| use gccjit::{LValue, RValue, ToRValue, Type}; |
| use rustc_abi::Primitive::Pointer; |
| use rustc_abi::{self as abi, HasDataLayout}; |
| use rustc_codegen_ssa::traits::{ |
| BaseTypeCodegenMethods, ConstCodegenMethods, MiscCodegenMethods, StaticCodegenMethods, |
| }; |
| use rustc_middle::mir::Mutability; |
| use rustc_middle::mir::interpret::{ConstAllocation, GlobalAlloc, Scalar}; |
| use rustc_middle::ty::layout::LayoutOf; |
| |
| use crate::context::CodegenCx; |
| use crate::type_of::LayoutGccExt; |
| |
| impl<'gcc, 'tcx> CodegenCx<'gcc, 'tcx> { |
| pub fn const_ptrcast(&self, val: RValue<'gcc>, ty: Type<'gcc>) -> RValue<'gcc> { |
| self.context.new_cast(None, val, ty) |
| } |
| |
| pub fn const_bytes(&self, bytes: &[u8]) -> RValue<'gcc> { |
| bytes_in_context(self, bytes) |
| } |
| |
| fn global_string(&self, string: &str) -> LValue<'gcc> { |
| // TODO(antoyo): handle non-null-terminated strings. |
| let string = self.context.new_string_literal(string); |
| let sym = self.generate_local_symbol_name("str"); |
| let global = self.declare_private_global(&sym, self.val_ty(string)); |
| global.global_set_initializer_rvalue(string); |
| global |
| // TODO(antoyo): set linkage. |
| } |
| |
| pub fn const_bitcast(&self, value: RValue<'gcc>, typ: Type<'gcc>) -> RValue<'gcc> { |
| if value.get_type() == self.bool_type.make_pointer() |
| && let Some(pointee) = typ.get_pointee() |
| && pointee.dyncast_vector().is_some() |
| { |
| panic!() |
| } |
| // NOTE: since bitcast makes a value non-constant, don't bitcast if not necessary as some |
| // SIMD builtins require a constant value. |
| self.bitcast_if_needed(value, typ) |
| } |
| } |
| |
| pub fn bytes_in_context<'gcc, 'tcx>(cx: &CodegenCx<'gcc, 'tcx>, bytes: &[u8]) -> RValue<'gcc> { |
| // Instead of always using an array of bytes, use an array of larger integers of target endianness |
| // if possible. This reduces the amount of `rvalues` we use, which reduces memory usage significantly. |
| // |
| // FIXME(FractalFir): Consider using `global_set_initializer` instead. Before this is done, we need to confirm that |
| // `global_set_initializer` is more memory efficient than the current solution. |
| // `global_set_initializer` calls `global_set_initializer_rvalue` under the hood - does it generate an array of rvalues, |
| // or is it using a more efficient representation? |
| match bytes.len() % 8 { |
| 0 => { |
| let context = &cx.context; |
| let byte_type = context.new_type::<u64>(); |
| let typ = context.new_array_type(None, byte_type, bytes.len() as u64 / 8); |
| let elements: Vec<_> = bytes |
| .chunks_exact(8) |
| .map(|arr| { |
| let arr: [u8; 8] = arr.try_into().unwrap(); |
| context.new_rvalue_from_long( |
| byte_type, |
| // Since we are representing arbitrary byte runs as integers, we need to follow the target |
| // endianness. |
| match cx.sess().target.options.endian { |
| rustc_abi::Endian::Little => u64::from_le_bytes(arr) as i64, |
| rustc_abi::Endian::Big => u64::from_be_bytes(arr) as i64, |
| }, |
| ) |
| }) |
| .collect(); |
| context.new_array_constructor(None, typ, &elements) |
| } |
| 4 => { |
| let context = &cx.context; |
| let byte_type = context.new_type::<u32>(); |
| let typ = context.new_array_type(None, byte_type, bytes.len() as u64 / 4); |
| let elements: Vec<_> = bytes |
| .chunks_exact(4) |
| .map(|arr| { |
| let arr: [u8; 4] = arr.try_into().unwrap(); |
| context.new_rvalue_from_int( |
| byte_type, |
| match cx.sess().target.options.endian { |
| rustc_abi::Endian::Little => u32::from_le_bytes(arr) as i32, |
| rustc_abi::Endian::Big => u32::from_be_bytes(arr) as i32, |
| }, |
| ) |
| }) |
| .collect(); |
| context.new_array_constructor(None, typ, &elements) |
| } |
| _ => { |
| let context = cx.context; |
| let byte_type = context.new_type::<u8>(); |
| let typ = context.new_array_type(None, byte_type, bytes.len() as u64); |
| let elements: Vec<_> = bytes |
| .iter() |
| .map(|&byte| context.new_rvalue_from_int(byte_type, byte as i32)) |
| .collect(); |
| context.new_array_constructor(None, typ, &elements) |
| } |
| } |
| } |
| |
| pub fn type_is_pointer(typ: Type<'_>) -> bool { |
| typ.get_pointee().is_some() |
| } |
| |
| impl<'gcc, 'tcx> ConstCodegenMethods for CodegenCx<'gcc, 'tcx> { |
| fn const_null(&self, typ: Type<'gcc>) -> RValue<'gcc> { |
| if type_is_pointer(typ) { self.context.new_null(typ) } else { self.const_int(typ, 0) } |
| } |
| |
| fn const_undef(&self, typ: Type<'gcc>) -> RValue<'gcc> { |
| let local = self.current_func.borrow().expect("func").new_local(None, typ, "undefined"); |
| local.to_rvalue() |
| } |
| |
| fn const_poison(&self, typ: Type<'gcc>) -> RValue<'gcc> { |
| // No distinction between undef and poison. |
| self.const_undef(typ) |
| } |
| |
| fn const_bool(&self, val: bool) -> RValue<'gcc> { |
| self.const_uint(self.type_i1(), val as u64) |
| } |
| |
| fn const_i8(&self, i: i8) -> RValue<'gcc> { |
| self.const_int(self.type_i8(), i as i64) |
| } |
| |
| fn const_i16(&self, i: i16) -> RValue<'gcc> { |
| self.const_int(self.type_i16(), i as i64) |
| } |
| |
| fn const_i32(&self, i: i32) -> RValue<'gcc> { |
| self.const_int(self.type_i32(), i as i64) |
| } |
| |
| fn const_int(&self, typ: Type<'gcc>, int: i64) -> RValue<'gcc> { |
| self.gcc_int(typ, int) |
| } |
| |
| fn const_u8(&self, i: u8) -> RValue<'gcc> { |
| self.const_uint(self.type_u8(), i as u64) |
| } |
| |
| fn const_u32(&self, i: u32) -> RValue<'gcc> { |
| self.const_uint(self.type_u32(), i as u64) |
| } |
| |
| fn const_u64(&self, i: u64) -> RValue<'gcc> { |
| self.const_uint(self.type_u64(), i) |
| } |
| |
| fn const_u128(&self, i: u128) -> RValue<'gcc> { |
| self.const_uint_big(self.type_u128(), i) |
| } |
| |
| fn const_usize(&self, i: u64) -> RValue<'gcc> { |
| let bit_size = self.data_layout().pointer_size().bits(); |
| if bit_size < 64 { |
| // make sure it doesn't overflow |
| assert!(i < (1 << bit_size)); |
| } |
| |
| self.const_uint(self.usize_type, i) |
| } |
| |
| fn const_uint(&self, typ: Type<'gcc>, int: u64) -> RValue<'gcc> { |
| self.gcc_uint(typ, int) |
| } |
| |
| fn const_uint_big(&self, typ: Type<'gcc>, num: u128) -> RValue<'gcc> { |
| self.gcc_uint_big(typ, num) |
| } |
| |
| fn const_real(&self, typ: Type<'gcc>, val: f64) -> RValue<'gcc> { |
| self.context.new_rvalue_from_double(typ, val) |
| } |
| |
| fn const_str(&self, s: &str) -> (RValue<'gcc>, RValue<'gcc>) { |
| let mut const_str_cache = self.const_str_cache.borrow_mut(); |
| let str_global = const_str_cache.get(s).copied().unwrap_or_else(|| { |
| let g = self.global_string(s); |
| const_str_cache.insert(s.to_owned(), g); |
| g |
| }); |
| let len = s.len(); |
| let cs = self.const_ptrcast( |
| str_global.get_address(None), |
| self.type_ptr_to(self.layout_of(self.tcx.types.str_).gcc_type(self)), |
| ); |
| (cs, self.const_usize(len as u64)) |
| } |
| |
| fn const_struct(&self, values: &[RValue<'gcc>], packed: bool) -> RValue<'gcc> { |
| let fields: Vec<_> = values.iter().map(|value| value.get_type()).collect(); |
| // TODO(antoyo): cache the type? It's anonymous, so probably not. |
| let typ = self.type_struct(&fields, packed); |
| let struct_type = typ.is_struct().expect("struct type"); |
| self.context.new_struct_constructor(None, struct_type.as_type(), None, values) |
| } |
| |
| fn const_vector(&self, values: &[RValue<'gcc>]) -> RValue<'gcc> { |
| let typ = self.type_vector(values[0].get_type(), values.len() as u64); |
| self.context.new_rvalue_from_vector(None, typ, values) |
| } |
| |
| fn const_to_opt_uint(&self, _v: RValue<'gcc>) -> Option<u64> { |
| // TODO(antoyo) |
| None |
| } |
| |
| fn const_to_opt_u128(&self, _v: RValue<'gcc>, _sign_ext: bool) -> Option<u128> { |
| // TODO(antoyo) |
| None |
| } |
| |
| fn scalar_to_backend(&self, cv: Scalar, layout: abi::Scalar, ty: Type<'gcc>) -> RValue<'gcc> { |
| let bitsize = if layout.is_bool() { 1 } else { layout.size(self).bits() }; |
| match cv { |
| Scalar::Int(int) => { |
| let data = int.to_bits(layout.size(self)); |
| let value = self.const_uint_big(self.type_ix(bitsize), data); |
| let bytesize = layout.size(self).bytes(); |
| if bitsize > 1 && ty.is_integral() && bytesize as u32 == ty.get_size() { |
| // NOTE: since the intrinsic _xabort is called with a bitcast, which |
| // is non-const, but expects a constant, do a normal cast instead of a bitcast. |
| // FIXME(antoyo): fix bitcast to work in constant contexts. |
| // TODO(antoyo): perhaps only use bitcast for pointers? |
| self.context.new_cast(None, value, ty) |
| } else { |
| // TODO(bjorn3): assert size is correct |
| self.const_bitcast(value, ty) |
| } |
| } |
| Scalar::Ptr(ptr, _size) => { |
| let (prov, offset) = ptr.prov_and_relative_offset(); |
| let alloc_id = prov.alloc_id(); |
| let base_addr = match self.tcx.global_alloc(alloc_id) { |
| GlobalAlloc::Memory(alloc) => { |
| // For ZSTs directly codegen an aligned pointer. |
| // This avoids generating a zero-sized constant value and actually needing a |
| // real address at runtime. |
| if alloc.inner().len() == 0 { |
| assert_eq!(offset.bytes(), 0); |
| let val = self.const_usize(alloc.inner().align.bytes()); |
| return if matches!(layout.primitive(), Pointer(_)) { |
| self.context.new_cast(None, val, ty) |
| } else { |
| self.const_bitcast(val, ty) |
| }; |
| } |
| |
| let init = self.const_data_from_alloc(alloc); |
| let alloc = alloc.inner(); |
| let value = match alloc.mutability { |
| Mutability::Mut => self.static_addr_of_mut(init, alloc.align, None), |
| _ => self.static_addr_of(init, alloc.align, None), |
| }; |
| if !self.sess().fewer_names() { |
| // TODO(antoyo): set value name. |
| } |
| value |
| } |
| GlobalAlloc::Function { instance, .. } => self.get_fn_addr(instance), |
| GlobalAlloc::VTable(ty, dyn_ty) => { |
| let alloc = self |
| .tcx |
| .global_alloc(self.tcx.vtable_allocation(( |
| ty, |
| dyn_ty.principal().map(|principal| { |
| self.tcx.instantiate_bound_regions_with_erased(principal) |
| }), |
| ))) |
| .unwrap_memory(); |
| let init = self.const_data_from_alloc(alloc); |
| self.static_addr_of(init, alloc.inner().align, None) |
| } |
| GlobalAlloc::TypeId { .. } => { |
| let val = self.const_usize(offset.bytes()); |
| // This is still a variable of pointer type, even though we only use the provenance |
| // of that pointer in CTFE and Miri. But to make LLVM's type system happy, |
| // we need an int-to-ptr cast here (it doesn't matter at all which provenance that picks). |
| return self.context.new_cast(None, val, ty); |
| } |
| GlobalAlloc::Static(def_id) => { |
| assert!(self.tcx.is_static(def_id)); |
| self.get_static(def_id).get_address(None) |
| } |
| }; |
| let ptr_type = base_addr.get_type(); |
| let base_addr = self.context.new_cast(None, base_addr, self.usize_type); |
| let offset = |
| self.context.new_rvalue_from_long(self.usize_type, offset.bytes() as i64); |
| let ptr = self.context.new_cast(None, base_addr + offset, ptr_type); |
| if !matches!(layout.primitive(), Pointer(_)) { |
| self.const_bitcast(ptr.dereference(None).to_rvalue(), ty) |
| } else { |
| self.context.new_cast(None, ptr, ty) |
| } |
| } |
| } |
| } |
| |
| fn const_data_from_alloc(&self, alloc: ConstAllocation<'_>) -> Self::Value { |
| // We ignore the alignment for the purpose of deduping RValues |
| // The alignment is not handled / used in any way by `const_alloc_to_gcc`, |
| // so it is OK to overwrite it here. |
| let mut mock_alloc = alloc.inner().clone(); |
| mock_alloc.align = rustc_abi::Align::MAX; |
| // Check if the rvalue is already in the cache - if so, just return it directly. |
| if let Some(res) = self.const_cache.borrow().get(&mock_alloc) { |
| return *res; |
| } |
| // Rvalue not in the cache - convert and add it. |
| let res = crate::consts::const_alloc_to_gcc_uncached(self, alloc); |
| self.const_cache.borrow_mut().insert(mock_alloc, res); |
| res |
| } |
| |
| fn const_ptr_byte_offset(&self, base_addr: Self::Value, offset: abi::Size) -> Self::Value { |
| self.context |
| .new_array_access(None, base_addr, self.const_usize(offset.bytes())) |
| .get_address(None) |
| } |
| } |
| |
| pub trait SignType<'gcc, 'tcx> { |
| fn is_signed(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool; |
| fn is_unsigned(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool; |
| fn to_signed(&self, cx: &CodegenCx<'gcc, 'tcx>) -> Type<'gcc>; |
| fn to_unsigned(&self, cx: &CodegenCx<'gcc, 'tcx>) -> Type<'gcc>; |
| } |
| |
| impl<'gcc, 'tcx> SignType<'gcc, 'tcx> for Type<'gcc> { |
| fn is_signed(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool { |
| self.is_i8(cx) || self.is_i16(cx) || self.is_i32(cx) || self.is_i64(cx) || self.is_i128(cx) |
| } |
| |
| fn is_unsigned(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool { |
| self.is_u8(cx) || self.is_u16(cx) || self.is_u32(cx) || self.is_u64(cx) || self.is_u128(cx) |
| } |
| |
| fn to_signed(&self, cx: &CodegenCx<'gcc, 'tcx>) -> Type<'gcc> { |
| if self.is_u8(cx) { |
| cx.i8_type |
| } else if self.is_u16(cx) { |
| cx.i16_type |
| } else if self.is_u32(cx) { |
| cx.i32_type |
| } else if self.is_u64(cx) { |
| cx.i64_type |
| } else if self.is_u128(cx) { |
| cx.i128_type |
| } else if self.is_uchar(cx) { |
| cx.char_type |
| } else if self.is_ushort(cx) { |
| cx.short_type |
| } else if self.is_uint(cx) { |
| cx.int_type |
| } else if self.is_ulong(cx) { |
| cx.long_type |
| } else if self.is_ulonglong(cx) { |
| cx.longlong_type |
| } else { |
| *self |
| } |
| } |
| |
| fn to_unsigned(&self, cx: &CodegenCx<'gcc, 'tcx>) -> Type<'gcc> { |
| if self.is_i8(cx) { |
| cx.u8_type |
| } else if self.is_i16(cx) { |
| cx.u16_type |
| } else if self.is_i32(cx) { |
| cx.u32_type |
| } else if self.is_i64(cx) { |
| cx.u64_type |
| } else if self.is_i128(cx) { |
| cx.u128_type |
| } else if self.is_char(cx) { |
| cx.uchar_type |
| } else if self.is_short(cx) { |
| cx.ushort_type |
| } else if self.is_int(cx) { |
| cx.uint_type |
| } else if self.is_long(cx) { |
| cx.ulong_type |
| } else if self.is_longlong(cx) { |
| cx.ulonglong_type |
| } else { |
| *self |
| } |
| } |
| } |
| |
| pub trait TypeReflection<'gcc, 'tcx> { |
| fn is_uchar(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool; |
| fn is_ushort(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool; |
| fn is_uint(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool; |
| fn is_ulong(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool; |
| fn is_ulonglong(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool; |
| fn is_char(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool; |
| fn is_short(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool; |
| fn is_int(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool; |
| fn is_long(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool; |
| fn is_longlong(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool; |
| |
| fn is_i8(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool; |
| fn is_u8(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool; |
| fn is_i16(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool; |
| fn is_u16(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool; |
| fn is_i32(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool; |
| fn is_u32(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool; |
| fn is_i64(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool; |
| fn is_u64(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool; |
| fn is_i128(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool; |
| fn is_u128(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool; |
| |
| fn is_vector(&self) -> bool; |
| } |
| |
| impl<'gcc, 'tcx> TypeReflection<'gcc, 'tcx> for Type<'gcc> { |
| fn is_uchar(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool { |
| self.unqualified() == cx.uchar_type |
| } |
| |
| fn is_ushort(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool { |
| self.unqualified() == cx.ushort_type |
| } |
| |
| fn is_uint(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool { |
| self.unqualified() == cx.uint_type |
| } |
| |
| fn is_ulong(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool { |
| self.unqualified() == cx.ulong_type |
| } |
| |
| fn is_ulonglong(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool { |
| self.unqualified() == cx.ulonglong_type |
| } |
| |
| fn is_char(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool { |
| self.unqualified() == cx.char_type |
| } |
| |
| fn is_short(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool { |
| self.unqualified() == cx.short_type |
| } |
| |
| fn is_int(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool { |
| self.unqualified() == cx.int_type |
| } |
| |
| fn is_long(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool { |
| self.unqualified() == cx.long_type |
| } |
| |
| fn is_longlong(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool { |
| self.unqualified() == cx.longlong_type |
| } |
| |
| fn is_i8(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool { |
| self.is_compatible_with(cx.i8_type) |
| } |
| |
| fn is_u8(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool { |
| self.is_compatible_with(cx.u8_type) |
| } |
| |
| fn is_i16(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool { |
| self.is_compatible_with(cx.i16_type) |
| } |
| |
| fn is_u16(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool { |
| self.is_compatible_with(cx.u16_type) |
| } |
| |
| fn is_i32(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool { |
| self.is_compatible_with(cx.i32_type) |
| } |
| |
| fn is_u32(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool { |
| self.is_compatible_with(cx.u32_type) |
| } |
| |
| fn is_i64(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool { |
| self.is_compatible_with(cx.i64_type) |
| } |
| |
| fn is_u64(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool { |
| self.is_compatible_with(cx.u64_type) |
| } |
| |
| fn is_i128(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool { |
| self.unqualified() == cx.i128_type.unqualified() |
| } |
| |
| fn is_u128(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool { |
| self.unqualified() == cx.u128_type.unqualified() |
| } |
| |
| fn is_vector(&self) -> bool { |
| let mut typ = *self; |
| loop { |
| if typ.dyncast_vector().is_some() { |
| return true; |
| } |
| |
| let old_type = typ; |
| typ = typ.unqualified(); |
| if old_type == typ { |
| break; |
| } |
| } |
| |
| false |
| } |
| } |