| /* SPDX-License-Identifier: MIT OR Apache-2.0 */ |
| use crate::support::{CastFrom, CastInto, Float, HInt, Int, MinInt, NarrowingDiv}; |
| |
| #[inline] |
| pub fn fmod<F: Float>(x: F, y: F) -> F |
| where |
| F::Int: HInt, |
| <F::Int as HInt>::D: NarrowingDiv, |
| { |
| let _1 = F::Int::ONE; |
| let sx = x.to_bits() & F::SIGN_MASK; |
| let ux = x.to_bits() & !F::SIGN_MASK; |
| let uy = y.to_bits() & !F::SIGN_MASK; |
| |
| // Cases that return NaN: |
| // NaN % _ |
| // Inf % _ |
| // _ % NaN |
| // _ % 0 |
| let x_nan_or_inf = ux & F::EXP_MASK == F::EXP_MASK; |
| let y_nan_or_zero = uy.wrapping_sub(_1) & F::EXP_MASK == F::EXP_MASK; |
| if x_nan_or_inf | y_nan_or_zero { |
| return (x * y) / (x * y); |
| } |
| |
| if ux < uy { |
| // |x| < |y| |
| return x; |
| } |
| |
| let (num, ex) = into_sig_exp::<F>(ux); |
| let (div, ey) = into_sig_exp::<F>(uy); |
| |
| // To compute `(num << ex) % (div << ey)`, first |
| // evaluate `rem = (num << (ex - ey)) % div` ... |
| let rem = reduction::<F>(num, ex - ey, div); |
| // ... so the result will be `rem << ey` |
| |
| if rem.is_zero() { |
| // Return zero with the sign of `x` |
| return F::from_bits(sx); |
| }; |
| |
| // We would shift `rem` up by `ey`, but have to stop at `F::SIG_BITS` |
| let shift = ey.min(F::SIG_BITS - rem.ilog2()); |
| // Anything past that is added to the exponent field |
| let bits = (rem << shift) + (F::Int::cast_from(ey - shift) << F::SIG_BITS); |
| F::from_bits(sx + bits) |
| } |
| |
| /// Given the bits of a finite float, return a tuple of |
| /// - the mantissa with the implicit bit (0 if subnormal, 1 otherwise) |
| /// - the additional exponent past 1, (0 for subnormal, 0 or more otherwise) |
| fn into_sig_exp<F: Float>(mut bits: F::Int) -> (F::Int, u32) { |
| bits &= !F::SIGN_MASK; |
| // Subtract 1 from the exponent, clamping at 0 |
| let sat = bits.checked_sub(F::IMPLICIT_BIT).unwrap_or(F::Int::ZERO); |
| ( |
| bits - (sat & F::EXP_MASK), |
| u32::cast_from(sat >> F::SIG_BITS), |
| ) |
| } |
| |
| /// Compute the remainder `(x * 2.pow(e)) % y` without overflow. |
| fn reduction<F>(mut x: F::Int, e: u32, y: F::Int) -> F::Int |
| where |
| F: Float, |
| F::Int: HInt, |
| <<F as Float>::Int as HInt>::D: NarrowingDiv, |
| { |
| // `f16` only has 5 exponent bits, so even `f16::MAX = 65504.0` is only |
| // a 40-bit integer multiple of the smallest subnormal. |
| if F::BITS == 16 { |
| debug_assert!(F::EXP_MAX - F::EXP_MIN == 29); |
| debug_assert!(e <= 29); |
| let u: u16 = x.cast(); |
| let v: u16 = y.cast(); |
| let u = (u as u64) << e; |
| let v = v as u64; |
| return F::Int::cast_from((u % v) as u16); |
| } |
| |
| // Ensure `x < 2y` for later steps |
| if x >= (y << 1) { |
| // This case is only reached with subnormal divisors, |
| // but it might be better to just normalize all significands |
| // to make this unnecessary. The further calls could potentially |
| // benefit from assuming a specific fixed leading bit position. |
| x %= y; |
| } |
| |
| // The simple implementation seems to be fastest for a short reduction |
| // at this size. The limit here was chosen empirically on an Intel Nehalem. |
| // Less old CPUs that have faster `u64 * u64 -> u128` might not benefit, |
| // and 32-bit systems or architectures without hardware multipliers might |
| // want to do this in more cases. |
| if F::BITS == 64 && e < 32 { |
| // Assumes `x < 2y` |
| for _ in 0..e { |
| x = x.checked_sub(y).unwrap_or(x); |
| x <<= 1; |
| } |
| return x.checked_sub(y).unwrap_or(x); |
| } |
| |
| // Fast path for short reductions |
| if e < F::BITS { |
| let w = x.widen() << e; |
| if let Some((_, r)) = w.checked_narrowing_div_rem(y) { |
| return r; |
| } |
| } |
| |
| // Assumes `x < 2y` |
| crate::support::linear_mul_reduction(x, e, y) |
| } |