| /// GCC requires to use the same toolchain for the whole compilation when doing LTO. |
| /// So, we need the same version/commit of the linker (gcc) and lto front-end binaries (lto1, |
| /// lto-wrapper, liblto_plugin.so). |
| // FIXME(antoyo): the executables compiled with LTO are bigger than those compiled without LTO. |
| // Since it is the opposite for cg_llvm, check if this is normal. |
| // |
| // Maybe we embed the bitcode in the final binary? |
| // It doesn't look like we try to generate fat objects for the final binary. |
| // Check if the way we combine the object files make it keep the LTO sections on the final link. |
| // Maybe that's because the combined object files contain the IR (true) and the final link |
| // does not remove it? |
| // |
| // TODO(antoyo): for performance, check which optimizations the C++ frontend enables. |
| // cSpell:disable |
| // Fix these warnings: |
| // /usr/bin/ld: warning: type of symbol `_RNvNvNvNtCs5JWOrf9uCus_5rayon11thread_pool19WORKER_THREAD_STATE7___getit5___KEY' changed from 1 to 6 in /tmp/ccKeUSiR.ltrans0.ltrans.o |
| // /usr/bin/ld: warning: type of symbol `_RNvNvNvNvNtNtNtCsAj5i4SGTR7_3std4sync4mpmc5waker17current_thread_id5DUMMY7___getit5___KEY' changed from 1 to 6 in /tmp/ccKeUSiR.ltrans0.ltrans.o |
| // /usr/bin/ld: warning: incremental linking of LTO and non-LTO objects; using -flinker-output=nolto-rel which will bypass whole program optimization |
| // cSpell:enable |
| use std::ffi::{CStr, CString}; |
| use std::fs::{self, File}; |
| use std::path::{Path, PathBuf}; |
| use std::sync::Arc; |
| |
| use gccjit::{Context, OutputKind}; |
| use object::read::archive::ArchiveFile; |
| use rustc_codegen_ssa::back::lto::{SerializedModule, ThinModule, ThinShared}; |
| use rustc_codegen_ssa::back::write::{CodegenContext, FatLtoInput}; |
| use rustc_codegen_ssa::traits::*; |
| use rustc_codegen_ssa::{ModuleCodegen, ModuleKind, looks_like_rust_object_file}; |
| use rustc_data_structures::memmap::Mmap; |
| use rustc_errors::{DiagCtxtHandle, FatalError}; |
| use rustc_middle::bug; |
| use rustc_middle::dep_graph::WorkProduct; |
| use rustc_session::config::Lto; |
| use rustc_target::spec::RelocModel; |
| use tempfile::{TempDir, tempdir}; |
| |
| use crate::back::write::save_temp_bitcode; |
| use crate::errors::LtoBitcodeFromRlib; |
| use crate::{GccCodegenBackend, GccContext, SyncContext, to_gcc_opt_level}; |
| |
| struct LtoData { |
| // TODO(antoyo): use symbols_below_threshold. |
| //symbols_below_threshold: Vec<String>, |
| upstream_modules: Vec<(SerializedModule<ModuleBuffer>, CString)>, |
| tmp_path: TempDir, |
| } |
| |
| fn prepare_lto( |
| cgcx: &CodegenContext<GccCodegenBackend>, |
| each_linked_rlib_for_lto: &[PathBuf], |
| dcx: DiagCtxtHandle<'_>, |
| ) -> Result<LtoData, FatalError> { |
| let tmp_path = match tempdir() { |
| Ok(tmp_path) => tmp_path, |
| Err(error) => { |
| eprintln!("Cannot create temporary directory: {}", error); |
| return Err(FatalError); |
| } |
| }; |
| |
| // If we're performing LTO for the entire crate graph, then for each of our |
| // upstream dependencies, find the corresponding rlib and load the bitcode |
| // from the archive. |
| // |
| // We save off all the bytecode and GCC module file path for later processing |
| // with either fat or thin LTO |
| let mut upstream_modules = Vec::new(); |
| if cgcx.lto != Lto::ThinLocal { |
| for path in each_linked_rlib_for_lto { |
| let archive_data = unsafe { |
| Mmap::map(File::open(path).expect("couldn't open rlib")).expect("couldn't map rlib") |
| }; |
| let archive = ArchiveFile::parse(&*archive_data).expect("wanted an rlib"); |
| let obj_files = archive |
| .members() |
| .filter_map(|child| { |
| child.ok().and_then(|c| { |
| std::str::from_utf8(c.name()).ok().map(|name| (name.trim(), c)) |
| }) |
| }) |
| .filter(|&(name, _)| looks_like_rust_object_file(name)); |
| for (name, child) in obj_files { |
| info!("adding bitcode from {}", name); |
| let path = tmp_path.path().join(name); |
| match save_as_file(child.data(&*archive_data).expect("corrupt rlib"), &path) { |
| Ok(()) => { |
| let buffer = ModuleBuffer::new(path); |
| let module = SerializedModule::Local(buffer); |
| upstream_modules.push((module, CString::new(name).unwrap())); |
| } |
| Err(e) => { |
| dcx.emit_err(e); |
| return Err(FatalError); |
| } |
| } |
| } |
| } |
| } |
| |
| Ok(LtoData { upstream_modules, tmp_path }) |
| } |
| |
| fn save_as_file(obj: &[u8], path: &Path) -> Result<(), LtoBitcodeFromRlib> { |
| fs::write(path, obj).map_err(|error| LtoBitcodeFromRlib { |
| gcc_err: format!("write object file to temp dir: {}", error), |
| }) |
| } |
| |
| /// Performs fat LTO by merging all modules into a single one and returning it |
| /// for further optimization. |
| pub(crate) fn run_fat( |
| cgcx: &CodegenContext<GccCodegenBackend>, |
| each_linked_rlib_for_lto: &[PathBuf], |
| modules: Vec<FatLtoInput<GccCodegenBackend>>, |
| ) -> Result<ModuleCodegen<GccContext>, FatalError> { |
| let dcx = cgcx.create_dcx(); |
| let dcx = dcx.handle(); |
| let lto_data = prepare_lto(cgcx, each_linked_rlib_for_lto, dcx)?; |
| /*let symbols_below_threshold = |
| lto_data.symbols_below_threshold.iter().map(|c| c.as_ptr()).collect::<Vec<_>>();*/ |
| fat_lto( |
| cgcx, |
| dcx, |
| modules, |
| lto_data.upstream_modules, |
| lto_data.tmp_path, |
| //<o_data.symbols_below_threshold, |
| ) |
| } |
| |
| fn fat_lto( |
| cgcx: &CodegenContext<GccCodegenBackend>, |
| _dcx: DiagCtxtHandle<'_>, |
| modules: Vec<FatLtoInput<GccCodegenBackend>>, |
| mut serialized_modules: Vec<(SerializedModule<ModuleBuffer>, CString)>, |
| tmp_path: TempDir, |
| //symbols_below_threshold: &[String], |
| ) -> Result<ModuleCodegen<GccContext>, FatalError> { |
| let _timer = cgcx.prof.generic_activity("GCC_fat_lto_build_monolithic_module"); |
| info!("going for a fat lto"); |
| |
| // Sort out all our lists of incoming modules into two lists. |
| // |
| // * `serialized_modules` (also and argument to this function) contains all |
| // modules that are serialized in-memory. |
| // * `in_memory` contains modules which are already parsed and in-memory, |
| // such as from multi-CGU builds. |
| let mut in_memory = Vec::new(); |
| for module in modules { |
| match module { |
| FatLtoInput::InMemory(m) => in_memory.push(m), |
| FatLtoInput::Serialized { name, buffer } => { |
| info!("pushing serialized module {:?}", name); |
| serialized_modules.push((buffer, CString::new(name).unwrap())); |
| } |
| } |
| } |
| |
| // Find the "costliest" module and merge everything into that codegen unit. |
| // All the other modules will be serialized and reparsed into the new |
| // context, so this hopefully avoids serializing and parsing the largest |
| // codegen unit. |
| // |
| // Additionally use a regular module as the base here to ensure that various |
| // file copy operations in the backend work correctly. The only other kind |
| // of module here should be an allocator one, and if your crate is smaller |
| // than the allocator module then the size doesn't really matter anyway. |
| let costliest_module = in_memory |
| .iter() |
| .enumerate() |
| .filter(|&(_, module)| module.kind == ModuleKind::Regular) |
| .map(|(i, _module)| { |
| //let cost = unsafe { llvm::LLVMRustModuleCost(module.module_llvm.llmod()) }; |
| // TODO(antoyo): compute the cost of a module if GCC allows this. |
| (0, i) |
| }) |
| .max(); |
| |
| // If we found a costliest module, we're good to go. Otherwise all our |
| // inputs were serialized which could happen in the case, for example, that |
| // all our inputs were incrementally reread from the cache and we're just |
| // re-executing the LTO passes. If that's the case deserialize the first |
| // module and create a linker with it. |
| let mut module: ModuleCodegen<GccContext> = match costliest_module { |
| Some((_cost, i)) => in_memory.remove(i), |
| None => { |
| unimplemented!("Incremental"); |
| /*assert!(!serialized_modules.is_empty(), "must have at least one serialized module"); |
| let (buffer, name) = serialized_modules.remove(0); |
| info!("no in-memory regular modules to choose from, parsing {:?}", name); |
| ModuleCodegen { |
| module_llvm: GccContext::parse(cgcx, &name, buffer.data(), dcx)?, |
| name: name.into_string().unwrap(), |
| kind: ModuleKind::Regular, |
| }*/ |
| } |
| }; |
| { |
| info!("using {:?} as a base module", module.name); |
| |
| // We cannot load and merge GCC contexts in memory like cg_llvm is doing. |
| // Instead, we combine the object files into a single object file. |
| for module in in_memory { |
| let path = tmp_path.path().to_path_buf().join(&module.name); |
| let path = path.to_str().expect("path"); |
| let context = &module.module_llvm.context; |
| let config = cgcx.config(module.kind); |
| // NOTE: we need to set the optimization level here in order for LTO to do its job. |
| context.set_optimization_level(to_gcc_opt_level(config.opt_level)); |
| context.add_command_line_option("-flto=auto"); |
| context.add_command_line_option("-flto-partition=one"); |
| context.compile_to_file(OutputKind::ObjectFile, path); |
| let buffer = ModuleBuffer::new(PathBuf::from(path)); |
| let llmod_id = CString::new(&module.name[..]).unwrap(); |
| serialized_modules.push((SerializedModule::Local(buffer), llmod_id)); |
| } |
| // Sort the modules to ensure we produce deterministic results. |
| serialized_modules.sort_by(|module1, module2| module1.1.cmp(&module2.1)); |
| |
| // We add the object files and save in should_combine_object_files that we should combine |
| // them into a single object file when compiling later. |
| for (bc_decoded, name) in serialized_modules { |
| let _timer = cgcx |
| .prof |
| .generic_activity_with_arg_recorder("GCC_fat_lto_link_module", |recorder| { |
| recorder.record_arg(format!("{:?}", name)) |
| }); |
| info!("linking {:?}", name); |
| match bc_decoded { |
| SerializedModule::Local(ref module_buffer) => { |
| module.module_llvm.should_combine_object_files = true; |
| module |
| .module_llvm |
| .context |
| .add_driver_option(module_buffer.0.to_str().expect("path")); |
| } |
| SerializedModule::FromRlib(_) => unimplemented!("from rlib"), |
| SerializedModule::FromUncompressedFile(_) => { |
| unimplemented!("from uncompressed file") |
| } |
| } |
| } |
| save_temp_bitcode(cgcx, &module, "lto.input"); |
| |
| // Internalize everything below threshold to help strip out more modules and such. |
| /*unsafe { |
| let ptr = symbols_below_threshold.as_ptr(); |
| llvm::LLVMRustRunRestrictionPass( |
| llmod, |
| ptr as *const *const libc::c_char, |
| symbols_below_threshold.len() as libc::size_t, |
| );*/ |
| |
| save_temp_bitcode(cgcx, &module, "lto.after-restriction"); |
| //} |
| } |
| |
| // NOTE: save the temporary directory used by LTO so that it gets deleted after linking instead |
| // of now. |
| module.module_llvm.temp_dir = Some(tmp_path); |
| |
| Ok(module) |
| } |
| |
| pub struct ModuleBuffer(PathBuf); |
| |
| impl ModuleBuffer { |
| pub fn new(path: PathBuf) -> ModuleBuffer { |
| ModuleBuffer(path) |
| } |
| } |
| |
| impl ModuleBufferMethods for ModuleBuffer { |
| fn data(&self) -> &[u8] { |
| &[] |
| } |
| } |
| |
| /// Performs thin LTO by performing necessary global analysis and returning two |
| /// lists, one of the modules that need optimization and another for modules that |
| /// can simply be copied over from the incr. comp. cache. |
| pub(crate) fn run_thin( |
| cgcx: &CodegenContext<GccCodegenBackend>, |
| each_linked_rlib_for_lto: &[PathBuf], |
| modules: Vec<(String, ThinBuffer)>, |
| cached_modules: Vec<(SerializedModule<ModuleBuffer>, WorkProduct)>, |
| ) -> Result<(Vec<ThinModule<GccCodegenBackend>>, Vec<WorkProduct>), FatalError> { |
| let dcx = cgcx.create_dcx(); |
| let dcx = dcx.handle(); |
| let lto_data = prepare_lto(cgcx, each_linked_rlib_for_lto, dcx)?; |
| if cgcx.opts.cg.linker_plugin_lto.enabled() { |
| unreachable!( |
| "We should never reach this case if the LTO step \ |
| is deferred to the linker" |
| ); |
| } |
| thin_lto( |
| cgcx, |
| dcx, |
| modules, |
| lto_data.upstream_modules, |
| lto_data.tmp_path, |
| cached_modules, |
| //<o_data.symbols_below_threshold, |
| ) |
| } |
| |
| pub(crate) fn prepare_thin( |
| module: ModuleCodegen<GccContext>, |
| _emit_summary: bool, |
| ) -> (String, ThinBuffer) { |
| let name = module.name; |
| //let buffer = ThinBuffer::new(module.module_llvm.context, true, emit_summary); |
| let buffer = ThinBuffer::new(&module.module_llvm.context); |
| (name, buffer) |
| } |
| |
| /// Prepare "thin" LTO to get run on these modules. |
| /// |
| /// The general structure of ThinLTO is quite different from the structure of |
| /// "fat" LTO above. With "fat" LTO all LLVM modules in question are merged into |
| /// one giant LLVM module, and then we run more optimization passes over this |
| /// big module after internalizing most symbols. Thin LTO, on the other hand, |
| /// avoid this large bottleneck through more targeted optimization. |
| /// |
| /// At a high level Thin LTO looks like: |
| /// |
| /// 1. Prepare a "summary" of each LLVM module in question which describes |
| /// the values inside, cost of the values, etc. |
| /// 2. Merge the summaries of all modules in question into one "index" |
| /// 3. Perform some global analysis on this index |
| /// 4. For each module, use the index and analysis calculated previously to |
| /// perform local transformations on the module, for example inlining |
| /// small functions from other modules. |
| /// 5. Run thin-specific optimization passes over each module, and then code |
| /// generate everything at the end. |
| /// |
| /// The summary for each module is intended to be quite cheap, and the global |
| /// index is relatively quite cheap to create as well. As a result, the goal of |
| /// ThinLTO is to reduce the bottleneck on LTO and enable LTO to be used in more |
| /// situations. For example one cheap optimization is that we can parallelize |
| /// all codegen modules, easily making use of all the cores on a machine. |
| /// |
| /// With all that in mind, the function here is designed at specifically just |
| /// calculating the *index* for ThinLTO. This index will then be shared amongst |
| /// all of the `LtoModuleCodegen` units returned below and destroyed once |
| /// they all go out of scope. |
| fn thin_lto( |
| cgcx: &CodegenContext<GccCodegenBackend>, |
| _dcx: DiagCtxtHandle<'_>, |
| modules: Vec<(String, ThinBuffer)>, |
| serialized_modules: Vec<(SerializedModule<ModuleBuffer>, CString)>, |
| tmp_path: TempDir, |
| cached_modules: Vec<(SerializedModule<ModuleBuffer>, WorkProduct)>, |
| //_symbols_below_threshold: &[String], |
| ) -> Result<(Vec<ThinModule<GccCodegenBackend>>, Vec<WorkProduct>), FatalError> { |
| let _timer = cgcx.prof.generic_activity("LLVM_thin_lto_global_analysis"); |
| info!("going for that thin, thin LTO"); |
| |
| /*let green_modules: FxHashMap<_, _> = |
| cached_modules.iter().map(|(_, wp)| (wp.cgu_name.clone(), wp.clone())).collect();*/ |
| |
| let full_scope_len = modules.len() + serialized_modules.len() + cached_modules.len(); |
| let mut thin_buffers = Vec::with_capacity(modules.len()); |
| let mut module_names = Vec::with_capacity(full_scope_len); |
| //let mut thin_modules = Vec::with_capacity(full_scope_len); |
| |
| for (i, (name, buffer)) in modules.into_iter().enumerate() { |
| info!("local module: {} - {}", i, name); |
| let cname = CString::new(name.as_bytes()).unwrap(); |
| /*thin_modules.push(llvm::ThinLTOModule { |
| identifier: cname.as_ptr(), |
| data: buffer.data().as_ptr(), |
| len: buffer.data().len(), |
| });*/ |
| thin_buffers.push(buffer); |
| module_names.push(cname); |
| } |
| |
| // FIXME: All upstream crates are deserialized internally in the |
| // function below to extract their summary and modules. Note that |
| // unlike the loop above we *must* decode and/or read something |
| // here as these are all just serialized files on disk. An |
| // improvement, however, to make here would be to store the |
| // module summary separately from the actual module itself. Right |
| // now this is store in one large bitcode file, and the entire |
| // file is deflate-compressed. We could try to bypass some of the |
| // decompression by storing the index uncompressed and only |
| // lazily decompressing the bytecode if necessary. |
| // |
| // Note that truly taking advantage of this optimization will |
| // likely be further down the road. We'd have to implement |
| // incremental ThinLTO first where we could actually avoid |
| // looking at upstream modules entirely sometimes (the contents, |
| // we must always unconditionally look at the index). |
| let mut serialized = Vec::with_capacity(serialized_modules.len() + cached_modules.len()); |
| |
| let cached_modules = |
| cached_modules.into_iter().map(|(sm, wp)| (sm, CString::new(wp.cgu_name).unwrap())); |
| |
| for (module, name) in serialized_modules.into_iter().chain(cached_modules) { |
| info!("upstream or cached module {:?}", name); |
| /*thin_modules.push(llvm::ThinLTOModule { |
| identifier: name.as_ptr(), |
| data: module.data().as_ptr(), |
| len: module.data().len(), |
| });*/ |
| |
| match module { |
| SerializedModule::Local(_) => { |
| //let path = module_buffer.0.to_str().expect("path"); |
| //let my_path = PathBuf::from(path); |
| //let exists = my_path.exists(); |
| /*module.module_llvm.should_combine_object_files = true; |
| module |
| .module_llvm |
| .context |
| .add_driver_option(module_buffer.0.to_str().expect("path"));*/ |
| } |
| SerializedModule::FromRlib(_) => unimplemented!("from rlib"), |
| SerializedModule::FromUncompressedFile(_) => { |
| unimplemented!("from uncompressed file") |
| } |
| } |
| |
| serialized.push(module); |
| module_names.push(name); |
| } |
| |
| // Sanity check |
| //assert_eq!(thin_modules.len(), module_names.len()); |
| |
| // Delegate to the C++ bindings to create some data here. Once this is a |
| // tried-and-true interface we may wish to try to upstream some of this |
| // to LLVM itself, right now we reimplement a lot of what they do |
| // upstream... |
| /*let data = llvm::LLVMRustCreateThinLTOData( |
| thin_modules.as_ptr(), |
| thin_modules.len() as u32, |
| symbols_below_threshold.as_ptr(), |
| symbols_below_threshold.len() as u32, |
| ) |
| .ok_or_else(|| write::llvm_err(dcx, LlvmError::PrepareThinLtoContext))?; |
| */ |
| |
| let data = ThinData; //(Arc::new(tmp_path))/*(data)*/; |
| |
| info!("thin LTO data created"); |
| |
| /*let (key_map_path, prev_key_map, curr_key_map) = |
| if let Some(ref incr_comp_session_dir) = cgcx.incr_comp_session_dir { |
| let path = incr_comp_session_dir.join(THIN_LTO_KEYS_INCR_COMP_FILE_NAME); |
| // If the previous file was deleted, or we get an IO error |
| // reading the file, then we'll just use `None` as the |
| // prev_key_map, which will force the code to be recompiled. |
| let prev = |
| if path.exists() { ThinLTOKeysMap::load_from_file(&path).ok() } else { None }; |
| let curr = ThinLTOKeysMap::from_thin_lto_modules(&data, &thin_modules, &module_names); |
| (Some(path), prev, curr) |
| } |
| else { |
| // If we don't compile incrementally, we don't need to load the |
| // import data from LLVM. |
| assert!(green_modules.is_empty()); |
| let curr = ThinLTOKeysMap::default(); |
| (None, None, curr) |
| }; |
| info!("thin LTO cache key map loaded"); |
| info!("prev_key_map: {:#?}", prev_key_map); |
| info!("curr_key_map: {:#?}", curr_key_map);*/ |
| |
| // Throw our data in an `Arc` as we'll be sharing it across threads. We |
| // also put all memory referenced by the C++ data (buffers, ids, etc) |
| // into the arc as well. After this we'll create a thin module |
| // codegen per module in this data. |
| let shared = |
| Arc::new(ThinShared { data, thin_buffers, serialized_modules: serialized, module_names }); |
| |
| let copy_jobs = vec![]; |
| let mut opt_jobs = vec![]; |
| |
| info!("checking which modules can be-reused and which have to be re-optimized."); |
| for (module_index, module_name) in shared.module_names.iter().enumerate() { |
| let module_name = module_name_to_str(module_name); |
| /*if let (Some(prev_key_map), true) = |
| (prev_key_map.as_ref(), green_modules.contains_key(module_name)) |
| { |
| assert!(cgcx.incr_comp_session_dir.is_some()); |
| |
| // If a module exists in both the current and the previous session, |
| // and has the same LTO cache key in both sessions, then we can re-use it |
| if prev_key_map.keys.get(module_name) == curr_key_map.keys.get(module_name) { |
| let work_product = green_modules[module_name].clone(); |
| copy_jobs.push(work_product); |
| info!(" - {}: re-used", module_name); |
| assert!(cgcx.incr_comp_session_dir.is_some()); |
| continue; |
| } |
| }*/ |
| |
| info!(" - {}: re-compiled", module_name); |
| opt_jobs.push(ThinModule { shared: shared.clone(), idx: module_index }); |
| } |
| |
| // Save the current ThinLTO import information for the next compilation |
| // session, overwriting the previous serialized data (if any). |
| /*if let Some(path) = key_map_path { |
| if let Err(err) = curr_key_map.save_to_file(&path) { |
| return Err(write::llvm_err(dcx, LlvmError::WriteThinLtoKey { err })); |
| } |
| }*/ |
| |
| // NOTE: save the temporary directory used by LTO so that it gets deleted after linking instead |
| // of now. |
| //module.module_llvm.temp_dir = Some(tmp_path); |
| // TODO: save the directory so that it gets deleted later. |
| std::mem::forget(tmp_path); |
| |
| Ok((opt_jobs, copy_jobs)) |
| } |
| |
| pub fn optimize_thin_module( |
| thin_module: ThinModule<GccCodegenBackend>, |
| _cgcx: &CodegenContext<GccCodegenBackend>, |
| ) -> Result<ModuleCodegen<GccContext>, FatalError> { |
| //let dcx = cgcx.create_dcx(); |
| |
| //let module_name = &thin_module.shared.module_names[thin_module.idx]; |
| /*let tm_factory_config = TargetMachineFactoryConfig::new(cgcx, module_name.to_str().unwrap()); |
| let tm = (cgcx.tm_factory)(tm_factory_config).map_err(|e| write::llvm_err(&dcx, e))?;*/ |
| |
| // Right now the implementation we've got only works over serialized |
| // modules, so we create a fresh new LLVM context and parse the module |
| // into that context. One day, however, we may do this for upstream |
| // crates but for locally codegened modules we may be able to reuse |
| // that LLVM Context and Module. |
| //let llcx = llvm::LLVMRustContextCreate(cgcx.fewer_names); |
| //let llmod_raw = parse_module(llcx, module_name, thin_module.data(), &dcx)? as *const _; |
| let mut should_combine_object_files = false; |
| let context = match thin_module.shared.thin_buffers.get(thin_module.idx) { |
| Some(thin_buffer) => Arc::clone(&thin_buffer.context), |
| None => { |
| let context = Context::default(); |
| let len = thin_module.shared.thin_buffers.len(); |
| let module = &thin_module.shared.serialized_modules[thin_module.idx - len]; |
| match *module { |
| SerializedModule::Local(ref module_buffer) => { |
| let path = module_buffer.0.to_str().expect("path"); |
| context.add_driver_option(path); |
| should_combine_object_files = true; |
| /*module.module_llvm.should_combine_object_files = true; |
| module |
| .module_llvm |
| .context |
| .add_driver_option(module_buffer.0.to_str().expect("path"));*/ |
| } |
| SerializedModule::FromRlib(_) => unimplemented!("from rlib"), |
| SerializedModule::FromUncompressedFile(_) => { |
| unimplemented!("from uncompressed file") |
| } |
| } |
| Arc::new(SyncContext::new(context)) |
| } |
| }; |
| let module = ModuleCodegen::new_regular( |
| thin_module.name().to_string(), |
| GccContext { |
| context, |
| should_combine_object_files, |
| // TODO(antoyo): use the correct relocation model here. |
| relocation_model: RelocModel::Pic, |
| temp_dir: None, |
| }, |
| ); |
| /*{ |
| let target = &*module.module_llvm.tm; |
| let llmod = module.module_llvm.llmod(); |
| save_temp_bitcode(cgcx, &module, "thin-lto-input"); |
| |
| // Up next comes the per-module local analyses that we do for Thin LTO. |
| // Each of these functions is basically copied from the LLVM |
| // implementation and then tailored to suit this implementation. Ideally |
| // each of these would be supported by upstream LLVM but that's perhaps |
| // a patch for another day! |
| // |
| // You can find some more comments about these functions in the LLVM |
| // bindings we've got (currently `PassWrapper.cpp`) |
| { |
| let _timer = |
| cgcx.prof.generic_activity_with_arg("LLVM_thin_lto_rename", thin_module.name()); |
| unsafe { llvm::LLVMRustPrepareThinLTORename(thin_module.shared.data.0, llmod, target) }; |
| save_temp_bitcode(cgcx, &module, "thin-lto-after-rename"); |
| } |
| |
| { |
| let _timer = cgcx |
| .prof |
| .generic_activity_with_arg("LLVM_thin_lto_resolve_weak", thin_module.name()); |
| if !llvm::LLVMRustPrepareThinLTOResolveWeak(thin_module.shared.data.0, llmod) { |
| return Err(write::llvm_err(&dcx, LlvmError::PrepareThinLtoModule)); |
| } |
| save_temp_bitcode(cgcx, &module, "thin-lto-after-resolve"); |
| } |
| |
| { |
| let _timer = cgcx |
| .prof |
| .generic_activity_with_arg("LLVM_thin_lto_internalize", thin_module.name()); |
| if !llvm::LLVMRustPrepareThinLTOInternalize(thin_module.shared.data.0, llmod) { |
| return Err(write::llvm_err(&dcx, LlvmError::PrepareThinLtoModule)); |
| } |
| save_temp_bitcode(cgcx, &module, "thin-lto-after-internalize"); |
| } |
| |
| { |
| let _timer = |
| cgcx.prof.generic_activity_with_arg("LLVM_thin_lto_import", thin_module.name()); |
| if !llvm::LLVMRustPrepareThinLTOImport(thin_module.shared.data.0, llmod, target) { |
| return Err(write::llvm_err(&dcx, LlvmError::PrepareThinLtoModule)); |
| } |
| save_temp_bitcode(cgcx, &module, "thin-lto-after-import"); |
| } |
| |
| // Alright now that we've done everything related to the ThinLTO |
| // analysis it's time to run some optimizations! Here we use the same |
| // `run_pass_manager` as the "fat" LTO above except that we tell it to |
| // populate a thin-specific pass manager, which presumably LLVM treats a |
| // little differently. |
| { |
| info!("running thin lto passes over {}", module.name); |
| run_pass_manager(cgcx, &dcx, &mut module, true)?; |
| save_temp_bitcode(cgcx, &module, "thin-lto-after-pm"); |
| } |
| }*/ |
| Ok(module) |
| } |
| |
| pub struct ThinBuffer { |
| context: Arc<SyncContext>, |
| } |
| |
| impl ThinBuffer { |
| pub(crate) fn new(context: &Arc<SyncContext>) -> Self { |
| Self { context: Arc::clone(context) } |
| } |
| } |
| |
| impl ThinBufferMethods for ThinBuffer { |
| fn data(&self) -> &[u8] { |
| &[] |
| } |
| |
| fn thin_link_data(&self) -> &[u8] { |
| unimplemented!(); |
| } |
| } |
| |
| pub struct ThinData; //(Arc<TempDir>); |
| |
| fn module_name_to_str(c_str: &CStr) -> &str { |
| c_str.to_str().unwrap_or_else(|e| { |
| bug!("Encountered non-utf8 GCC module name `{}`: {}", c_str.to_string_lossy(), e) |
| }) |
| } |