloading.entry_name.{num}");
let initializer = crate::common::bytes_in_context(cx.llcx, c_val);
let llglobal = add_unnamed_global(&cx, &offload_entry_name, initializer, InternalLinkage);
llvm::set_alignment(llglobal, Align::ONE);
llvm::set_section(llglobal, c".llvm.rodata.offloading");
// Not actively used yet, for calling real kernels
let name = format!(".offloading.entry.kernel_{num}");
// See the __tgt_offload_entry documentation above.
let reserved = cx.get_const_i64(0);
let version = cx.get_const_i16(1);
let kind = cx.get_const_i16(1);
let flags = cx.get_const_i32(0);
let size = cx.get_const_i64(0);
let data = cx.get_const_i64(0);
let aux_addr = cx.const_null(cx.type_ptr());
let elems = vec![reserved, version, kind, flags, region_id, llglobal, size, data, aux_addr];
let initializer = crate::common::named_struct(offload_entry_ty, &elems);
let c_name = CString::new(name).unwrap();
let llglobal = llvm::add_global(cx.llmod, offload_entry_ty, &c_name);
llvm::set_global_constant(llglobal, true);
llvm::set_linkage(llglobal, WeakAnyLinkage);
llvm::set_initializer(llglobal, initializer);
llvm::set_alignment(llglobal, Align::ONE);
let c_section_name = CString::new(".omp_offloading_entries").unwrap();
llvm::set_section(llglobal, &c_section_name);
o_types
}
fn declare_offload_fn<'ll>(
cx: &'ll SimpleCx<'_>,
name: &str,
ty: &'ll llvm::Type,
) -> &'ll llvm::Value {
crate::declare::declare_simple_fn(
cx,
name,
llvm::CallConv::CCallConv,
llvm::UnnamedAddr::No,
llvm::Visibility::Default,
ty,
)
}
// For each kernel *call*, we now use some of our previous declared globals to move data to and from
// the gpu. We don't have a proper frontend yet, so we assume that every call to a kernel function
// from main is intended to run on the GPU. For now, we only handle the data transfer part of it.
// If two consecutive kernels use the same memory, we still move it to the host and back to the gpu.
// Since in our frontend users (by default) don't have to specify data transfer, this is something
// we should optimize in the future! We also assume that everything should be copied back and forth,
// but sometimes we can directly zero-allocate on the device and only move back, or if something is
// immutable, we might only copy it to the device, but not back.
//
// Current steps:
// 0. Alloca some variables for the following steps
// 1. set insert point before kernel call.
// 2. generate all the GEPS and stores, to be used in 3)
// 3. generate __tgt_target_data_begin calls to move data to the GPU
//
// unchanged: keep kernel call. Later move the kernel to the GPU
//
// 4. set insert point after kernel call.
// 5. generate all the GEPS and stores, to be used in 6)
// 6. generate __tgt_target_data_end calls to move data from the GPU
fn gen_call_handling<'ll>(
cx: &'ll SimpleCx<'_>,
_kernels: &[&'ll llvm::Value],
o_types: &[&'ll llvm::Value],
) {
// %struct.__tgt_bin_desc = type { i32, ptr, ptr, ptr }
let tptr = cx.type_ptr();
let ti32 = cx.type_i32();
let tgt_bin_desc_ty = vec![ti32, tptr, tptr, tptr];
let tgt_bin_desc = cx.type_named_struct("struct.__tgt_bin_desc");
cx.set_struct_body(tgt_bin_desc, &tgt_bin_desc_ty, false);
gen_tgt_kernel_global(&cx);
let (begin_mapper_decl, _, end_mapper_decl, fn_ty) = gen_tgt_data_mappers(&cx);
let main_fn = cx.get_function("main");
let Some(main_fn) = main_fn else { return };
let kernel_name = "kernel_1";
let call = unsafe {
llvm::LLVMRustGetFunctionCall(main_fn, kernel_name.as_c_char_ptr(), kernel_name.len())
};
let Some(kernel_call) = call else {
return;
};
let kernel_call_bb = unsafe { llvm::LLVMGetInstructionParent(kernel_call) };
let called = unsafe { llvm::LLVMGetCalledValue(kernel_call).unwrap() };
let mut builder = SBuilder::build(cx, kernel_call_bb);
let types = cx.func_params_types(cx.get_type_of_global(called));
let num_args = types.len() as u64;
// Step 0)
// %struct.__tgt_bin_desc = type { i32, ptr, ptr, ptr }
// %6 = alloca %struct.__tgt_bin_desc, align 8
unsafe { llvm::LLVMRustPositionBuilderPastAllocas(builder.llbuilder, main_fn) };
let tgt_bin_desc_alloca = builder.direct_alloca(tgt_bin_desc, Align::EIGHT, "EmptyDesc");
let ty = cx.type_array(cx.type_ptr(), num_args);
// Baseptr are just the input pointer to the kernel, stored in a local alloca
let a1 = builder.direct_alloca(ty, Align::EIGHT, ".offload_baseptrs");
// Ptrs are the result of a gep into the baseptr, at least for our trivial types.
let a2 = builder.direct_alloca(ty, Align::EIGHT, ".offload_ptrs");
// These represent the sizes in bytes, e.g. the entry for `&[f64; 16]` will be 8*16.
let ty2 = cx.type_array(cx.type_i64(), num_args);
let a4 = builder.direct_alloca(ty2, Align::EIGHT, ".offload_sizes");
// Now we allocate once per function param, a copy to be passed to one of our maps.
let mut vals = vec![];
let mut geps = vec![];
let i32_0 = cx.get_const_i32(0);
for (index, in_ty) in types.iter().enumerate() {
// get function arg, store it into the alloca, and read it.
let p = llvm::get_param(called, index as u32);
let name = llvm::get_value_name(p);
let name = str::from_utf8(&name).unwrap();
let arg_name = format!("{name}.addr");
let alloca = builder.direct_alloca(in_ty, Align::EIGHT, &arg_name);
builder.store(p, alloca, Align::EIGHT);
let val = builder.load(in_ty, alloca, Align::EIGHT);
let gep = builder.inbounds_gep(cx.type_f32(), val, &[i32_0]);
vals.push(val);
geps.push(gep);
}
// Step 1)
unsafe { llvm::LLVMRustPositionBefore(builder.llbuilder, kernel_call) };
builder.memset(tgt_bin_desc_alloca, cx.get_const_i8(0), cx.get_const_i64(32), Align::EIGHT);
let mapper_fn_ty = cx.type_func(&[cx.type_ptr()], cx.type_void());
let register_lib_decl = declare_offload_fn(&cx, "__tgt_register_lib", mapper_fn_ty);
let unregister_lib_decl = declare_offload_fn(&cx, "__tgt_unregister_lib", mapper_fn_ty);
let init_ty = cx.type_func(&[], cx.type_void());
let init_rtls_decl = declare_offload_fn(cx, "__tgt_init_all_rtls", init_ty);
// call void @__tgt_register_lib(ptr noundef %6)
builder.call(mapper_fn_ty, register_lib_decl, &[tgt_bin_desc_alloca], None);
// call void @__tgt_init_all_rtls()
builder.call(init_ty, init_rtls_decl, &[], None);
for i in 0..num_args {
let idx = cx.get_const_i32(i);
let gep1 = builder.inbounds_gep(ty, a1, &[i32_0, idx]);
builder.store(vals[i as usize], gep1, Align::EIGHT);
let gep2 = builder.inbounds_gep(ty, a2, &[i32_0, idx]);
builder.store(geps[i as usize], gep2, Align::EIGHT);
let gep3 = builder.inbounds_gep(ty2, a4, &[i32_0, idx]);
// As mentioned above, we don't use Rust type information yet. So for now we will just
// assume that we have 1024 bytes, 256 f32 values.
// FIXME(offload): write an offload frontend and handle arbitrary types.
builder.store(cx.get_const_i64(1024), gep3, Align::EIGHT);
}
// For now we have a very simplistic indexing scheme into our
// offload_{baseptrs,ptrs,sizes}. We will probably improve this along with our gpu frontend pr.
fn get_geps<'a, 'll>(
builder: &mut SBuilder<'a, 'll>,
cx: &'ll SimpleCx<'ll>,
ty: &'ll Type,
ty2: &'ll Type,
a1: &'ll Value,
a2: &'ll Value,
a4: &'ll Value,
) -> (&'ll Value, &'ll Value, &'ll Value) {
let i32_0 = cx.get_const_i32(0);
let gep1 = builder.inbounds_gep(ty, a1, &[i32_0, i32_0]);
let gep2 = builder.inbounds_gep(ty, a2, &[i32_0, i32_0]);
let gep3 = builder.inbounds_gep(ty2, a4, &[i32_0, i32_0]);
(gep1, gep2, gep3)
}
fn generate_mapper_call<'a, 'll>(
builder: &mut SBuilder<'a, 'll>,
cx: &'ll SimpleCx<'ll>,
geps: (&'ll Value, &'ll Value, &'ll Value),
o_type: &'ll Value,
fn_to_call: &'ll Value,
fn_ty: &'ll Type,
num_args: u64,
s_ident_t: &'ll Value,
) {
let nullptr = cx.const_null(cx.type_ptr());
let i64_max = cx.get_const_i64(u64::MAX);
let num_args = cx.get_const_i32(num_args);
let args =
vec![s_ident_t, i64_max, num_args, geps.0, geps.1, geps.2, o_type, nullptr, nullptr];
builder.call(fn_ty, fn_to_call, &args, None);
}
// Step 2)
let s_ident_t = generate_at_one(&cx);
let o = o_types[0];
let geps = get_geps(&mut builder, &cx, ty, ty2, a1, a2, a4);
generate_mapper_call(&mut builder, &cx, geps, o, begin_mapper_decl, fn_ty, num_args, s_ident_t);
// Step 3)
// Here we will add code for the actual kernel launches in a follow-up PR.
// FIXME(offload): launch kernels
// Step 4)
unsafe { llvm::LLVMRustPositionAfter(builder.llbuilder, kernel_call) };
let geps = get_geps(&mut builder, &cx, ty, ty2, a1, a2, a4);
generate_mapper_call(&mut builder, &cx, geps, o, end_mapper_decl, fn_ty, num_args, s_ident_t);
builder.call(mapper_fn_ty, unregister_lib_decl, &[tgt_bin_desc_alloca], None);
// With this we generated the following begin and end mappers. We could easily generate the
// update mapper in an update.
// call void @__tgt_target_data_begin_mapper(ptr @1, i64 -1, i32 3, ptr %27, ptr %28, ptr %29, ptr @.offload_maptypes, ptr null, ptr null)
// call void @__tgt_target_data_update_mapper(ptr @1, i64 -1, i32 2, ptr %46, ptr %47, ptr %48, ptr @.offload_maptypes.1, ptr null, ptr null)
// call void @__tgt_target_data_end_mapper(ptr @1, i64 -1, i32 3, ptr %49, ptr %50, ptr %51, ptr @.offload_maptypes, ptr null, ptr null)
}