|  | //! Code to extract the universally quantified regions declared on a | 
|  | //! function and the relationships between them. For example: | 
|  | //! | 
|  | //! ``` | 
|  | //! fn foo<'a, 'b, 'c: 'b>() { } | 
|  | //! ``` | 
|  | //! | 
|  | //! here we would return a map assigning each of `{'a, 'b, 'c}` | 
|  | //! to an index, as well as the `FreeRegionMap` which can compute | 
|  | //! relationships between them. | 
|  | //! | 
|  | //! The code in this file doesn't *do anything* with those results; it | 
|  | //! just returns them for other code to use. | 
|  |  | 
|  | #![allow(rustc::diagnostic_outside_of_impl)] | 
|  | #![allow(rustc::untranslatable_diagnostic)] | 
|  |  | 
|  | use std::cell::Cell; | 
|  | use std::iter; | 
|  |  | 
|  | use rustc_data_structures::fx::FxIndexMap; | 
|  | use rustc_errors::Diag; | 
|  | use rustc_hir::BodyOwnerKind; | 
|  | use rustc_hir::def::DefKind; | 
|  | use rustc_hir::def_id::{DefId, LocalDefId}; | 
|  | use rustc_hir::lang_items::LangItem; | 
|  | use rustc_index::IndexVec; | 
|  | use rustc_infer::infer::NllRegionVariableOrigin; | 
|  | use rustc_macros::extension; | 
|  | use rustc_middle::ty::print::with_no_trimmed_paths; | 
|  | use rustc_middle::ty::{ | 
|  | self, GenericArgs, GenericArgsRef, InlineConstArgs, InlineConstArgsParts, RegionVid, Ty, | 
|  | TyCtxt, TypeFoldable, TypeVisitableExt, fold_regions, | 
|  | }; | 
|  | use rustc_middle::{bug, span_bug}; | 
|  | use rustc_span::{ErrorGuaranteed, kw, sym}; | 
|  | use tracing::{debug, instrument}; | 
|  |  | 
|  | use crate::BorrowckInferCtxt; | 
|  | use crate::renumber::RegionCtxt; | 
|  |  | 
|  | #[derive(Debug)] | 
|  | #[derive(Clone)] // FIXME(#146079) | 
|  | pub(crate) struct UniversalRegions<'tcx> { | 
|  | indices: UniversalRegionIndices<'tcx>, | 
|  |  | 
|  | /// The vid assigned to `'static` | 
|  | pub fr_static: RegionVid, | 
|  |  | 
|  | /// A special region vid created to represent the current MIR fn | 
|  | /// body. It will outlive the entire CFG but it will not outlive | 
|  | /// any other universal regions. | 
|  | pub fr_fn_body: RegionVid, | 
|  |  | 
|  | /// We create region variables such that they are ordered by their | 
|  | /// `RegionClassification`. The first block are globals, then | 
|  | /// externals, then locals. So, things from: | 
|  | /// - `FIRST_GLOBAL_INDEX..first_extern_index` are global, | 
|  | /// - `first_extern_index..first_local_index` are external, | 
|  | /// - `first_local_index..num_universals` are local. | 
|  | first_extern_index: usize, | 
|  |  | 
|  | /// See `first_extern_index`. | 
|  | first_local_index: usize, | 
|  |  | 
|  | /// The total number of universal region variables instantiated. | 
|  | num_universals: usize, | 
|  |  | 
|  | /// The "defining" type for this function, with all universal | 
|  | /// regions instantiated. For a closure or coroutine, this is the | 
|  | /// closure type, but for a top-level function it's the `FnDef`. | 
|  | pub defining_ty: DefiningTy<'tcx>, | 
|  |  | 
|  | /// The return type of this function, with all regions replaced by | 
|  | /// their universal `RegionVid` equivalents. | 
|  | /// | 
|  | /// N.B., associated types in this type have not been normalized, | 
|  | /// as the name suggests. =) | 
|  | pub unnormalized_output_ty: Ty<'tcx>, | 
|  |  | 
|  | /// The fully liberated input types of this function, with all | 
|  | /// regions replaced by their universal `RegionVid` equivalents. | 
|  | /// | 
|  | /// N.B., associated types in these types have not been normalized, | 
|  | /// as the name suggests. =) | 
|  | pub unnormalized_input_tys: &'tcx [Ty<'tcx>], | 
|  |  | 
|  | pub yield_ty: Option<Ty<'tcx>>, | 
|  |  | 
|  | pub resume_ty: Option<Ty<'tcx>>, | 
|  | } | 
|  |  | 
|  | /// The "defining type" for this MIR. The key feature of the "defining | 
|  | /// type" is that it contains the information needed to derive all the | 
|  | /// universal regions that are in scope as well as the types of the | 
|  | /// inputs/output from the MIR. In general, early-bound universal | 
|  | /// regions appear free in the defining type and late-bound regions | 
|  | /// appear bound in the signature. | 
|  | #[derive(Copy, Clone, Debug)] | 
|  | pub(crate) enum DefiningTy<'tcx> { | 
|  | /// The MIR is a closure. The signature is found via | 
|  | /// `ClosureArgs::closure_sig_ty`. | 
|  | Closure(DefId, GenericArgsRef<'tcx>), | 
|  |  | 
|  | /// The MIR is a coroutine. The signature is that coroutines take | 
|  | /// no parameters and return the result of | 
|  | /// `ClosureArgs::coroutine_return_ty`. | 
|  | Coroutine(DefId, GenericArgsRef<'tcx>), | 
|  |  | 
|  | /// The MIR is a special kind of closure that returns coroutines. | 
|  | /// | 
|  | /// See the documentation on `CoroutineClosureSignature` for details | 
|  | /// on how to construct the callable signature of the coroutine from | 
|  | /// its args. | 
|  | CoroutineClosure(DefId, GenericArgsRef<'tcx>), | 
|  |  | 
|  | /// The MIR is a fn item with the given `DefId` and args. The signature | 
|  | /// of the function can be bound then with the `fn_sig` query. | 
|  | FnDef(DefId, GenericArgsRef<'tcx>), | 
|  |  | 
|  | /// The MIR represents some form of constant. The signature then | 
|  | /// is that it has no inputs and a single return value, which is | 
|  | /// the value of the constant. | 
|  | Const(DefId, GenericArgsRef<'tcx>), | 
|  |  | 
|  | /// The MIR represents an inline const. The signature has no inputs and a | 
|  | /// single return value found via `InlineConstArgs::ty`. | 
|  | InlineConst(DefId, GenericArgsRef<'tcx>), | 
|  |  | 
|  | // Fake body for a global asm. Not particularly useful or interesting, | 
|  | // but we need it so we can properly store the typeck results of the asm | 
|  | // operands, which aren't associated with a body otherwise. | 
|  | GlobalAsm(DefId), | 
|  | } | 
|  |  | 
|  | impl<'tcx> DefiningTy<'tcx> { | 
|  | /// Returns a list of all the upvar types for this MIR. If this is | 
|  | /// not a closure or coroutine, there are no upvars, and hence it | 
|  | /// will be an empty list. The order of types in this list will | 
|  | /// match up with the upvar order in the HIR, typesystem, and MIR. | 
|  | pub(crate) fn upvar_tys(self) -> &'tcx ty::List<Ty<'tcx>> { | 
|  | match self { | 
|  | DefiningTy::Closure(_, args) => args.as_closure().upvar_tys(), | 
|  | DefiningTy::CoroutineClosure(_, args) => args.as_coroutine_closure().upvar_tys(), | 
|  | DefiningTy::Coroutine(_, args) => args.as_coroutine().upvar_tys(), | 
|  | DefiningTy::FnDef(..) | 
|  | | DefiningTy::Const(..) | 
|  | | DefiningTy::InlineConst(..) | 
|  | | DefiningTy::GlobalAsm(_) => ty::List::empty(), | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Number of implicit inputs -- notably the "environment" | 
|  | /// parameter for closures -- that appear in MIR but not in the | 
|  | /// user's code. | 
|  | pub(crate) fn implicit_inputs(self) -> usize { | 
|  | match self { | 
|  | DefiningTy::Closure(..) | 
|  | | DefiningTy::CoroutineClosure(..) | 
|  | | DefiningTy::Coroutine(..) => 1, | 
|  | DefiningTy::FnDef(..) | 
|  | | DefiningTy::Const(..) | 
|  | | DefiningTy::InlineConst(..) | 
|  | | DefiningTy::GlobalAsm(_) => 0, | 
|  | } | 
|  | } | 
|  |  | 
|  | pub(crate) fn is_fn_def(&self) -> bool { | 
|  | matches!(*self, DefiningTy::FnDef(..)) | 
|  | } | 
|  |  | 
|  | pub(crate) fn is_const(&self) -> bool { | 
|  | matches!(*self, DefiningTy::Const(..) | DefiningTy::InlineConst(..)) | 
|  | } | 
|  |  | 
|  | pub(crate) fn def_id(&self) -> DefId { | 
|  | match *self { | 
|  | DefiningTy::Closure(def_id, ..) | 
|  | | DefiningTy::CoroutineClosure(def_id, ..) | 
|  | | DefiningTy::Coroutine(def_id, ..) | 
|  | | DefiningTy::FnDef(def_id, ..) | 
|  | | DefiningTy::Const(def_id, ..) | 
|  | | DefiningTy::InlineConst(def_id, ..) | 
|  | | DefiningTy::GlobalAsm(def_id) => def_id, | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Returns the args of the `DefiningTy`. These are equivalent to the identity | 
|  | /// substs of the body, but replaced with region vids. | 
|  | pub(crate) fn args(&self) -> ty::GenericArgsRef<'tcx> { | 
|  | match *self { | 
|  | DefiningTy::Closure(_, args) | 
|  | | DefiningTy::Coroutine(_, args) | 
|  | | DefiningTy::CoroutineClosure(_, args) | 
|  | | DefiningTy::FnDef(_, args) | 
|  | | DefiningTy::Const(_, args) | 
|  | | DefiningTy::InlineConst(_, args) => args, | 
|  | DefiningTy::GlobalAsm(_) => ty::List::empty(), | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #[derive(Debug)] | 
|  | #[derive(Clone)] // FIXME(#146079) | 
|  | struct UniversalRegionIndices<'tcx> { | 
|  | /// For those regions that may appear in the parameter environment | 
|  | /// ('static and early-bound regions), we maintain a map from the | 
|  | /// `ty::Region` to the internal `RegionVid` we are using. This is | 
|  | /// used because trait matching and type-checking will feed us | 
|  | /// region constraints that reference those regions and we need to | 
|  | /// be able to map them to our internal `RegionVid`. This is | 
|  | /// basically equivalent to an `GenericArgs`, except that it also | 
|  | /// contains an entry for `ReStatic` -- it might be nice to just | 
|  | /// use an args, and then handle `ReStatic` another way. | 
|  | indices: FxIndexMap<ty::Region<'tcx>, RegionVid>, | 
|  |  | 
|  | /// The vid assigned to `'static`. Used only for diagnostics. | 
|  | pub fr_static: RegionVid, | 
|  |  | 
|  | /// Whether we've encountered an error region. If we have, cancel all | 
|  | /// outlives errors, as they are likely bogus. | 
|  | pub encountered_re_error: Cell<Option<ErrorGuaranteed>>, | 
|  | } | 
|  |  | 
|  | #[derive(Debug, PartialEq)] | 
|  | pub(crate) enum RegionClassification { | 
|  | /// A **global** region is one that can be named from | 
|  | /// anywhere. There is only one, `'static`. | 
|  | Global, | 
|  |  | 
|  | /// An **external** region is only relevant for | 
|  | /// closures, coroutines, and inline consts. In that | 
|  | /// case, it refers to regions that are free in the type | 
|  | /// -- basically, something bound in the surrounding context. | 
|  | /// | 
|  | /// Consider this example: | 
|  | /// | 
|  | /// ```ignore (pseudo-rust) | 
|  | /// fn foo<'a, 'b>(a: &'a u32, b: &'b u32, c: &'static u32) { | 
|  | ///   let closure = for<'x> |x: &'x u32| { .. }; | 
|  | ///    //           ^^^^^^^ pretend this were legal syntax | 
|  | ///    //                   for declaring a late-bound region in | 
|  | ///    //                   a closure signature | 
|  | /// } | 
|  | /// ``` | 
|  | /// | 
|  | /// Here, the lifetimes `'a` and `'b` would be **external** to the | 
|  | /// closure. | 
|  | /// | 
|  | /// If we are not analyzing a closure/coroutine/inline-const, | 
|  | /// there are no external lifetimes. | 
|  | External, | 
|  |  | 
|  | /// A **local** lifetime is one about which we know the full set | 
|  | /// of relevant constraints (that is, relationships to other named | 
|  | /// regions). For a closure, this includes any region bound in | 
|  | /// the closure's signature. For a fn item, this includes all | 
|  | /// regions other than global ones. | 
|  | /// | 
|  | /// Continuing with the example from `External`, if we were | 
|  | /// analyzing the closure, then `'x` would be local (and `'a` and | 
|  | /// `'b` are external). If we are analyzing the function item | 
|  | /// `foo`, then `'a` and `'b` are local (and `'x` is not in | 
|  | /// scope). | 
|  | Local, | 
|  | } | 
|  |  | 
|  | const FIRST_GLOBAL_INDEX: usize = 0; | 
|  |  | 
|  | impl<'tcx> UniversalRegions<'tcx> { | 
|  | /// Creates a new and fully initialized `UniversalRegions` that | 
|  | /// contains indices for all the free regions found in the given | 
|  | /// MIR -- that is, all the regions that appear in the function's | 
|  | /// signature. This will also compute the relationships that are | 
|  | /// known between those regions. | 
|  | pub(crate) fn new(infcx: &BorrowckInferCtxt<'tcx>, mir_def: LocalDefId) -> Self { | 
|  | UniversalRegionsBuilder { infcx, mir_def }.build() | 
|  | } | 
|  |  | 
|  | /// Given a reference to a closure type, extracts all the values | 
|  | /// from its free regions and returns a vector with them. This is | 
|  | /// used when the closure's creator checks that the | 
|  | /// `ClosureRegionRequirements` are met. The requirements from | 
|  | /// `ClosureRegionRequirements` are expressed in terms of | 
|  | /// `RegionVid` entries that map into the returned vector `V`: so | 
|  | /// if the `ClosureRegionRequirements` contains something like | 
|  | /// `'1: '2`, then the caller would impose the constraint that | 
|  | /// `V[1]: V[2]`. | 
|  | pub(crate) fn closure_mapping( | 
|  | tcx: TyCtxt<'tcx>, | 
|  | closure_args: GenericArgsRef<'tcx>, | 
|  | expected_num_vars: usize, | 
|  | closure_def_id: LocalDefId, | 
|  | ) -> IndexVec<RegionVid, ty::Region<'tcx>> { | 
|  | let mut region_mapping = IndexVec::with_capacity(expected_num_vars); | 
|  | region_mapping.push(tcx.lifetimes.re_static); | 
|  | tcx.for_each_free_region(&closure_args, |fr| { | 
|  | region_mapping.push(fr); | 
|  | }); | 
|  |  | 
|  | for_each_late_bound_region_in_recursive_scope(tcx, tcx.local_parent(closure_def_id), |r| { | 
|  | region_mapping.push(r); | 
|  | }); | 
|  |  | 
|  | assert_eq!( | 
|  | region_mapping.len(), | 
|  | expected_num_vars, | 
|  | "index vec had unexpected number of variables" | 
|  | ); | 
|  |  | 
|  | region_mapping | 
|  | } | 
|  |  | 
|  | /// Returns `true` if `r` is a member of this set of universal regions. | 
|  | pub(crate) fn is_universal_region(&self, r: RegionVid) -> bool { | 
|  | (FIRST_GLOBAL_INDEX..self.num_universals).contains(&r.index()) | 
|  | } | 
|  |  | 
|  | /// Classifies `r` as a universal region, returning `None` if this | 
|  | /// is not a member of this set of universal regions. | 
|  | pub(crate) fn region_classification(&self, r: RegionVid) -> Option<RegionClassification> { | 
|  | let index = r.index(); | 
|  | if (FIRST_GLOBAL_INDEX..self.first_extern_index).contains(&index) { | 
|  | Some(RegionClassification::Global) | 
|  | } else if (self.first_extern_index..self.first_local_index).contains(&index) { | 
|  | Some(RegionClassification::External) | 
|  | } else if (self.first_local_index..self.num_universals).contains(&index) { | 
|  | Some(RegionClassification::Local) | 
|  | } else { | 
|  | None | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Returns an iterator over all the RegionVids corresponding to | 
|  | /// universally quantified free regions. | 
|  | pub(crate) fn universal_regions_iter(&self) -> impl Iterator<Item = RegionVid> + 'static { | 
|  | (FIRST_GLOBAL_INDEX..self.num_universals).map(RegionVid::from_usize) | 
|  | } | 
|  |  | 
|  | /// Returns `true` if `r` is classified as a local region. | 
|  | pub(crate) fn is_local_free_region(&self, r: RegionVid) -> bool { | 
|  | self.region_classification(r) == Some(RegionClassification::Local) | 
|  | } | 
|  |  | 
|  | /// Returns the number of universal regions created in any category. | 
|  | pub(crate) fn len(&self) -> usize { | 
|  | self.num_universals | 
|  | } | 
|  |  | 
|  | /// Returns the number of global plus external universal regions. | 
|  | /// For closures, these are the regions that appear free in the | 
|  | /// closure type (versus those bound in the closure | 
|  | /// signature). They are therefore the regions between which the | 
|  | /// closure may impose constraints that its creator must verify. | 
|  | pub(crate) fn num_global_and_external_regions(&self) -> usize { | 
|  | self.first_local_index | 
|  | } | 
|  |  | 
|  | /// Gets an iterator over all the early-bound regions that have names. | 
|  | pub(crate) fn named_universal_regions_iter( | 
|  | &self, | 
|  | ) -> impl Iterator<Item = (ty::Region<'tcx>, ty::RegionVid)> { | 
|  | self.indices.indices.iter().map(|(&r, &v)| (r, v)) | 
|  | } | 
|  |  | 
|  | /// See [UniversalRegionIndices::to_region_vid]. | 
|  | pub(crate) fn to_region_vid(&self, r: ty::Region<'tcx>) -> RegionVid { | 
|  | self.indices.to_region_vid(r) | 
|  | } | 
|  |  | 
|  | /// As part of the NLL unit tests, you can annotate a function with | 
|  | /// `#[rustc_regions]`, and we will emit information about the region | 
|  | /// inference context and -- in particular -- the external constraints | 
|  | /// that this region imposes on others. The methods in this file | 
|  | /// handle the part about dumping the inference context internal | 
|  | /// state. | 
|  | pub(crate) fn annotate(&self, tcx: TyCtxt<'tcx>, err: &mut Diag<'_, ()>) { | 
|  | match self.defining_ty { | 
|  | DefiningTy::Closure(def_id, args) => { | 
|  | let v = with_no_trimmed_paths!( | 
|  | args[tcx.generics_of(def_id).parent_count..] | 
|  | .iter() | 
|  | .map(|arg| arg.to_string()) | 
|  | .collect::<Vec<_>>() | 
|  | ); | 
|  | err.note(format!( | 
|  | "defining type: {} with closure args [\n    {},\n]", | 
|  | tcx.def_path_str_with_args(def_id, args), | 
|  | v.join(",\n    "), | 
|  | )); | 
|  |  | 
|  | // FIXME: It'd be nice to print the late-bound regions | 
|  | // here, but unfortunately these wind up stored into | 
|  | // tests, and the resulting print-outs include def-ids | 
|  | // and other things that are not stable across tests! | 
|  | // So we just include the region-vid. Annoying. | 
|  | for_each_late_bound_region_in_recursive_scope(tcx, def_id.expect_local(), |r| { | 
|  | err.note(format!("late-bound region is {:?}", self.to_region_vid(r))); | 
|  | }); | 
|  | } | 
|  | DefiningTy::CoroutineClosure(..) => { | 
|  | todo!() | 
|  | } | 
|  | DefiningTy::Coroutine(def_id, args) => { | 
|  | let v = with_no_trimmed_paths!( | 
|  | args[tcx.generics_of(def_id).parent_count..] | 
|  | .iter() | 
|  | .map(|arg| arg.to_string()) | 
|  | .collect::<Vec<_>>() | 
|  | ); | 
|  | err.note(format!( | 
|  | "defining type: {} with coroutine args [\n    {},\n]", | 
|  | tcx.def_path_str_with_args(def_id, args), | 
|  | v.join(",\n    "), | 
|  | )); | 
|  |  | 
|  | // FIXME: As above, we'd like to print out the region | 
|  | // `r` but doing so is not stable across architectures | 
|  | // and so forth. | 
|  | for_each_late_bound_region_in_recursive_scope(tcx, def_id.expect_local(), |r| { | 
|  | err.note(format!("late-bound region is {:?}", self.to_region_vid(r))); | 
|  | }); | 
|  | } | 
|  | DefiningTy::FnDef(def_id, args) => { | 
|  | err.note(format!("defining type: {}", tcx.def_path_str_with_args(def_id, args),)); | 
|  | } | 
|  | DefiningTy::Const(def_id, args) => { | 
|  | err.note(format!( | 
|  | "defining constant type: {}", | 
|  | tcx.def_path_str_with_args(def_id, args), | 
|  | )); | 
|  | } | 
|  | DefiningTy::InlineConst(def_id, args) => { | 
|  | err.note(format!( | 
|  | "defining inline constant type: {}", | 
|  | tcx.def_path_str_with_args(def_id, args), | 
|  | )); | 
|  | } | 
|  | DefiningTy::GlobalAsm(_) => unreachable!(), | 
|  | } | 
|  | } | 
|  |  | 
|  | pub(crate) fn implicit_region_bound(&self) -> RegionVid { | 
|  | self.fr_fn_body | 
|  | } | 
|  |  | 
|  | pub(crate) fn encountered_re_error(&self) -> Option<ErrorGuaranteed> { | 
|  | self.indices.encountered_re_error.get() | 
|  | } | 
|  | } | 
|  |  | 
|  | struct UniversalRegionsBuilder<'infcx, 'tcx> { | 
|  | infcx: &'infcx BorrowckInferCtxt<'tcx>, | 
|  | mir_def: LocalDefId, | 
|  | } | 
|  |  | 
|  | const FR: NllRegionVariableOrigin = NllRegionVariableOrigin::FreeRegion; | 
|  |  | 
|  | impl<'cx, 'tcx> UniversalRegionsBuilder<'cx, 'tcx> { | 
|  | fn build(self) -> UniversalRegions<'tcx> { | 
|  | debug!("build(mir_def={:?})", self.mir_def); | 
|  |  | 
|  | let param_env = self.infcx.param_env; | 
|  | debug!("build: param_env={:?}", param_env); | 
|  |  | 
|  | assert_eq!(FIRST_GLOBAL_INDEX, self.infcx.num_region_vars()); | 
|  |  | 
|  | // Create the "global" region that is always free in all contexts: 'static. | 
|  | let fr_static = | 
|  | self.infcx.next_nll_region_var(FR, || RegionCtxt::Free(kw::Static)).as_var(); | 
|  |  | 
|  | // We've now added all the global regions. The next ones we | 
|  | // add will be external. | 
|  | let first_extern_index = self.infcx.num_region_vars(); | 
|  |  | 
|  | let defining_ty = self.defining_ty(); | 
|  | debug!("build: defining_ty={:?}", defining_ty); | 
|  |  | 
|  | let mut indices = self.compute_indices(fr_static, defining_ty); | 
|  | debug!("build: indices={:?}", indices); | 
|  |  | 
|  | let typeck_root_def_id = self.infcx.tcx.typeck_root_def_id(self.mir_def.to_def_id()); | 
|  |  | 
|  | // If this is a 'root' body (not a closure/coroutine/inline const), then | 
|  | // there are no extern regions, so the local regions start at the same | 
|  | // position as the (empty) sub-list of extern regions | 
|  | let first_local_index = if self.mir_def.to_def_id() == typeck_root_def_id { | 
|  | first_extern_index | 
|  | } else { | 
|  | // If this is a closure, coroutine, or inline-const, then the late-bound regions from the enclosing | 
|  | // function/closures are actually external regions to us. For example, here, 'a is not local | 
|  | // to the closure c (although it is local to the fn foo): | 
|  | // fn foo<'a>() { | 
|  | //     let c = || { let x: &'a u32 = ...; } | 
|  | // } | 
|  | for_each_late_bound_region_in_recursive_scope( | 
|  | self.infcx.tcx, | 
|  | self.infcx.tcx.local_parent(self.mir_def), | 
|  | |r| { | 
|  | debug!(?r); | 
|  | let region_vid = { | 
|  | let name = r.get_name_or_anon(self.infcx.tcx); | 
|  | self.infcx.next_nll_region_var(FR, || RegionCtxt::LateBound(name)) | 
|  | }; | 
|  |  | 
|  | debug!(?region_vid); | 
|  | indices.insert_late_bound_region(r, region_vid.as_var()); | 
|  | }, | 
|  | ); | 
|  |  | 
|  | // Any regions created during the execution of `defining_ty` or during the above | 
|  | // late-bound region replacement are all considered 'extern' regions | 
|  | self.infcx.num_region_vars() | 
|  | }; | 
|  |  | 
|  | // Converse of above, if this is a function/closure then the late-bound regions declared | 
|  | // on its signature are local. | 
|  | // | 
|  | // We manually loop over `bound_inputs_and_output` instead of using | 
|  | // `for_each_late_bound_region_in_item` as we may need to add the otherwise | 
|  | // implicit `ClosureEnv` region. | 
|  | let bound_inputs_and_output = self.compute_inputs_and_output(&indices, defining_ty); | 
|  | for (idx, bound_var) in bound_inputs_and_output.bound_vars().iter().enumerate() { | 
|  | if let ty::BoundVariableKind::Region(kind) = bound_var { | 
|  | let kind = ty::LateParamRegionKind::from_bound(ty::BoundVar::from_usize(idx), kind); | 
|  | let r = ty::Region::new_late_param(self.infcx.tcx, self.mir_def.to_def_id(), kind); | 
|  | let region_vid = { | 
|  | let name = r.get_name_or_anon(self.infcx.tcx); | 
|  | self.infcx.next_nll_region_var(FR, || RegionCtxt::LateBound(name)) | 
|  | }; | 
|  |  | 
|  | debug!(?region_vid); | 
|  | indices.insert_late_bound_region(r, region_vid.as_var()); | 
|  | } | 
|  | } | 
|  | let inputs_and_output = self.infcx.replace_bound_regions_with_nll_infer_vars( | 
|  | self.mir_def, | 
|  | bound_inputs_and_output, | 
|  | &indices, | 
|  | ); | 
|  |  | 
|  | let (unnormalized_output_ty, mut unnormalized_input_tys) = | 
|  | inputs_and_output.split_last().unwrap(); | 
|  |  | 
|  | // C-variadic fns also have a `VaList` input that's not listed in the signature | 
|  | // (as it's created inside the body itself, not passed in from outside). | 
|  | if let DefiningTy::FnDef(def_id, _) = defining_ty { | 
|  | if self.infcx.tcx.fn_sig(def_id).skip_binder().c_variadic() { | 
|  | let va_list_did = self | 
|  | .infcx | 
|  | .tcx | 
|  | .require_lang_item(LangItem::VaList, self.infcx.tcx.def_span(self.mir_def)); | 
|  |  | 
|  | let reg_vid = self | 
|  | .infcx | 
|  | .next_nll_region_var(FR, || RegionCtxt::Free(sym::c_dash_variadic)) | 
|  | .as_var(); | 
|  |  | 
|  | let region = ty::Region::new_var(self.infcx.tcx, reg_vid); | 
|  | let va_list_ty = self | 
|  | .infcx | 
|  | .tcx | 
|  | .type_of(va_list_did) | 
|  | .instantiate(self.infcx.tcx, &[region.into()]); | 
|  |  | 
|  | unnormalized_input_tys = self.infcx.tcx.mk_type_list_from_iter( | 
|  | unnormalized_input_tys.iter().copied().chain(iter::once(va_list_ty)), | 
|  | ); | 
|  | } | 
|  | } | 
|  |  | 
|  | let fr_fn_body = | 
|  | self.infcx.next_nll_region_var(FR, || RegionCtxt::Free(sym::fn_body)).as_var(); | 
|  |  | 
|  | let num_universals = self.infcx.num_region_vars(); | 
|  |  | 
|  | debug!("build: global regions = {}..{}", FIRST_GLOBAL_INDEX, first_extern_index); | 
|  | debug!("build: extern regions = {}..{}", first_extern_index, first_local_index); | 
|  | debug!("build: local regions  = {}..{}", first_local_index, num_universals); | 
|  |  | 
|  | let (resume_ty, yield_ty) = match defining_ty { | 
|  | DefiningTy::Coroutine(_, args) => { | 
|  | let tys = args.as_coroutine(); | 
|  | (Some(tys.resume_ty()), Some(tys.yield_ty())) | 
|  | } | 
|  | _ => (None, None), | 
|  | }; | 
|  |  | 
|  | UniversalRegions { | 
|  | indices, | 
|  | fr_static, | 
|  | fr_fn_body, | 
|  | first_extern_index, | 
|  | first_local_index, | 
|  | num_universals, | 
|  | defining_ty, | 
|  | unnormalized_output_ty: *unnormalized_output_ty, | 
|  | unnormalized_input_tys, | 
|  | yield_ty, | 
|  | resume_ty, | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Returns the "defining type" of the current MIR; | 
|  | /// see `DefiningTy` for details. | 
|  | fn defining_ty(&self) -> DefiningTy<'tcx> { | 
|  | let tcx = self.infcx.tcx; | 
|  | let typeck_root_def_id = tcx.typeck_root_def_id(self.mir_def.to_def_id()); | 
|  |  | 
|  | match tcx.hir_body_owner_kind(self.mir_def) { | 
|  | BodyOwnerKind::Closure | BodyOwnerKind::Fn => { | 
|  | let defining_ty = tcx.type_of(self.mir_def).instantiate_identity(); | 
|  |  | 
|  | debug!("defining_ty (pre-replacement): {:?}", defining_ty); | 
|  |  | 
|  | let defining_ty = | 
|  | self.infcx.replace_free_regions_with_nll_infer_vars(FR, defining_ty); | 
|  |  | 
|  | match *defining_ty.kind() { | 
|  | ty::Closure(def_id, args) => DefiningTy::Closure(def_id, args), | 
|  | ty::Coroutine(def_id, args) => DefiningTy::Coroutine(def_id, args), | 
|  | ty::CoroutineClosure(def_id, args) => { | 
|  | DefiningTy::CoroutineClosure(def_id, args) | 
|  | } | 
|  | ty::FnDef(def_id, args) => DefiningTy::FnDef(def_id, args), | 
|  | _ => span_bug!( | 
|  | tcx.def_span(self.mir_def), | 
|  | "expected defining type for `{:?}`: `{:?}`", | 
|  | self.mir_def, | 
|  | defining_ty | 
|  | ), | 
|  | } | 
|  | } | 
|  |  | 
|  | BodyOwnerKind::Const { .. } | BodyOwnerKind::Static(..) => { | 
|  | let identity_args = GenericArgs::identity_for_item(tcx, typeck_root_def_id); | 
|  | if self.mir_def.to_def_id() == typeck_root_def_id | 
|  | // Do not ICE when checking default_field_values consts with lifetimes (#135649) | 
|  | && DefKind::Field != tcx.def_kind(tcx.parent(typeck_root_def_id)) | 
|  | { | 
|  | let args = | 
|  | self.infcx.replace_free_regions_with_nll_infer_vars(FR, identity_args); | 
|  | DefiningTy::Const(self.mir_def.to_def_id(), args) | 
|  | } else { | 
|  | // FIXME this line creates a dependency between borrowck and typeck. | 
|  | // | 
|  | // This is required for `AscribeUserType` canonical query, which will call | 
|  | // `type_of(inline_const_def_id)`. That `type_of` would inject erased lifetimes | 
|  | // into borrowck, which is ICE #78174. | 
|  | // | 
|  | // As a workaround, inline consts have an additional generic param (`ty` | 
|  | // below), so that `type_of(inline_const_def_id).args(args)` uses the | 
|  | // proper type with NLL infer vars. | 
|  | let ty = tcx | 
|  | .typeck(self.mir_def) | 
|  | .node_type(tcx.local_def_id_to_hir_id(self.mir_def)); | 
|  | let args = InlineConstArgs::new( | 
|  | tcx, | 
|  | InlineConstArgsParts { parent_args: identity_args, ty }, | 
|  | ) | 
|  | .args; | 
|  | let args = self.infcx.replace_free_regions_with_nll_infer_vars(FR, args); | 
|  | DefiningTy::InlineConst(self.mir_def.to_def_id(), args) | 
|  | } | 
|  | } | 
|  |  | 
|  | BodyOwnerKind::GlobalAsm => DefiningTy::GlobalAsm(self.mir_def.to_def_id()), | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Builds a hashmap that maps from the universal regions that are | 
|  | /// in scope (as a `ty::Region<'tcx>`) to their indices (as a | 
|  | /// `RegionVid`). The map returned by this function contains only | 
|  | /// the early-bound regions. | 
|  | fn compute_indices( | 
|  | &self, | 
|  | fr_static: RegionVid, | 
|  | defining_ty: DefiningTy<'tcx>, | 
|  | ) -> UniversalRegionIndices<'tcx> { | 
|  | let tcx = self.infcx.tcx; | 
|  | let typeck_root_def_id = tcx.typeck_root_def_id(self.mir_def.to_def_id()); | 
|  | let identity_args = GenericArgs::identity_for_item(tcx, typeck_root_def_id); | 
|  | let fr_args = match defining_ty { | 
|  | DefiningTy::Closure(_, args) | 
|  | | DefiningTy::CoroutineClosure(_, args) | 
|  | | DefiningTy::Coroutine(_, args) | 
|  | | DefiningTy::InlineConst(_, args) => { | 
|  | // In the case of closures, we rely on the fact that | 
|  | // the first N elements in the ClosureArgs are | 
|  | // inherited from the `typeck_root_def_id`. | 
|  | // Therefore, when we zip together (below) with | 
|  | // `identity_args`, we will get only those regions | 
|  | // that correspond to early-bound regions declared on | 
|  | // the `typeck_root_def_id`. | 
|  | assert!(args.len() >= identity_args.len()); | 
|  | assert_eq!(args.regions().count(), identity_args.regions().count()); | 
|  | args | 
|  | } | 
|  |  | 
|  | DefiningTy::FnDef(_, args) | DefiningTy::Const(_, args) => args, | 
|  |  | 
|  | DefiningTy::GlobalAsm(_) => ty::List::empty(), | 
|  | }; | 
|  |  | 
|  | let global_mapping = iter::once((tcx.lifetimes.re_static, fr_static)); | 
|  | let arg_mapping = iter::zip(identity_args.regions(), fr_args.regions().map(|r| r.as_var())); | 
|  |  | 
|  | UniversalRegionIndices { | 
|  | indices: global_mapping.chain(arg_mapping).collect(), | 
|  | fr_static, | 
|  | encountered_re_error: Cell::new(None), | 
|  | } | 
|  | } | 
|  |  | 
|  | fn compute_inputs_and_output( | 
|  | &self, | 
|  | indices: &UniversalRegionIndices<'tcx>, | 
|  | defining_ty: DefiningTy<'tcx>, | 
|  | ) -> ty::Binder<'tcx, &'tcx ty::List<Ty<'tcx>>> { | 
|  | let tcx = self.infcx.tcx; | 
|  |  | 
|  | let inputs_and_output = match defining_ty { | 
|  | DefiningTy::Closure(def_id, args) => { | 
|  | assert_eq!(self.mir_def.to_def_id(), def_id); | 
|  | let closure_sig = args.as_closure().sig(); | 
|  | let inputs_and_output = closure_sig.inputs_and_output(); | 
|  | let bound_vars = tcx.mk_bound_variable_kinds_from_iter( | 
|  | inputs_and_output.bound_vars().iter().chain(iter::once( | 
|  | ty::BoundVariableKind::Region(ty::BoundRegionKind::ClosureEnv), | 
|  | )), | 
|  | ); | 
|  | let br = ty::BoundRegion { | 
|  | var: ty::BoundVar::from_usize(bound_vars.len() - 1), | 
|  | kind: ty::BoundRegionKind::ClosureEnv, | 
|  | }; | 
|  | let env_region = ty::Region::new_bound(tcx, ty::INNERMOST, br); | 
|  | let closure_ty = tcx.closure_env_ty( | 
|  | Ty::new_closure(tcx, def_id, args), | 
|  | args.as_closure().kind(), | 
|  | env_region, | 
|  | ); | 
|  |  | 
|  | // The "inputs" of the closure in the | 
|  | // signature appear as a tuple. The MIR side | 
|  | // flattens this tuple. | 
|  | let (&output, tuplized_inputs) = | 
|  | inputs_and_output.skip_binder().split_last().unwrap(); | 
|  | assert_eq!(tuplized_inputs.len(), 1, "multiple closure inputs"); | 
|  | let &ty::Tuple(inputs) = tuplized_inputs[0].kind() else { | 
|  | bug!("closure inputs not a tuple: {:?}", tuplized_inputs[0]); | 
|  | }; | 
|  |  | 
|  | ty::Binder::bind_with_vars( | 
|  | tcx.mk_type_list_from_iter( | 
|  | iter::once(closure_ty).chain(inputs).chain(iter::once(output)), | 
|  | ), | 
|  | bound_vars, | 
|  | ) | 
|  | } | 
|  |  | 
|  | DefiningTy::Coroutine(def_id, args) => { | 
|  | assert_eq!(self.mir_def.to_def_id(), def_id); | 
|  | let resume_ty = args.as_coroutine().resume_ty(); | 
|  | let output = args.as_coroutine().return_ty(); | 
|  | let coroutine_ty = Ty::new_coroutine(tcx, def_id, args); | 
|  | let inputs_and_output = | 
|  | self.infcx.tcx.mk_type_list(&[coroutine_ty, resume_ty, output]); | 
|  | ty::Binder::dummy(inputs_and_output) | 
|  | } | 
|  |  | 
|  | // Construct the signature of the CoroutineClosure for the purposes of borrowck. | 
|  | // This is pretty straightforward -- we: | 
|  | // 1. first grab the `coroutine_closure_sig`, | 
|  | // 2. compute the self type (`&`/`&mut`/no borrow), | 
|  | // 3. flatten the tupled_input_tys, | 
|  | // 4. construct the correct generator type to return with | 
|  | //    `CoroutineClosureSignature::to_coroutine_given_kind_and_upvars`. | 
|  | // Then we wrap it all up into a list of inputs and output. | 
|  | DefiningTy::CoroutineClosure(def_id, args) => { | 
|  | assert_eq!(self.mir_def.to_def_id(), def_id); | 
|  | let closure_sig = args.as_coroutine_closure().coroutine_closure_sig(); | 
|  | let bound_vars = | 
|  | tcx.mk_bound_variable_kinds_from_iter(closure_sig.bound_vars().iter().chain( | 
|  | iter::once(ty::BoundVariableKind::Region(ty::BoundRegionKind::ClosureEnv)), | 
|  | )); | 
|  | let br = ty::BoundRegion { | 
|  | var: ty::BoundVar::from_usize(bound_vars.len() - 1), | 
|  | kind: ty::BoundRegionKind::ClosureEnv, | 
|  | }; | 
|  | let env_region = ty::Region::new_bound(tcx, ty::INNERMOST, br); | 
|  | let closure_kind = args.as_coroutine_closure().kind(); | 
|  |  | 
|  | let closure_ty = tcx.closure_env_ty( | 
|  | Ty::new_coroutine_closure(tcx, def_id, args), | 
|  | closure_kind, | 
|  | env_region, | 
|  | ); | 
|  |  | 
|  | let inputs = closure_sig.skip_binder().tupled_inputs_ty.tuple_fields(); | 
|  | let output = closure_sig.skip_binder().to_coroutine_given_kind_and_upvars( | 
|  | tcx, | 
|  | args.as_coroutine_closure().parent_args(), | 
|  | tcx.coroutine_for_closure(def_id), | 
|  | closure_kind, | 
|  | env_region, | 
|  | args.as_coroutine_closure().tupled_upvars_ty(), | 
|  | args.as_coroutine_closure().coroutine_captures_by_ref_ty(), | 
|  | ); | 
|  |  | 
|  | ty::Binder::bind_with_vars( | 
|  | tcx.mk_type_list_from_iter( | 
|  | iter::once(closure_ty).chain(inputs).chain(iter::once(output)), | 
|  | ), | 
|  | bound_vars, | 
|  | ) | 
|  | } | 
|  |  | 
|  | DefiningTy::FnDef(def_id, _) => { | 
|  | let sig = tcx.fn_sig(def_id).instantiate_identity(); | 
|  | let sig = indices.fold_to_region_vids(tcx, sig); | 
|  | sig.inputs_and_output() | 
|  | } | 
|  |  | 
|  | DefiningTy::Const(def_id, _) => { | 
|  | // For a constant body, there are no inputs, and one | 
|  | // "output" (the type of the constant). | 
|  | assert_eq!(self.mir_def.to_def_id(), def_id); | 
|  | let ty = tcx.type_of(self.mir_def).instantiate_identity(); | 
|  |  | 
|  | let ty = indices.fold_to_region_vids(tcx, ty); | 
|  | ty::Binder::dummy(tcx.mk_type_list(&[ty])) | 
|  | } | 
|  |  | 
|  | DefiningTy::InlineConst(def_id, args) => { | 
|  | assert_eq!(self.mir_def.to_def_id(), def_id); | 
|  | let ty = args.as_inline_const().ty(); | 
|  | ty::Binder::dummy(tcx.mk_type_list(&[ty])) | 
|  | } | 
|  |  | 
|  | DefiningTy::GlobalAsm(def_id) => { | 
|  | ty::Binder::dummy(tcx.mk_type_list(&[tcx.type_of(def_id).instantiate_identity()])) | 
|  | } | 
|  | }; | 
|  |  | 
|  | // FIXME(#129952): We probably want a more principled approach here. | 
|  | if let Err(terr) = inputs_and_output.skip_binder().error_reported() { | 
|  | self.infcx.set_tainted_by_errors(terr); | 
|  | } | 
|  |  | 
|  | inputs_and_output | 
|  | } | 
|  | } | 
|  |  | 
|  | #[extension(trait InferCtxtExt<'tcx>)] | 
|  | impl<'tcx> BorrowckInferCtxt<'tcx> { | 
|  | #[instrument(skip(self), level = "debug")] | 
|  | fn replace_free_regions_with_nll_infer_vars<T>( | 
|  | &self, | 
|  | origin: NllRegionVariableOrigin, | 
|  | value: T, | 
|  | ) -> T | 
|  | where | 
|  | T: TypeFoldable<TyCtxt<'tcx>>, | 
|  | { | 
|  | fold_regions(self.infcx.tcx, value, |region, _depth| { | 
|  | let name = region.get_name_or_anon(self.infcx.tcx); | 
|  | debug!(?region, ?name); | 
|  |  | 
|  | self.next_nll_region_var(origin, || RegionCtxt::Free(name)) | 
|  | }) | 
|  | } | 
|  |  | 
|  | #[instrument(level = "debug", skip(self, indices))] | 
|  | fn replace_bound_regions_with_nll_infer_vars<T>( | 
|  | &self, | 
|  | all_outlive_scope: LocalDefId, | 
|  | value: ty::Binder<'tcx, T>, | 
|  | indices: &UniversalRegionIndices<'tcx>, | 
|  | ) -> T | 
|  | where | 
|  | T: TypeFoldable<TyCtxt<'tcx>>, | 
|  | { | 
|  | let (value, _map) = self.tcx.instantiate_bound_regions(value, |br| { | 
|  | debug!(?br); | 
|  | let kind = ty::LateParamRegionKind::from_bound(br.var, br.kind); | 
|  | let liberated_region = | 
|  | ty::Region::new_late_param(self.tcx, all_outlive_scope.to_def_id(), kind); | 
|  | ty::Region::new_var(self.tcx, indices.to_region_vid(liberated_region)) | 
|  | }); | 
|  | value | 
|  | } | 
|  | } | 
|  |  | 
|  | impl<'tcx> UniversalRegionIndices<'tcx> { | 
|  | /// Initially, the `UniversalRegionIndices` map contains only the | 
|  | /// early-bound regions in scope. Once that is all setup, we come | 
|  | /// in later and instantiate the late-bound regions, and then we | 
|  | /// insert the `ReLateParam` version of those into the map as | 
|  | /// well. These are used for error reporting. | 
|  | fn insert_late_bound_region(&mut self, r: ty::Region<'tcx>, vid: ty::RegionVid) { | 
|  | debug!("insert_late_bound_region({:?}, {:?})", r, vid); | 
|  | assert_eq!(self.indices.insert(r, vid), None); | 
|  | } | 
|  |  | 
|  | /// Converts `r` into a local inference variable: `r` can either | 
|  | /// be a `ReVar` (i.e., already a reference to an inference | 
|  | /// variable) or it can be `'static` or some early-bound | 
|  | /// region. This is useful when taking the results from | 
|  | /// type-checking and trait-matching, which may sometimes | 
|  | /// reference those regions from the `ParamEnv`. It is also used | 
|  | /// during initialization. Relies on the `indices` map having been | 
|  | /// fully initialized. | 
|  | /// | 
|  | /// Panics if `r` is not a registered universal region, most notably | 
|  | /// if it is a placeholder. Handling placeholders requires access to the | 
|  | /// `MirTypeckRegionConstraints`. | 
|  | fn to_region_vid(&self, r: ty::Region<'tcx>) -> RegionVid { | 
|  | match r.kind() { | 
|  | ty::ReVar(..) => r.as_var(), | 
|  | ty::ReError(guar) => { | 
|  | self.encountered_re_error.set(Some(guar)); | 
|  | // We use the `'static` `RegionVid` because `ReError` doesn't actually exist in the | 
|  | // `UniversalRegionIndices`. This is fine because 1) it is a fallback only used if | 
|  | // errors are being emitted and 2) it leaves the happy path unaffected. | 
|  | self.fr_static | 
|  | } | 
|  | _ => *self | 
|  | .indices | 
|  | .get(&r) | 
|  | .unwrap_or_else(|| bug!("cannot convert `{:?}` to a region vid", r)), | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Replaces all free regions in `value` with region vids, as | 
|  | /// returned by `to_region_vid`. | 
|  | fn fold_to_region_vids<T>(&self, tcx: TyCtxt<'tcx>, value: T) -> T | 
|  | where | 
|  | T: TypeFoldable<TyCtxt<'tcx>>, | 
|  | { | 
|  | fold_regions(tcx, value, |region, _| ty::Region::new_var(tcx, self.to_region_vid(region))) | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Iterates over the late-bound regions defined on `mir_def_id` and all of its | 
|  | /// parents, up to the typeck root, and invokes `f` with the liberated form | 
|  | /// of each one. | 
|  | fn for_each_late_bound_region_in_recursive_scope<'tcx>( | 
|  | tcx: TyCtxt<'tcx>, | 
|  | mut mir_def_id: LocalDefId, | 
|  | mut f: impl FnMut(ty::Region<'tcx>), | 
|  | ) { | 
|  | let typeck_root_def_id = tcx.typeck_root_def_id(mir_def_id.to_def_id()); | 
|  |  | 
|  | // Walk up the tree, collecting late-bound regions until we hit the typeck root | 
|  | loop { | 
|  | for_each_late_bound_region_in_item(tcx, mir_def_id, &mut f); | 
|  |  | 
|  | if mir_def_id.to_def_id() == typeck_root_def_id { | 
|  | break; | 
|  | } else { | 
|  | mir_def_id = tcx.local_parent(mir_def_id); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Iterates over the late-bound regions defined on `mir_def_id` and all of its | 
|  | /// parents, up to the typeck root, and invokes `f` with the liberated form | 
|  | /// of each one. | 
|  | fn for_each_late_bound_region_in_item<'tcx>( | 
|  | tcx: TyCtxt<'tcx>, | 
|  | mir_def_id: LocalDefId, | 
|  | mut f: impl FnMut(ty::Region<'tcx>), | 
|  | ) { | 
|  | let bound_vars = match tcx.def_kind(mir_def_id) { | 
|  | DefKind::Fn | DefKind::AssocFn => { | 
|  | tcx.late_bound_vars(tcx.local_def_id_to_hir_id(mir_def_id)) | 
|  | } | 
|  | // We extract the bound vars from the deduced closure signature, since we may have | 
|  | // only deduced that a param in the closure signature is late-bound from a constraint | 
|  | // that we discover during typeck. | 
|  | DefKind::Closure => { | 
|  | let ty = tcx.type_of(mir_def_id).instantiate_identity(); | 
|  | match *ty.kind() { | 
|  | ty::Closure(_, args) => args.as_closure().sig().bound_vars(), | 
|  | ty::CoroutineClosure(_, args) => { | 
|  | args.as_coroutine_closure().coroutine_closure_sig().bound_vars() | 
|  | } | 
|  | ty::Coroutine(_, _) | ty::Error(_) => return, | 
|  | _ => unreachable!("unexpected type for closure: {ty}"), | 
|  | } | 
|  | } | 
|  | _ => return, | 
|  | }; | 
|  |  | 
|  | for (idx, bound_var) in bound_vars.iter().enumerate() { | 
|  | if let ty::BoundVariableKind::Region(kind) = bound_var { | 
|  | let kind = ty::LateParamRegionKind::from_bound(ty::BoundVar::from_usize(idx), kind); | 
|  | let liberated_region = ty::Region::new_late_param(tcx, mir_def_id.to_def_id(), kind); | 
|  | f(liberated_region); | 
|  | } | 
|  | } | 
|  | } |