| use std::collections::BTreeMap; |
| use std::ffi::{CStr, CString}; |
| use std::fs::File; |
| use std::path::{Path, PathBuf}; |
| use std::ptr::NonNull; |
| use std::sync::Arc; |
| use std::{io, iter, slice}; |
| |
| use object::read::archive::ArchiveFile; |
| use object::{Object, ObjectSection}; |
| use rustc_codegen_ssa::back::lto::{SerializedModule, ThinModule, ThinShared}; |
| use rustc_codegen_ssa::back::write::{CodegenContext, FatLtoInput}; |
| use rustc_codegen_ssa::traits::*; |
| use rustc_codegen_ssa::{ModuleCodegen, ModuleKind, looks_like_rust_object_file}; |
| use rustc_data_structures::fx::FxHashMap; |
| use rustc_data_structures::memmap::Mmap; |
| use rustc_errors::{DiagCtxtHandle, FatalError}; |
| use rustc_middle::bug; |
| use rustc_middle::dep_graph::WorkProduct; |
| use rustc_session::config::{self, Lto}; |
| use tracing::{debug, info}; |
| |
| use crate::back::write::{ |
| self, CodegenDiagnosticsStage, DiagnosticHandlers, bitcode_section_name, save_temp_bitcode, |
| }; |
| use crate::errors::{LlvmError, LtoBitcodeFromRlib}; |
| use crate::llvm::AttributePlace::Function; |
| use crate::llvm::{self, build_string}; |
| use crate::{LlvmCodegenBackend, ModuleLlvm, SimpleCx, attributes}; |
| |
| /// We keep track of the computed LTO cache keys from the previous |
| /// session to determine which CGUs we can reuse. |
| const THIN_LTO_KEYS_INCR_COMP_FILE_NAME: &str = "thin-lto-past-keys.bin"; |
| |
| fn prepare_lto( |
| cgcx: &CodegenContext<LlvmCodegenBackend>, |
| exported_symbols_for_lto: &[String], |
| each_linked_rlib_for_lto: &[PathBuf], |
| dcx: DiagCtxtHandle<'_>, |
| ) -> Result<(Vec<CString>, Vec<(SerializedModule<ModuleBuffer>, CString)>), FatalError> { |
| let mut symbols_below_threshold = exported_symbols_for_lto |
| .iter() |
| .map(|symbol| CString::new(symbol.to_owned()).unwrap()) |
| .collect::<Vec<CString>>(); |
| |
| // __llvm_profile_counter_bias is pulled in at link time by an undefined reference to |
| // __llvm_profile_runtime, therefore we won't know until link time if this symbol |
| // should have default visibility. |
| symbols_below_threshold.push(c"__llvm_profile_counter_bias".to_owned()); |
| |
| // If we're performing LTO for the entire crate graph, then for each of our |
| // upstream dependencies, find the corresponding rlib and load the bitcode |
| // from the archive. |
| // |
| // We save off all the bytecode and LLVM module ids for later processing |
| // with either fat or thin LTO |
| let mut upstream_modules = Vec::new(); |
| if cgcx.lto != Lto::ThinLocal { |
| for path in each_linked_rlib_for_lto { |
| let archive_data = unsafe { |
| Mmap::map(std::fs::File::open(&path).expect("couldn't open rlib")) |
| .expect("couldn't map rlib") |
| }; |
| let archive = ArchiveFile::parse(&*archive_data).expect("wanted an rlib"); |
| let obj_files = archive |
| .members() |
| .filter_map(|child| { |
| child.ok().and_then(|c| { |
| std::str::from_utf8(c.name()).ok().map(|name| (name.trim(), c)) |
| }) |
| }) |
| .filter(|&(name, _)| looks_like_rust_object_file(name)); |
| for (name, child) in obj_files { |
| info!("adding bitcode from {}", name); |
| match get_bitcode_slice_from_object_data( |
| child.data(&*archive_data).expect("corrupt rlib"), |
| cgcx, |
| ) { |
| Ok(data) => { |
| let module = SerializedModule::FromRlib(data.to_vec()); |
| upstream_modules.push((module, CString::new(name).unwrap())); |
| } |
| Err(e) => { |
| dcx.emit_err(e); |
| return Err(FatalError); |
| } |
| } |
| } |
| } |
| } |
| |
| Ok((symbols_below_threshold, upstream_modules)) |
| } |
| |
| fn get_bitcode_slice_from_object_data<'a>( |
| obj: &'a [u8], |
| cgcx: &CodegenContext<LlvmCodegenBackend>, |
| ) -> Result<&'a [u8], LtoBitcodeFromRlib> { |
| // We're about to assume the data here is an object file with sections, but if it's raw LLVM IR |
| // that won't work. Fortunately, if that's what we have we can just return the object directly, |
| // so we sniff the relevant magic strings here and return. |
| if obj.starts_with(b"\xDE\xC0\x17\x0B") || obj.starts_with(b"BC\xC0\xDE") { |
| return Ok(obj); |
| } |
| // We drop the "__LLVM," prefix here because on Apple platforms there's a notion of "segment |
| // name" which in the public API for sections gets treated as part of the section name, but |
| // internally in MachOObjectFile.cpp gets treated separately. |
| let section_name = bitcode_section_name(cgcx).to_str().unwrap().trim_start_matches("__LLVM,"); |
| |
| let obj = |
| object::File::parse(obj).map_err(|err| LtoBitcodeFromRlib { err: err.to_string() })?; |
| |
| let section = obj |
| .section_by_name(section_name) |
| .ok_or_else(|| LtoBitcodeFromRlib { err: format!("Can't find section {section_name}") })?; |
| |
| section.data().map_err(|err| LtoBitcodeFromRlib { err: err.to_string() }) |
| } |
| |
| /// Performs fat LTO by merging all modules into a single one and returning it |
| /// for further optimization. |
| pub(crate) fn run_fat( |
| cgcx: &CodegenContext<LlvmCodegenBackend>, |
| exported_symbols_for_lto: &[String], |
| each_linked_rlib_for_lto: &[PathBuf], |
| modules: Vec<FatLtoInput<LlvmCodegenBackend>>, |
| ) -> Result<ModuleCodegen<ModuleLlvm>, FatalError> { |
| let dcx = cgcx.create_dcx(); |
| let dcx = dcx.handle(); |
| let (symbols_below_threshold, upstream_modules) = |
| prepare_lto(cgcx, exported_symbols_for_lto, each_linked_rlib_for_lto, dcx)?; |
| let symbols_below_threshold = |
| symbols_below_threshold.iter().map(|c| c.as_ptr()).collect::<Vec<_>>(); |
| fat_lto(cgcx, dcx, modules, upstream_modules, &symbols_below_threshold) |
| } |
| |
| /// Performs thin LTO by performing necessary global analysis and returning two |
| /// lists, one of the modules that need optimization and another for modules that |
| /// can simply be copied over from the incr. comp. cache. |
| pub(crate) fn run_thin( |
| cgcx: &CodegenContext<LlvmCodegenBackend>, |
| exported_symbols_for_lto: &[String], |
| each_linked_rlib_for_lto: &[PathBuf], |
| modules: Vec<(String, ThinBuffer)>, |
| cached_modules: Vec<(SerializedModule<ModuleBuffer>, WorkProduct)>, |
| ) -> Result<(Vec<ThinModule<LlvmCodegenBackend>>, Vec<WorkProduct>), FatalError> { |
| let dcx = cgcx.create_dcx(); |
| let dcx = dcx.handle(); |
| let (symbols_below_threshold, upstream_modules) = |
| prepare_lto(cgcx, exported_symbols_for_lto, each_linked_rlib_for_lto, dcx)?; |
| let symbols_below_threshold = |
| symbols_below_threshold.iter().map(|c| c.as_ptr()).collect::<Vec<_>>(); |
| if cgcx.opts.cg.linker_plugin_lto.enabled() { |
| unreachable!( |
| "We should never reach this case if the LTO step \ |
| is deferred to the linker" |
| ); |
| } |
| thin_lto(cgcx, dcx, modules, upstream_modules, cached_modules, &symbols_below_threshold) |
| } |
| |
| pub(crate) fn prepare_thin( |
| module: ModuleCodegen<ModuleLlvm>, |
| emit_summary: bool, |
| ) -> (String, ThinBuffer) { |
| let name = module.name; |
| let buffer = ThinBuffer::new(module.module_llvm.llmod(), true, emit_summary); |
| (name, buffer) |
| } |
| |
| fn fat_lto( |
| cgcx: &CodegenContext<LlvmCodegenBackend>, |
| dcx: DiagCtxtHandle<'_>, |
| modules: Vec<FatLtoInput<LlvmCodegenBackend>>, |
| mut serialized_modules: Vec<(SerializedModule<ModuleBuffer>, CString)>, |
| symbols_below_threshold: &[*const libc::c_char], |
| ) -> Result<ModuleCodegen<ModuleLlvm>, FatalError> { |
| let _timer = cgcx.prof.generic_activity("LLVM_fat_lto_build_monolithic_module"); |
| info!("going for a fat lto"); |
| |
| // Sort out all our lists of incoming modules into two lists. |
| // |
| // * `serialized_modules` (also and argument to this function) contains all |
| // modules that are serialized in-memory. |
| // * `in_memory` contains modules which are already parsed and in-memory, |
| // such as from multi-CGU builds. |
| let mut in_memory = Vec::new(); |
| for module in modules { |
| match module { |
| FatLtoInput::InMemory(m) => in_memory.push(m), |
| FatLtoInput::Serialized { name, buffer } => { |
| info!("pushing serialized module {:?}", name); |
| serialized_modules.push((buffer, CString::new(name).unwrap())); |
| } |
| } |
| } |
| |
| // Find the "costliest" module and merge everything into that codegen unit. |
| // All the other modules will be serialized and reparsed into the new |
| // context, so this hopefully avoids serializing and parsing the largest |
| // codegen unit. |
| // |
| // Additionally use a regular module as the base here to ensure that various |
| // file copy operations in the backend work correctly. The only other kind |
| // of module here should be an allocator one, and if your crate is smaller |
| // than the allocator module then the size doesn't really matter anyway. |
| let costliest_module = in_memory |
| .iter() |
| .enumerate() |
| .filter(|&(_, module)| module.kind == ModuleKind::Regular) |
| .map(|(i, module)| { |
| let cost = unsafe { llvm::LLVMRustModuleCost(module.module_llvm.llmod()) }; |
| (cost, i) |
| }) |
| .max(); |
| |
| // If we found a costliest module, we're good to go. Otherwise all our |
| // inputs were serialized which could happen in the case, for example, that |
| // all our inputs were incrementally reread from the cache and we're just |
| // re-executing the LTO passes. If that's the case deserialize the first |
| // module and create a linker with it. |
| let module: ModuleCodegen<ModuleLlvm> = match costliest_module { |
| Some((_cost, i)) => in_memory.remove(i), |
| None => { |
| assert!(!serialized_modules.is_empty(), "must have at least one serialized module"); |
| let (buffer, name) = serialized_modules.remove(0); |
| info!("no in-memory regular modules to choose from, parsing {:?}", name); |
| let llvm_module = ModuleLlvm::parse(cgcx, &name, buffer.data(), dcx)?; |
| ModuleCodegen::new_regular(name.into_string().unwrap(), llvm_module) |
| } |
| }; |
| { |
| let (llcx, llmod) = { |
| let llvm = &module.module_llvm; |
| (&llvm.llcx, llvm.llmod()) |
| }; |
| info!("using {:?} as a base module", module.name); |
| |
| // The linking steps below may produce errors and diagnostics within LLVM |
| // which we'd like to handle and print, so set up our diagnostic handlers |
| // (which get unregistered when they go out of scope below). |
| let _handler = |
| DiagnosticHandlers::new(cgcx, dcx, llcx, &module, CodegenDiagnosticsStage::LTO); |
| |
| // For all other modules we codegened we'll need to link them into our own |
| // bitcode. All modules were codegened in their own LLVM context, however, |
| // and we want to move everything to the same LLVM context. Currently the |
| // way we know of to do that is to serialize them to a string and them parse |
| // them later. Not great but hey, that's why it's "fat" LTO, right? |
| for module in in_memory { |
| let buffer = ModuleBuffer::new(module.module_llvm.llmod()); |
| let llmod_id = CString::new(&module.name[..]).unwrap(); |
| serialized_modules.push((SerializedModule::Local(buffer), llmod_id)); |
| } |
| // Sort the modules to ensure we produce deterministic results. |
| serialized_modules.sort_by(|module1, module2| module1.1.cmp(&module2.1)); |
| |
| // For all serialized bitcode files we parse them and link them in as we did |
| // above, this is all mostly handled in C++. |
| let mut linker = Linker::new(llmod); |
| for (bc_decoded, name) in serialized_modules { |
| let _timer = cgcx |
| .prof |
| .generic_activity_with_arg_recorder("LLVM_fat_lto_link_module", |recorder| { |
| recorder.record_arg(format!("{name:?}")) |
| }); |
| info!("linking {:?}", name); |
| let data = bc_decoded.data(); |
| linker.add(data).map_err(|()| write::llvm_err(dcx, LlvmError::LoadBitcode { name }))?; |
| } |
| drop(linker); |
| save_temp_bitcode(cgcx, &module, "lto.input"); |
| |
| // Internalize everything below threshold to help strip out more modules and such. |
| unsafe { |
| let ptr = symbols_below_threshold.as_ptr(); |
| llvm::LLVMRustRunRestrictionPass( |
| llmod, |
| ptr as *const *const libc::c_char, |
| symbols_below_threshold.len() as libc::size_t, |
| ); |
| } |
| save_temp_bitcode(cgcx, &module, "lto.after-restriction"); |
| } |
| |
| Ok(module) |
| } |
| |
| pub(crate) struct Linker<'a>(&'a mut llvm::Linker<'a>); |
| |
| impl<'a> Linker<'a> { |
| pub(crate) fn new(llmod: &'a llvm::Module) -> Self { |
| unsafe { Linker(llvm::LLVMRustLinkerNew(llmod)) } |
| } |
| |
| pub(crate) fn add(&mut self, bytecode: &[u8]) -> Result<(), ()> { |
| unsafe { |
| if llvm::LLVMRustLinkerAdd( |
| self.0, |
| bytecode.as_ptr() as *const libc::c_char, |
| bytecode.len(), |
| ) { |
| Ok(()) |
| } else { |
| Err(()) |
| } |
| } |
| } |
| } |
| |
| impl Drop for Linker<'_> { |
| fn drop(&mut self) { |
| unsafe { |
| llvm::LLVMRustLinkerFree(&mut *(self.0 as *mut _)); |
| } |
| } |
| } |
| |
| /// Prepare "thin" LTO to get run on these modules. |
| /// |
| /// The general structure of ThinLTO is quite different from the structure of |
| /// "fat" LTO above. With "fat" LTO all LLVM modules in question are merged into |
| /// one giant LLVM module, and then we run more optimization passes over this |
| /// big module after internalizing most symbols. Thin LTO, on the other hand, |
| /// avoid this large bottleneck through more targeted optimization. |
| /// |
| /// At a high level Thin LTO looks like: |
| /// |
| /// 1. Prepare a "summary" of each LLVM module in question which describes |
| /// the values inside, cost of the values, etc. |
| /// 2. Merge the summaries of all modules in question into one "index" |
| /// 3. Perform some global analysis on this index |
| /// 4. For each module, use the index and analysis calculated previously to |
| /// perform local transformations on the module, for example inlining |
| /// small functions from other modules. |
| /// 5. Run thin-specific optimization passes over each module, and then code |
| /// generate everything at the end. |
| /// |
| /// The summary for each module is intended to be quite cheap, and the global |
| /// index is relatively quite cheap to create as well. As a result, the goal of |
| /// ThinLTO is to reduce the bottleneck on LTO and enable LTO to be used in more |
| /// situations. For example one cheap optimization is that we can parallelize |
| /// all codegen modules, easily making use of all the cores on a machine. |
| /// |
| /// With all that in mind, the function here is designed at specifically just |
| /// calculating the *index* for ThinLTO. This index will then be shared amongst |
| /// all of the `LtoModuleCodegen` units returned below and destroyed once |
| /// they all go out of scope. |
| fn thin_lto( |
| cgcx: &CodegenContext<LlvmCodegenBackend>, |
| dcx: DiagCtxtHandle<'_>, |
| modules: Vec<(String, ThinBuffer)>, |
| serialized_modules: Vec<(SerializedModule<ModuleBuffer>, CString)>, |
| cached_modules: Vec<(SerializedModule<ModuleBuffer>, WorkProduct)>, |
| symbols_below_threshold: &[*const libc::c_char], |
| ) -> Result<(Vec<ThinModule<LlvmCodegenBackend>>, Vec<WorkProduct>), FatalError> { |
| let _timer = cgcx.prof.generic_activity("LLVM_thin_lto_global_analysis"); |
| unsafe { |
| info!("going for that thin, thin LTO"); |
| |
| let green_modules: FxHashMap<_, _> = |
| cached_modules.iter().map(|(_, wp)| (wp.cgu_name.clone(), wp.clone())).collect(); |
| |
| let full_scope_len = modules.len() + serialized_modules.len() + cached_modules.len(); |
| let mut thin_buffers = Vec::with_capacity(modules.len()); |
| let mut module_names = Vec::with_capacity(full_scope_len); |
| let mut thin_modules = Vec::with_capacity(full_scope_len); |
| |
| for (i, (name, buffer)) in modules.into_iter().enumerate() { |
| info!("local module: {} - {}", i, name); |
| let cname = CString::new(name.as_bytes()).unwrap(); |
| thin_modules.push(llvm::ThinLTOModule { |
| identifier: cname.as_ptr(), |
| data: buffer.data().as_ptr(), |
| len: buffer.data().len(), |
| }); |
| thin_buffers.push(buffer); |
| module_names.push(cname); |
| } |
| |
| // FIXME: All upstream crates are deserialized internally in the |
| // function below to extract their summary and modules. Note that |
| // unlike the loop above we *must* decode and/or read something |
| // here as these are all just serialized files on disk. An |
| // improvement, however, to make here would be to store the |
| // module summary separately from the actual module itself. Right |
| // now this is store in one large bitcode file, and the entire |
| // file is deflate-compressed. We could try to bypass some of the |
| // decompression by storing the index uncompressed and only |
| // lazily decompressing the bytecode if necessary. |
| // |
| // Note that truly taking advantage of this optimization will |
| // likely be further down the road. We'd have to implement |
| // incremental ThinLTO first where we could actually avoid |
| // looking at upstream modules entirely sometimes (the contents, |
| // we must always unconditionally look at the index). |
| let mut serialized = Vec::with_capacity(serialized_modules.len() + cached_modules.len()); |
| |
| let cached_modules = |
| cached_modules.into_iter().map(|(sm, wp)| (sm, CString::new(wp.cgu_name).unwrap())); |
| |
| for (module, name) in serialized_modules.into_iter().chain(cached_modules) { |
| info!("upstream or cached module {:?}", name); |
| thin_modules.push(llvm::ThinLTOModule { |
| identifier: name.as_ptr(), |
| data: module.data().as_ptr(), |
| len: module.data().len(), |
| }); |
| serialized.push(module); |
| module_names.push(name); |
| } |
| |
| // Sanity check |
| assert_eq!(thin_modules.len(), module_names.len()); |
| |
| // Delegate to the C++ bindings to create some data here. Once this is a |
| // tried-and-true interface we may wish to try to upstream some of this |
| // to LLVM itself, right now we reimplement a lot of what they do |
| // upstream... |
| let data = llvm::LLVMRustCreateThinLTOData( |
| thin_modules.as_ptr(), |
| thin_modules.len(), |
| symbols_below_threshold.as_ptr(), |
| symbols_below_threshold.len(), |
| ) |
| .ok_or_else(|| write::llvm_err(dcx, LlvmError::PrepareThinLtoContext))?; |
| |
| let data = ThinData(data); |
| |
| info!("thin LTO data created"); |
| |
| let (key_map_path, prev_key_map, curr_key_map) = if let Some(ref incr_comp_session_dir) = |
| cgcx.incr_comp_session_dir |
| { |
| let path = incr_comp_session_dir.join(THIN_LTO_KEYS_INCR_COMP_FILE_NAME); |
| // If the previous file was deleted, or we get an IO error |
| // reading the file, then we'll just use `None` as the |
| // prev_key_map, which will force the code to be recompiled. |
| let prev = |
| if path.exists() { ThinLTOKeysMap::load_from_file(&path).ok() } else { None }; |
| let curr = ThinLTOKeysMap::from_thin_lto_modules(&data, &thin_modules, &module_names); |
| (Some(path), prev, curr) |
| } else { |
| // If we don't compile incrementally, we don't need to load the |
| // import data from LLVM. |
| assert!(green_modules.is_empty()); |
| let curr = ThinLTOKeysMap::default(); |
| (None, None, curr) |
| }; |
| info!("thin LTO cache key map loaded"); |
| info!("prev_key_map: {:#?}", prev_key_map); |
| info!("curr_key_map: {:#?}", curr_key_map); |
| |
| // Throw our data in an `Arc` as we'll be sharing it across threads. We |
| // also put all memory referenced by the C++ data (buffers, ids, etc) |
| // into the arc as well. After this we'll create a thin module |
| // codegen per module in this data. |
| let shared = Arc::new(ThinShared { |
| data, |
| thin_buffers, |
| serialized_modules: serialized, |
| module_names, |
| }); |
| |
| let mut copy_jobs = vec![]; |
| let mut opt_jobs = vec![]; |
| |
| info!("checking which modules can be-reused and which have to be re-optimized."); |
| for (module_index, module_name) in shared.module_names.iter().enumerate() { |
| let module_name = module_name_to_str(module_name); |
| if let (Some(prev_key_map), true) = |
| (prev_key_map.as_ref(), green_modules.contains_key(module_name)) |
| { |
| assert!(cgcx.incr_comp_session_dir.is_some()); |
| |
| // If a module exists in both the current and the previous session, |
| // and has the same LTO cache key in both sessions, then we can re-use it |
| if prev_key_map.keys.get(module_name) == curr_key_map.keys.get(module_name) { |
| let work_product = green_modules[module_name].clone(); |
| copy_jobs.push(work_product); |
| info!(" - {}: re-used", module_name); |
| assert!(cgcx.incr_comp_session_dir.is_some()); |
| continue; |
| } |
| } |
| |
| info!(" - {}: re-compiled", module_name); |
| opt_jobs.push(ThinModule { shared: Arc::clone(&shared), idx: module_index }); |
| } |
| |
| // Save the current ThinLTO import information for the next compilation |
| // session, overwriting the previous serialized data (if any). |
| if let Some(path) = key_map_path |
| && let Err(err) = curr_key_map.save_to_file(&path) |
| { |
| return Err(write::llvm_err(dcx, LlvmError::WriteThinLtoKey { err })); |
| } |
| |
| Ok((opt_jobs, copy_jobs)) |
| } |
| } |
| |
| fn enable_autodiff_settings(ad: &[config::AutoDiff]) { |
| for val in ad { |
| // We intentionally don't use a wildcard, to not forget handling anything new. |
| match val { |
| config::AutoDiff::PrintPerf => { |
| llvm::set_print_perf(true); |
| } |
| config::AutoDiff::PrintAA => { |
| llvm::set_print_activity(true); |
| } |
| config::AutoDiff::PrintTA => { |
| llvm::set_print_type(true); |
| } |
| config::AutoDiff::PrintTAFn(fun) => { |
| llvm::set_print_type(true); // Enable general type printing |
| llvm::set_print_type_fun(&fun); // Set specific function to analyze |
| } |
| config::AutoDiff::Inline => { |
| llvm::set_inline(true); |
| } |
| config::AutoDiff::LooseTypes => { |
| llvm::set_loose_types(true); |
| } |
| config::AutoDiff::PrintSteps => { |
| llvm::set_print(true); |
| } |
| // We handle this in the PassWrapper.cpp |
| config::AutoDiff::PrintPasses => {} |
| // We handle this in the PassWrapper.cpp |
| config::AutoDiff::PrintModBefore => {} |
| // We handle this in the PassWrapper.cpp |
| config::AutoDiff::PrintModAfter => {} |
| // We handle this in the PassWrapper.cpp |
| config::AutoDiff::PrintModFinal => {} |
| // This is required and already checked |
| config::AutoDiff::Enable => {} |
| // We handle this below |
| config::AutoDiff::NoPostopt => {} |
| } |
| } |
| // This helps with handling enums for now. |
| llvm::set_strict_aliasing(false); |
| // FIXME(ZuseZ4): Test this, since it was added a long time ago. |
| llvm::set_rust_rules(true); |
| } |
| |
| pub(crate) fn run_pass_manager( |
| cgcx: &CodegenContext<LlvmCodegenBackend>, |
| dcx: DiagCtxtHandle<'_>, |
| module: &mut ModuleCodegen<ModuleLlvm>, |
| thin: bool, |
| ) -> Result<(), FatalError> { |
| let _timer = cgcx.prof.generic_activity_with_arg("LLVM_lto_optimize", &*module.name); |
| let config = cgcx.config(module.kind); |
| |
| // Now we have one massive module inside of llmod. Time to run the |
| // LTO-specific optimization passes that LLVM provides. |
| // |
| // This code is based off the code found in llvm's LTO code generator: |
| // llvm/lib/LTO/LTOCodeGenerator.cpp |
| debug!("running the pass manager"); |
| let opt_stage = if thin { llvm::OptStage::ThinLTO } else { llvm::OptStage::FatLTO }; |
| let opt_level = config.opt_level.unwrap_or(config::OptLevel::No); |
| |
| // The PostAD behavior is the same that we would have if no autodiff was used. |
| // It will run the default optimization pipeline. If AD is enabled we select |
| // the DuringAD stage, which will disable vectorization and loop unrolling, and |
| // schedule two autodiff optimization + differentiation passes. |
| // We then run the llvm_optimize function a second time, to optimize the code which we generated |
| // in the enzyme differentiation pass. |
| let enable_ad = config.autodiff.contains(&config::AutoDiff::Enable); |
| let enable_gpu = config.offload.contains(&config::Offload::Enable); |
| let stage = if thin { |
| write::AutodiffStage::PreAD |
| } else { |
| if enable_ad { write::AutodiffStage::DuringAD } else { write::AutodiffStage::PostAD } |
| }; |
| |
| if enable_ad { |
| enable_autodiff_settings(&config.autodiff); |
| } |
| |
| unsafe { |
| write::llvm_optimize(cgcx, dcx, module, None, config, opt_level, opt_stage, stage)?; |
| } |
| |
| if enable_gpu && !thin { |
| let cx = |
| SimpleCx::new(module.module_llvm.llmod(), &module.module_llvm.llcx, cgcx.pointer_size); |
| crate::builder::gpu_offload::handle_gpu_code(cgcx, &cx); |
| } |
| |
| if cfg!(llvm_enzyme) && enable_ad && !thin { |
| let cx = |
| SimpleCx::new(module.module_llvm.llmod(), &module.module_llvm.llcx, cgcx.pointer_size); |
| |
| for function in cx.get_functions() { |
| let enzyme_marker = "enzyme_marker"; |
| if attributes::has_string_attr(function, enzyme_marker) { |
| // Sanity check: Ensure 'noinline' is present before replacing it. |
| assert!( |
| attributes::has_attr(function, Function, llvm::AttributeKind::NoInline), |
| "Expected __enzyme function to have 'noinline' before adding 'alwaysinline'" |
| ); |
| |
| attributes::remove_from_llfn(function, Function, llvm::AttributeKind::NoInline); |
| attributes::remove_string_attr_from_llfn(function, enzyme_marker); |
| |
| assert!( |
| !attributes::has_string_attr(function, enzyme_marker), |
| "Expected function to not have 'enzyme_marker'" |
| ); |
| |
| let always_inline = llvm::AttributeKind::AlwaysInline.create_attr(cx.llcx); |
| attributes::apply_to_llfn(function, Function, &[always_inline]); |
| } |
| } |
| |
| let opt_stage = llvm::OptStage::FatLTO; |
| let stage = write::AutodiffStage::PostAD; |
| if !config.autodiff.contains(&config::AutoDiff::NoPostopt) { |
| unsafe { |
| write::llvm_optimize(cgcx, dcx, module, None, config, opt_level, opt_stage, stage)?; |
| } |
| } |
| |
| // This is the final IR, so people should be able to inspect the optimized autodiff output, |
| // for manual inspection. |
| if config.autodiff.contains(&config::AutoDiff::PrintModFinal) { |
| unsafe { llvm::LLVMDumpModule(module.module_llvm.llmod()) }; |
| } |
| } |
| |
| debug!("lto done"); |
| Ok(()) |
| } |
| |
| pub struct ModuleBuffer(&'static mut llvm::ModuleBuffer); |
| |
| unsafe impl Send for ModuleBuffer {} |
| unsafe impl Sync for ModuleBuffer {} |
| |
| impl ModuleBuffer { |
| pub(crate) fn new(m: &llvm::Module) -> ModuleBuffer { |
| ModuleBuffer(unsafe { llvm::LLVMRustModuleBufferCreate(m) }) |
| } |
| } |
| |
| impl ModuleBufferMethods for ModuleBuffer { |
| fn data(&self) -> &[u8] { |
| unsafe { |
| let ptr = llvm::LLVMRustModuleBufferPtr(self.0); |
| let len = llvm::LLVMRustModuleBufferLen(self.0); |
| slice::from_raw_parts(ptr, len) |
| } |
| } |
| } |
| |
| impl Drop for ModuleBuffer { |
| fn drop(&mut self) { |
| unsafe { |
| llvm::LLVMRustModuleBufferFree(&mut *(self.0 as *mut _)); |
| } |
| } |
| } |
| |
| pub struct ThinData(&'static mut llvm::ThinLTOData); |
| |
| unsafe impl Send for ThinData {} |
| unsafe impl Sync for ThinData {} |
| |
| impl Drop for ThinData { |
| fn drop(&mut self) { |
| unsafe { |
| llvm::LLVMRustFreeThinLTOData(&mut *(self.0 as *mut _)); |
| } |
| } |
| } |
| |
| pub struct ThinBuffer(&'static mut llvm::ThinLTOBuffer); |
| |
| unsafe impl Send for ThinBuffer {} |
| unsafe impl Sync for ThinBuffer {} |
| |
| impl ThinBuffer { |
| pub(crate) fn new(m: &llvm::Module, is_thin: bool, emit_summary: bool) -> ThinBuffer { |
| unsafe { |
| let buffer = llvm::LLVMRustThinLTOBufferCreate(m, is_thin, emit_summary); |
| ThinBuffer(buffer) |
| } |
| } |
| |
| pub(crate) unsafe fn from_raw_ptr(ptr: *mut llvm::ThinLTOBuffer) -> ThinBuffer { |
| let mut ptr = NonNull::new(ptr).unwrap(); |
| ThinBuffer(unsafe { ptr.as_mut() }) |
| } |
| } |
| |
| impl ThinBufferMethods for ThinBuffer { |
| fn data(&self) -> &[u8] { |
| unsafe { |
| let ptr = llvm::LLVMRustThinLTOBufferPtr(self.0) as *const _; |
| let len = llvm::LLVMRustThinLTOBufferLen(self.0); |
| slice::from_raw_parts(ptr, len) |
| } |
| } |
| |
| fn thin_link_data(&self) -> &[u8] { |
| unsafe { |
| let ptr = llvm::LLVMRustThinLTOBufferThinLinkDataPtr(self.0) as *const _; |
| let len = llvm::LLVMRustThinLTOBufferThinLinkDataLen(self.0); |
| slice::from_raw_parts(ptr, len) |
| } |
| } |
| } |
| |
| impl Drop for ThinBuffer { |
| fn drop(&mut self) { |
| unsafe { |
| llvm::LLVMRustThinLTOBufferFree(&mut *(self.0 as *mut _)); |
| } |
| } |
| } |
| |
| pub(crate) fn optimize_thin_module( |
| thin_module: ThinModule<LlvmCodegenBackend>, |
| cgcx: &CodegenContext<LlvmCodegenBackend>, |
| ) -> Result<ModuleCodegen<ModuleLlvm>, FatalError> { |
| let dcx = cgcx.create_dcx(); |
| let dcx = dcx.handle(); |
| |
| let module_name = &thin_module.shared.module_names[thin_module.idx]; |
| |
| // Right now the implementation we've got only works over serialized |
| // modules, so we create a fresh new LLVM context and parse the module |
| // into that context. One day, however, we may do this for upstream |
| // crates but for locally codegened modules we may be able to reuse |
| // that LLVM Context and Module. |
| let module_llvm = ModuleLlvm::parse(cgcx, module_name, thin_module.data(), dcx)?; |
| let mut module = ModuleCodegen::new_regular(thin_module.name(), module_llvm); |
| // Given that the newly created module lacks a thinlto buffer for embedding, we need to re-add it here. |
| if cgcx.config(ModuleKind::Regular).embed_bitcode() { |
| module.thin_lto_buffer = Some(thin_module.data().to_vec()); |
| } |
| { |
| let target = &*module.module_llvm.tm; |
| let llmod = module.module_llvm.llmod(); |
| save_temp_bitcode(cgcx, &module, "thin-lto-input"); |
| |
| // Up next comes the per-module local analyses that we do for Thin LTO. |
| // Each of these functions is basically copied from the LLVM |
| // implementation and then tailored to suit this implementation. Ideally |
| // each of these would be supported by upstream LLVM but that's perhaps |
| // a patch for another day! |
| // |
| // You can find some more comments about these functions in the LLVM |
| // bindings we've got (currently `PassWrapper.cpp`) |
| { |
| let _timer = |
| cgcx.prof.generic_activity_with_arg("LLVM_thin_lto_rename", thin_module.name()); |
| unsafe { |
| llvm::LLVMRustPrepareThinLTORename(thin_module.shared.data.0, llmod, target.raw()) |
| }; |
| save_temp_bitcode(cgcx, &module, "thin-lto-after-rename"); |
| } |
| |
| { |
| let _timer = cgcx |
| .prof |
| .generic_activity_with_arg("LLVM_thin_lto_resolve_weak", thin_module.name()); |
| if unsafe { !llvm::LLVMRustPrepareThinLTOResolveWeak(thin_module.shared.data.0, llmod) } |
| { |
| return Err(write::llvm_err(dcx, LlvmError::PrepareThinLtoModule)); |
| } |
| save_temp_bitcode(cgcx, &module, "thin-lto-after-resolve"); |
| } |
| |
| { |
| let _timer = cgcx |
| .prof |
| .generic_activity_with_arg("LLVM_thin_lto_internalize", thin_module.name()); |
| if unsafe { !llvm::LLVMRustPrepareThinLTOInternalize(thin_module.shared.data.0, llmod) } |
| { |
| return Err(write::llvm_err(dcx, LlvmError::PrepareThinLtoModule)); |
| } |
| save_temp_bitcode(cgcx, &module, "thin-lto-after-internalize"); |
| } |
| |
| { |
| let _timer = |
| cgcx.prof.generic_activity_with_arg("LLVM_thin_lto_import", thin_module.name()); |
| if unsafe { |
| !llvm::LLVMRustPrepareThinLTOImport(thin_module.shared.data.0, llmod, target.raw()) |
| } { |
| return Err(write::llvm_err(dcx, LlvmError::PrepareThinLtoModule)); |
| } |
| save_temp_bitcode(cgcx, &module, "thin-lto-after-import"); |
| } |
| |
| // Alright now that we've done everything related to the ThinLTO |
| // analysis it's time to run some optimizations! Here we use the same |
| // `run_pass_manager` as the "fat" LTO above except that we tell it to |
| // populate a thin-specific pass manager, which presumably LLVM treats a |
| // little differently. |
| { |
| info!("running thin lto passes over {}", module.name); |
| run_pass_manager(cgcx, dcx, &mut module, true)?; |
| save_temp_bitcode(cgcx, &module, "thin-lto-after-pm"); |
| } |
| } |
| Ok(module) |
| } |
| |
| /// Maps LLVM module identifiers to their corresponding LLVM LTO cache keys |
| #[derive(Debug, Default)] |
| struct ThinLTOKeysMap { |
| // key = llvm name of importing module, value = LLVM cache key |
| keys: BTreeMap<String, String>, |
| } |
| |
| impl ThinLTOKeysMap { |
| fn save_to_file(&self, path: &Path) -> io::Result<()> { |
| use std::io::Write; |
| let mut writer = File::create_buffered(path)?; |
| // The entries are loaded back into a hash map in `load_from_file()`, so |
| // the order in which we write them to file here does not matter. |
| for (module, key) in &self.keys { |
| writeln!(writer, "{module} {key}")?; |
| } |
| Ok(()) |
| } |
| |
| fn load_from_file(path: &Path) -> io::Result<Self> { |
| use std::io::BufRead; |
| let mut keys = BTreeMap::default(); |
| let file = File::open_buffered(path)?; |
| for line in file.lines() { |
| let line = line?; |
| let mut split = line.split(' '); |
| let module = split.next().unwrap(); |
| let key = split.next().unwrap(); |
| assert_eq!(split.next(), None, "Expected two space-separated values, found {line:?}"); |
| keys.insert(module.to_string(), key.to_string()); |
| } |
| Ok(Self { keys }) |
| } |
| |
| fn from_thin_lto_modules( |
| data: &ThinData, |
| modules: &[llvm::ThinLTOModule], |
| names: &[CString], |
| ) -> Self { |
| let keys = iter::zip(modules, names) |
| .map(|(module, name)| { |
| let key = build_string(|rust_str| unsafe { |
| llvm::LLVMRustComputeLTOCacheKey(rust_str, module.identifier, data.0); |
| }) |
| .expect("Invalid ThinLTO module key"); |
| (module_name_to_str(name).to_string(), key) |
| }) |
| .collect(); |
| Self { keys } |
| } |
| } |
| |
| fn module_name_to_str(c_str: &CStr) -> &str { |
| c_str.to_str().unwrap_or_else(|e| { |
| bug!("Encountered non-utf8 LLVM module name `{}`: {}", c_str.to_string_lossy(), e) |
| }) |
| } |
| |
| pub(crate) fn parse_module<'a>( |
| cx: &'a llvm::Context, |
| name: &CStr, |
| data: &[u8], |
| dcx: DiagCtxtHandle<'_>, |
| ) -> Result<&'a llvm::Module, FatalError> { |
| unsafe { |
| llvm::LLVMRustParseBitcodeForLTO(cx, data.as_ptr(), data.len(), name.as_ptr()) |
| .ok_or_else(|| write::llvm_err(dcx, LlvmError::ParseBitcode)) |
| } |
| } |