| //! The memory subsystem. |
| //! |
| //! Generally, we use `Pointer` to denote memory addresses. However, some operations |
| //! have a "size"-like parameter, and they take `Scalar` for the address because |
| //! if the size is 0, then the pointer can also be a (properly aligned, non-null) |
| //! integer. It is crucial that these operations call `check_align` *before* |
| //! short-circuiting the empty case! |
| |
| use std::borrow::Cow; |
| use std::collections::VecDeque; |
| use std::convert::{TryFrom, TryInto}; |
| use std::fmt; |
| use std::ptr; |
| |
| use rustc_ast::Mutability; |
| use rustc_data_structures::fx::{FxHashMap, FxHashSet}; |
| use rustc_middle::ty::{Instance, ParamEnv, TyCtxt}; |
| use rustc_target::abi::{Align, HasDataLayout, Size, TargetDataLayout}; |
| |
| use super::{ |
| alloc_range, AllocId, AllocMap, AllocRange, Allocation, CheckInAllocMsg, GlobalAlloc, |
| InterpResult, Machine, MayLeak, Pointer, PointerArithmetic, Scalar, ScalarMaybeUninit, |
| }; |
| use crate::util::pretty; |
| |
| #[derive(Debug, PartialEq, Copy, Clone)] |
| pub enum MemoryKind<T> { |
| /// Stack memory. Error if deallocated except during a stack pop. |
| Stack, |
| /// Memory backing vtables. Error if ever deallocated. |
| Vtable, |
| /// Memory allocated by `caller_location` intrinsic. Error if ever deallocated. |
| CallerLocation, |
| /// Additional memory kinds a machine wishes to distinguish from the builtin ones. |
| Machine(T), |
| } |
| |
| impl<T: MayLeak> MayLeak for MemoryKind<T> { |
| #[inline] |
| fn may_leak(self) -> bool { |
| match self { |
| MemoryKind::Stack => false, |
| MemoryKind::Vtable => true, |
| MemoryKind::CallerLocation => true, |
| MemoryKind::Machine(k) => k.may_leak(), |
| } |
| } |
| } |
| |
| impl<T: fmt::Display> fmt::Display for MemoryKind<T> { |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| match self { |
| MemoryKind::Stack => write!(f, "stack variable"), |
| MemoryKind::Vtable => write!(f, "vtable"), |
| MemoryKind::CallerLocation => write!(f, "caller location"), |
| MemoryKind::Machine(m) => write!(f, "{}", m), |
| } |
| } |
| } |
| |
| /// Used by `get_size_and_align` to indicate whether the allocation needs to be live. |
| #[derive(Debug, Copy, Clone)] |
| pub enum AllocCheck { |
| /// Allocation must be live and not a function pointer. |
| Dereferenceable, |
| /// Allocations needs to be live, but may be a function pointer. |
| Live, |
| /// Allocation may be dead. |
| MaybeDead, |
| } |
| |
| /// The value of a function pointer. |
| #[derive(Debug, Copy, Clone)] |
| pub enum FnVal<'tcx, Other> { |
| Instance(Instance<'tcx>), |
| Other(Other), |
| } |
| |
| impl<'tcx, Other> FnVal<'tcx, Other> { |
| pub fn as_instance(self) -> InterpResult<'tcx, Instance<'tcx>> { |
| match self { |
| FnVal::Instance(instance) => Ok(instance), |
| FnVal::Other(_) => { |
| throw_unsup_format!("'foreign' function pointers are not supported in this context") |
| } |
| } |
| } |
| } |
| |
| // `Memory` has to depend on the `Machine` because some of its operations |
| // (e.g., `get`) call a `Machine` hook. |
| pub struct Memory<'mir, 'tcx, M: Machine<'mir, 'tcx>> { |
| /// Allocations local to this instance of the miri engine. The kind |
| /// helps ensure that the same mechanism is used for allocation and |
| /// deallocation. When an allocation is not found here, it is a |
| /// global and looked up in the `tcx` for read access. Some machines may |
| /// have to mutate this map even on a read-only access to a global (because |
| /// they do pointer provenance tracking and the allocations in `tcx` have |
| /// the wrong type), so we let the machine override this type. |
| /// Either way, if the machine allows writing to a global, doing so will |
| /// create a copy of the global allocation here. |
| // FIXME: this should not be public, but interning currently needs access to it |
| pub(super) alloc_map: M::MemoryMap, |
| |
| /// Map for "extra" function pointers. |
| extra_fn_ptr_map: FxHashMap<AllocId, M::ExtraFnVal>, |
| |
| /// To be able to compare pointers with null, and to check alignment for accesses |
| /// to ZSTs (where pointers may dangle), we keep track of the size even for allocations |
| /// that do not exist any more. |
| // FIXME: this should not be public, but interning currently needs access to it |
| pub(super) dead_alloc_map: FxHashMap<AllocId, (Size, Align)>, |
| |
| /// Extra data added by the machine. |
| pub extra: M::MemoryExtra, |
| |
| /// Lets us implement `HasDataLayout`, which is awfully convenient. |
| pub tcx: TyCtxt<'tcx>, |
| } |
| |
| impl<'mir, 'tcx, M: Machine<'mir, 'tcx>> HasDataLayout for Memory<'mir, 'tcx, M> { |
| #[inline] |
| fn data_layout(&self) -> &TargetDataLayout { |
| &self.tcx.data_layout |
| } |
| } |
| |
| /// A reference to some allocation that was already bounds-checked for the given region |
| /// and had the on-access machine hooks run. |
| #[derive(Copy, Clone)] |
| pub struct AllocRef<'a, 'tcx, Tag, Extra> { |
| alloc: &'a Allocation<Tag, Extra>, |
| range: AllocRange, |
| tcx: TyCtxt<'tcx>, |
| alloc_id: AllocId, |
| } |
| /// A reference to some allocation that was already bounds-checked for the given region |
| /// and had the on-access machine hooks run. |
| pub struct AllocRefMut<'a, 'tcx, Tag, Extra> { |
| alloc: &'a mut Allocation<Tag, Extra>, |
| range: AllocRange, |
| tcx: TyCtxt<'tcx>, |
| alloc_id: AllocId, |
| } |
| |
| impl<'mir, 'tcx, M: Machine<'mir, 'tcx>> Memory<'mir, 'tcx, M> { |
| pub fn new(tcx: TyCtxt<'tcx>, extra: M::MemoryExtra) -> Self { |
| Memory { |
| alloc_map: M::MemoryMap::default(), |
| extra_fn_ptr_map: FxHashMap::default(), |
| dead_alloc_map: FxHashMap::default(), |
| extra, |
| tcx, |
| } |
| } |
| |
| /// Call this to turn untagged "global" pointers (obtained via `tcx`) into |
| /// the machine pointer to the allocation. Must never be used |
| /// for any other pointers, nor for TLS statics. |
| /// |
| /// Using the resulting pointer represents a *direct* access to that memory |
| /// (e.g. by directly using a `static`), |
| /// as opposed to access through a pointer that was created by the program. |
| /// |
| /// This function can fail only if `ptr` points to an `extern static`. |
| #[inline] |
| pub fn global_base_pointer( |
| &self, |
| mut ptr: Pointer, |
| ) -> InterpResult<'tcx, Pointer<M::PointerTag>> { |
| // We need to handle `extern static`. |
| let ptr = match self.tcx.get_global_alloc(ptr.alloc_id) { |
| Some(GlobalAlloc::Static(def_id)) if self.tcx.is_thread_local_static(def_id) => { |
| bug!("global memory cannot point to thread-local static") |
| } |
| Some(GlobalAlloc::Static(def_id)) if self.tcx.is_foreign_item(def_id) => { |
| ptr.alloc_id = M::extern_static_alloc_id(self, def_id)?; |
| ptr |
| } |
| _ => { |
| // No need to change the `AllocId`. |
| ptr |
| } |
| }; |
| // And we need to get the tag. |
| let tag = M::tag_global_base_pointer(&self.extra, ptr.alloc_id); |
| Ok(ptr.with_tag(tag)) |
| } |
| |
| pub fn create_fn_alloc( |
| &mut self, |
| fn_val: FnVal<'tcx, M::ExtraFnVal>, |
| ) -> Pointer<M::PointerTag> { |
| let id = match fn_val { |
| FnVal::Instance(instance) => self.tcx.create_fn_alloc(instance), |
| FnVal::Other(extra) => { |
| // FIXME(RalfJung): Should we have a cache here? |
| let id = self.tcx.reserve_alloc_id(); |
| let old = self.extra_fn_ptr_map.insert(id, extra); |
| assert!(old.is_none()); |
| id |
| } |
| }; |
| // Functions are global allocations, so make sure we get the right base pointer. |
| // We know this is not an `extern static` so this cannot fail. |
| self.global_base_pointer(Pointer::from(id)).unwrap() |
| } |
| |
| pub fn allocate( |
| &mut self, |
| size: Size, |
| align: Align, |
| kind: MemoryKind<M::MemoryKind>, |
| ) -> Pointer<M::PointerTag> { |
| let alloc = Allocation::uninit(size, align); |
| self.allocate_with(alloc, kind) |
| } |
| |
| pub fn allocate_bytes( |
| &mut self, |
| bytes: &[u8], |
| align: Align, |
| kind: MemoryKind<M::MemoryKind>, |
| mutability: Mutability, |
| ) -> Pointer<M::PointerTag> { |
| let alloc = Allocation::from_bytes(bytes, align, mutability); |
| self.allocate_with(alloc, kind) |
| } |
| |
| pub fn allocate_with( |
| &mut self, |
| alloc: Allocation, |
| kind: MemoryKind<M::MemoryKind>, |
| ) -> Pointer<M::PointerTag> { |
| let id = self.tcx.reserve_alloc_id(); |
| debug_assert_ne!( |
| Some(kind), |
| M::GLOBAL_KIND.map(MemoryKind::Machine), |
| "dynamically allocating global memory" |
| ); |
| // This is a new allocation, not a new global one, so no `global_base_ptr`. |
| let (alloc, tag) = M::init_allocation_extra(&self.extra, id, Cow::Owned(alloc), Some(kind)); |
| self.alloc_map.insert(id, (kind, alloc.into_owned())); |
| Pointer::from(id).with_tag(tag) |
| } |
| |
| pub fn reallocate( |
| &mut self, |
| ptr: Pointer<M::PointerTag>, |
| old_size_and_align: Option<(Size, Align)>, |
| new_size: Size, |
| new_align: Align, |
| kind: MemoryKind<M::MemoryKind>, |
| ) -> InterpResult<'tcx, Pointer<M::PointerTag>> { |
| if ptr.offset.bytes() != 0 { |
| throw_ub_format!( |
| "reallocating {:?} which does not point to the beginning of an object", |
| ptr |
| ); |
| } |
| |
| // For simplicities' sake, we implement reallocate as "alloc, copy, dealloc". |
| // This happens so rarely, the perf advantage is outweighed by the maintenance cost. |
| let new_ptr = self.allocate(new_size, new_align, kind); |
| let old_size = match old_size_and_align { |
| Some((size, _align)) => size, |
| None => self.get_raw(ptr.alloc_id)?.size(), |
| }; |
| // This will also call the access hooks. |
| self.copy( |
| ptr.into(), |
| Align::ONE, |
| new_ptr.into(), |
| Align::ONE, |
| old_size.min(new_size), |
| /*nonoverlapping*/ true, |
| )?; |
| self.deallocate(ptr, old_size_and_align, kind)?; |
| |
| Ok(new_ptr) |
| } |
| |
| /// Deallocate a local, or do nothing if that local has been made into a global. |
| pub fn deallocate_local(&mut self, ptr: Pointer<M::PointerTag>) -> InterpResult<'tcx> { |
| // The allocation might be already removed by global interning. |
| // This can only really happen in the CTFE instance, not in miri. |
| if self.alloc_map.contains_key(&ptr.alloc_id) { |
| self.deallocate(ptr, None, MemoryKind::Stack) |
| } else { |
| Ok(()) |
| } |
| } |
| |
| pub fn deallocate( |
| &mut self, |
| ptr: Pointer<M::PointerTag>, |
| old_size_and_align: Option<(Size, Align)>, |
| kind: MemoryKind<M::MemoryKind>, |
| ) -> InterpResult<'tcx> { |
| trace!("deallocating: {}", ptr.alloc_id); |
| |
| if ptr.offset.bytes() != 0 { |
| throw_ub_format!( |
| "deallocating {:?} which does not point to the beginning of an object", |
| ptr |
| ); |
| } |
| |
| let (alloc_kind, mut alloc) = match self.alloc_map.remove(&ptr.alloc_id) { |
| Some(alloc) => alloc, |
| None => { |
| // Deallocating global memory -- always an error |
| return Err(match self.tcx.get_global_alloc(ptr.alloc_id) { |
| Some(GlobalAlloc::Function(..)) => { |
| err_ub_format!("deallocating {}, which is a function", ptr.alloc_id) |
| } |
| Some(GlobalAlloc::Static(..) | GlobalAlloc::Memory(..)) => { |
| err_ub_format!("deallocating {}, which is static memory", ptr.alloc_id) |
| } |
| None => err_ub!(PointerUseAfterFree(ptr.alloc_id)), |
| } |
| .into()); |
| } |
| }; |
| |
| if alloc.mutability == Mutability::Not { |
| throw_ub_format!("deallocating immutable allocation {}", ptr.alloc_id); |
| } |
| if alloc_kind != kind { |
| throw_ub_format!( |
| "deallocating {}, which is {} memory, using {} deallocation operation", |
| ptr.alloc_id, |
| alloc_kind, |
| kind |
| ); |
| } |
| if let Some((size, align)) = old_size_and_align { |
| if size != alloc.size() || align != alloc.align { |
| throw_ub_format!( |
| "incorrect layout on deallocation: {} has size {} and alignment {}, but gave size {} and alignment {}", |
| ptr.alloc_id, |
| alloc.size().bytes(), |
| alloc.align.bytes(), |
| size.bytes(), |
| align.bytes(), |
| ) |
| } |
| } |
| |
| // Let the machine take some extra action |
| let size = alloc.size(); |
| M::memory_deallocated(&mut self.extra, &mut alloc.extra, ptr, size)?; |
| |
| // Don't forget to remember size and align of this now-dead allocation |
| let old = self.dead_alloc_map.insert(ptr.alloc_id, (size, alloc.align)); |
| if old.is_some() { |
| bug!("Nothing can be deallocated twice"); |
| } |
| |
| Ok(()) |
| } |
| |
| /// Internal helper function for APIs that offer memory access based on `Scalar` pointers. |
| #[inline(always)] |
| pub(super) fn check_ptr_access( |
| &self, |
| sptr: Scalar<M::PointerTag>, |
| size: Size, |
| align: Align, |
| ) -> InterpResult<'tcx, Option<Pointer<M::PointerTag>>> { |
| let align = M::enforce_alignment(&self.extra).then_some(align); |
| self.check_and_deref_ptr(sptr, size, align, CheckInAllocMsg::MemoryAccessTest, |ptr| { |
| let (size, align) = |
| self.get_size_and_align(ptr.alloc_id, AllocCheck::Dereferenceable)?; |
| Ok((size, align, ptr)) |
| }) |
| } |
| |
| /// Check if the given scalar is allowed to do a memory access of given `size` and `align` |
| /// (ignoring `M::enforce_alignment`). The caller can control the error message for the |
| /// out-of-bounds case. |
| #[inline(always)] |
| pub fn check_ptr_access_align( |
| &self, |
| sptr: Scalar<M::PointerTag>, |
| size: Size, |
| align: Align, |
| msg: CheckInAllocMsg, |
| ) -> InterpResult<'tcx> { |
| self.check_and_deref_ptr(sptr, size, Some(align), msg, |ptr| { |
| let (size, align) = |
| self.get_size_and_align(ptr.alloc_id, AllocCheck::Dereferenceable)?; |
| Ok((size, align, ())) |
| })?; |
| Ok(()) |
| } |
| |
| /// Low-level helper function to check if a ptr is in-bounds and potentially return a reference |
| /// to the allocation it points to. Supports both shared and mutable references, to the actual |
| /// checking is offloaded to a helper closure. `align` defines whether and which alignment check |
| /// is done. Returns `None` for size 0, and otherwise `Some` of what `alloc_size` returned. |
| fn check_and_deref_ptr<T>( |
| &self, |
| sptr: Scalar<M::PointerTag>, |
| size: Size, |
| align: Option<Align>, |
| msg: CheckInAllocMsg, |
| alloc_size: impl FnOnce(Pointer<M::PointerTag>) -> InterpResult<'tcx, (Size, Align, T)>, |
| ) -> InterpResult<'tcx, Option<T>> { |
| fn check_offset_align(offset: u64, align: Align) -> InterpResult<'static> { |
| if offset % align.bytes() == 0 { |
| Ok(()) |
| } else { |
| // The biggest power of two through which `offset` is divisible. |
| let offset_pow2 = 1 << offset.trailing_zeros(); |
| throw_ub!(AlignmentCheckFailed { |
| has: Align::from_bytes(offset_pow2).unwrap(), |
| required: align, |
| }) |
| } |
| } |
| |
| // Normalize to a `Pointer` if we definitely need one. |
| let normalized = if size.bytes() == 0 { |
| // Can be an integer, just take what we got. We do NOT `force_bits` here; |
| // if this is already a `Pointer` we want to do the bounds checks! |
| sptr |
| } else { |
| // A "real" access, we must get a pointer to be able to check the bounds. |
| Scalar::from(self.force_ptr(sptr)?) |
| }; |
| Ok(match normalized.to_bits_or_ptr(self.pointer_size(), self) { |
| Ok(bits) => { |
| let bits = u64::try_from(bits).unwrap(); // it's ptr-sized |
| assert!(size.bytes() == 0); |
| // Must be non-null. |
| if bits == 0 { |
| throw_ub!(DanglingIntPointer(0, msg)) |
| } |
| // Must be aligned. |
| if let Some(align) = align { |
| check_offset_align(bits, align)?; |
| } |
| None |
| } |
| Err(ptr) => { |
| let (allocation_size, alloc_align, ret_val) = alloc_size(ptr)?; |
| // Test bounds. This also ensures non-null. |
| // It is sufficient to check this for the end pointer. The addition |
| // checks for overflow. |
| let end_ptr = ptr.offset(size, self)?; |
| if end_ptr.offset > allocation_size { |
| // equal is okay! |
| throw_ub!(PointerOutOfBounds { ptr: end_ptr.erase_tag(), msg, allocation_size }) |
| } |
| // Test align. Check this last; if both bounds and alignment are violated |
| // we want the error to be about the bounds. |
| if let Some(align) = align { |
| if M::force_int_for_alignment_check(&self.extra) { |
| let bits = self |
| .force_bits(ptr.into(), self.pointer_size()) |
| .expect("ptr-to-int cast for align check should never fail"); |
| check_offset_align(bits.try_into().unwrap(), align)?; |
| } else { |
| // Check allocation alignment and offset alignment. |
| if alloc_align.bytes() < align.bytes() { |
| throw_ub!(AlignmentCheckFailed { has: alloc_align, required: align }); |
| } |
| check_offset_align(ptr.offset.bytes(), align)?; |
| } |
| } |
| |
| // We can still be zero-sized in this branch, in which case we have to |
| // return `None`. |
| if size.bytes() == 0 { None } else { Some(ret_val) } |
| } |
| }) |
| } |
| |
| /// Test if the pointer might be null. |
| pub fn ptr_may_be_null(&self, ptr: Pointer<M::PointerTag>) -> bool { |
| let (size, _align) = self |
| .get_size_and_align(ptr.alloc_id, AllocCheck::MaybeDead) |
| .expect("alloc info with MaybeDead cannot fail"); |
| // If the pointer is out-of-bounds, it may be null. |
| // Note that one-past-the-end (offset == size) is still inbounds, and never null. |
| ptr.offset > size |
| } |
| } |
| |
| /// Allocation accessors |
| impl<'mir, 'tcx, M: Machine<'mir, 'tcx>> Memory<'mir, 'tcx, M> { |
| /// Helper function to obtain a global (tcx) allocation. |
| /// This attempts to return a reference to an existing allocation if |
| /// one can be found in `tcx`. That, however, is only possible if `tcx` and |
| /// this machine use the same pointer tag, so it is indirected through |
| /// `M::tag_allocation`. |
| fn get_global_alloc( |
| memory_extra: &M::MemoryExtra, |
| tcx: TyCtxt<'tcx>, |
| id: AllocId, |
| is_write: bool, |
| ) -> InterpResult<'tcx, Cow<'tcx, Allocation<M::PointerTag, M::AllocExtra>>> { |
| let (alloc, def_id) = match tcx.get_global_alloc(id) { |
| Some(GlobalAlloc::Memory(mem)) => { |
| // Memory of a constant or promoted or anonymous memory referenced by a static. |
| (mem, None) |
| } |
| Some(GlobalAlloc::Function(..)) => throw_ub!(DerefFunctionPointer(id)), |
| None => throw_ub!(PointerUseAfterFree(id)), |
| Some(GlobalAlloc::Static(def_id)) => { |
| assert!(tcx.is_static(def_id)); |
| assert!(!tcx.is_thread_local_static(def_id)); |
| // Notice that every static has two `AllocId` that will resolve to the same |
| // thing here: one maps to `GlobalAlloc::Static`, this is the "lazy" ID, |
| // and the other one is maps to `GlobalAlloc::Memory`, this is returned by |
| // `eval_static_initializer` and it is the "resolved" ID. |
| // The resolved ID is never used by the interpreted program, it is hidden. |
| // This is relied upon for soundness of const-patterns; a pointer to the resolved |
| // ID would "sidestep" the checks that make sure consts do not point to statics! |
| // The `GlobalAlloc::Memory` branch here is still reachable though; when a static |
| // contains a reference to memory that was created during its evaluation (i.e., not |
| // to another static), those inner references only exist in "resolved" form. |
| if tcx.is_foreign_item(def_id) { |
| throw_unsup!(ReadExternStatic(def_id)); |
| } |
| |
| (tcx.eval_static_initializer(def_id)?, Some(def_id)) |
| } |
| }; |
| M::before_access_global(memory_extra, id, alloc, def_id, is_write)?; |
| let alloc = Cow::Borrowed(alloc); |
| // We got tcx memory. Let the machine initialize its "extra" stuff. |
| let (alloc, tag) = M::init_allocation_extra( |
| memory_extra, |
| id, // always use the ID we got as input, not the "hidden" one. |
| alloc, |
| M::GLOBAL_KIND.map(MemoryKind::Machine), |
| ); |
| // Sanity check that this is the same pointer we would have gotten via `global_base_pointer`. |
| debug_assert_eq!(tag, M::tag_global_base_pointer(memory_extra, id)); |
| Ok(alloc) |
| } |
| |
| /// Gives raw access to the `Allocation`, without bounds or alignment checks. |
| /// The caller is responsible for calling the access hooks! |
| fn get_raw( |
| &self, |
| id: AllocId, |
| ) -> InterpResult<'tcx, &Allocation<M::PointerTag, M::AllocExtra>> { |
| // The error type of the inner closure here is somewhat funny. We have two |
| // ways of "erroring": An actual error, or because we got a reference from |
| // `get_global_alloc` that we can actually use directly without inserting anything anywhere. |
| // So the error type is `InterpResult<'tcx, &Allocation<M::PointerTag>>`. |
| let a = self.alloc_map.get_or(id, || { |
| let alloc = Self::get_global_alloc(&self.extra, self.tcx, id, /*is_write*/ false) |
| .map_err(Err)?; |
| match alloc { |
| Cow::Borrowed(alloc) => { |
| // We got a ref, cheaply return that as an "error" so that the |
| // map does not get mutated. |
| Err(Ok(alloc)) |
| } |
| Cow::Owned(alloc) => { |
| // Need to put it into the map and return a ref to that |
| let kind = M::GLOBAL_KIND.expect( |
| "I got a global allocation that I have to copy but the machine does \ |
| not expect that to happen", |
| ); |
| Ok((MemoryKind::Machine(kind), alloc)) |
| } |
| } |
| }); |
| // Now unpack that funny error type |
| match a { |
| Ok(a) => Ok(&a.1), |
| Err(a) => a, |
| } |
| } |
| |
| /// "Safe" (bounds and align-checked) allocation access. |
| pub fn get<'a>( |
| &'a self, |
| sptr: Scalar<M::PointerTag>, |
| size: Size, |
| align: Align, |
| ) -> InterpResult<'tcx, Option<AllocRef<'a, 'tcx, M::PointerTag, M::AllocExtra>>> { |
| let align = M::enforce_alignment(&self.extra).then_some(align); |
| let ptr_and_alloc = self.check_and_deref_ptr( |
| sptr, |
| size, |
| align, |
| CheckInAllocMsg::MemoryAccessTest, |
| |ptr| { |
| let alloc = self.get_raw(ptr.alloc_id)?; |
| Ok((alloc.size(), alloc.align, (ptr, alloc))) |
| }, |
| )?; |
| if let Some((ptr, alloc)) = ptr_and_alloc { |
| M::memory_read(&self.extra, &alloc.extra, ptr, size)?; |
| let range = alloc_range(ptr.offset, size); |
| Ok(Some(AllocRef { alloc, range, tcx: self.tcx, alloc_id: ptr.alloc_id })) |
| } else { |
| // Even in this branch we have to be sure that we actually access the allocation, in |
| // order to ensure that `static FOO: Type = FOO;` causes a cycle error instead of |
| // magically pulling *any* ZST value from the ether. However, the `get_raw` above is |
| // always called when `sptr` is truly a `Pointer`, so we are good. |
| Ok(None) |
| } |
| } |
| |
| /// Return the `extra` field of the given allocation. |
| pub fn get_alloc_extra<'a>(&'a self, id: AllocId) -> InterpResult<'tcx, &'a M::AllocExtra> { |
| Ok(&self.get_raw(id)?.extra) |
| } |
| |
| /// Gives raw mutable access to the `Allocation`, without bounds or alignment checks. |
| /// The caller is responsible for calling the access hooks! |
| /// |
| /// Also returns a ptr to `self.extra` so that the caller can use it in parallel with the |
| /// allocation. |
| fn get_raw_mut( |
| &mut self, |
| id: AllocId, |
| ) -> InterpResult<'tcx, (&mut Allocation<M::PointerTag, M::AllocExtra>, &mut M::MemoryExtra)> |
| { |
| let tcx = self.tcx; |
| let memory_extra = &mut self.extra; |
| let a = self.alloc_map.get_mut_or(id, || { |
| // Need to make a copy, even if `get_global_alloc` is able |
| // to give us a cheap reference. |
| let alloc = Self::get_global_alloc(memory_extra, tcx, id, /*is_write*/ true)?; |
| let kind = M::GLOBAL_KIND.expect( |
| "I got a global allocation that I have to copy but the machine does \ |
| not expect that to happen", |
| ); |
| Ok((MemoryKind::Machine(kind), alloc.into_owned())) |
| }); |
| // Unpack the error type manually because type inference doesn't |
| // work otherwise (and we cannot help it because `impl Trait`) |
| match a { |
| Err(e) => Err(e), |
| Ok(a) => { |
| let a = &mut a.1; |
| if a.mutability == Mutability::Not { |
| throw_ub!(WriteToReadOnly(id)) |
| } |
| Ok((a, memory_extra)) |
| } |
| } |
| } |
| |
| /// "Safe" (bounds and align-checked) allocation access. |
| pub fn get_mut<'a>( |
| &'a mut self, |
| sptr: Scalar<M::PointerTag>, |
| size: Size, |
| align: Align, |
| ) -> InterpResult<'tcx, Option<AllocRefMut<'a, 'tcx, M::PointerTag, M::AllocExtra>>> { |
| let ptr = self.check_ptr_access(sptr, size, align)?; |
| if let Some(ptr) = ptr { |
| let tcx = self.tcx; |
| // FIXME: can we somehow avoid looking up the allocation twice here? |
| // We cannot call `get_raw_mut` inside `check_and_deref_ptr` as that would duplicate `&mut self`. |
| let (alloc, extra) = self.get_raw_mut(ptr.alloc_id)?; |
| M::memory_written(extra, &mut alloc.extra, ptr, size)?; |
| let range = alloc_range(ptr.offset, size); |
| Ok(Some(AllocRefMut { alloc, range, tcx, alloc_id: ptr.alloc_id })) |
| } else { |
| Ok(None) |
| } |
| } |
| |
| /// Return the `extra` field of the given allocation. |
| pub fn get_alloc_extra_mut<'a>( |
| &'a mut self, |
| id: AllocId, |
| ) -> InterpResult<'tcx, (&'a mut M::AllocExtra, &'a mut M::MemoryExtra)> { |
| let (alloc, memory_extra) = self.get_raw_mut(id)?; |
| Ok((&mut alloc.extra, memory_extra)) |
| } |
| |
| /// Obtain the size and alignment of an allocation, even if that allocation has |
| /// been deallocated. |
| /// |
| /// If `liveness` is `AllocCheck::MaybeDead`, this function always returns `Ok`. |
| pub fn get_size_and_align( |
| &self, |
| id: AllocId, |
| liveness: AllocCheck, |
| ) -> InterpResult<'static, (Size, Align)> { |
| // # Regular allocations |
| // Don't use `self.get_raw` here as that will |
| // a) cause cycles in case `id` refers to a static |
| // b) duplicate a global's allocation in miri |
| if let Some((_, alloc)) = self.alloc_map.get(id) { |
| return Ok((alloc.size(), alloc.align)); |
| } |
| |
| // # Function pointers |
| // (both global from `alloc_map` and local from `extra_fn_ptr_map`) |
| if self.get_fn_alloc(id).is_some() { |
| return if let AllocCheck::Dereferenceable = liveness { |
| // The caller requested no function pointers. |
| throw_ub!(DerefFunctionPointer(id)) |
| } else { |
| Ok((Size::ZERO, Align::ONE)) |
| }; |
| } |
| |
| // # Statics |
| // Can't do this in the match argument, we may get cycle errors since the lock would |
| // be held throughout the match. |
| match self.tcx.get_global_alloc(id) { |
| Some(GlobalAlloc::Static(did)) => { |
| assert!(!self.tcx.is_thread_local_static(did)); |
| // Use size and align of the type. |
| let ty = self.tcx.type_of(did); |
| let layout = self.tcx.layout_of(ParamEnv::empty().and(ty)).unwrap(); |
| Ok((layout.size, layout.align.abi)) |
| } |
| Some(GlobalAlloc::Memory(alloc)) => { |
| // Need to duplicate the logic here, because the global allocations have |
| // different associated types than the interpreter-local ones. |
| Ok((alloc.size(), alloc.align)) |
| } |
| Some(GlobalAlloc::Function(_)) => bug!("We already checked function pointers above"), |
| // The rest must be dead. |
| None => { |
| if let AllocCheck::MaybeDead = liveness { |
| // Deallocated pointers are allowed, we should be able to find |
| // them in the map. |
| Ok(*self |
| .dead_alloc_map |
| .get(&id) |
| .expect("deallocated pointers should all be recorded in `dead_alloc_map`")) |
| } else { |
| throw_ub!(PointerUseAfterFree(id)) |
| } |
| } |
| } |
| } |
| |
| fn get_fn_alloc(&self, id: AllocId) -> Option<FnVal<'tcx, M::ExtraFnVal>> { |
| trace!("reading fn ptr: {}", id); |
| if let Some(extra) = self.extra_fn_ptr_map.get(&id) { |
| Some(FnVal::Other(*extra)) |
| } else { |
| match self.tcx.get_global_alloc(id) { |
| Some(GlobalAlloc::Function(instance)) => Some(FnVal::Instance(instance)), |
| _ => None, |
| } |
| } |
| } |
| |
| pub fn get_fn( |
| &self, |
| ptr: Scalar<M::PointerTag>, |
| ) -> InterpResult<'tcx, FnVal<'tcx, M::ExtraFnVal>> { |
| let ptr = self.force_ptr(ptr)?; // We definitely need a pointer value. |
| if ptr.offset.bytes() != 0 { |
| throw_ub!(InvalidFunctionPointer(ptr.erase_tag())) |
| } |
| self.get_fn_alloc(ptr.alloc_id) |
| .ok_or_else(|| err_ub!(InvalidFunctionPointer(ptr.erase_tag())).into()) |
| } |
| |
| pub fn mark_immutable(&mut self, id: AllocId) -> InterpResult<'tcx> { |
| self.get_raw_mut(id)?.0.mutability = Mutability::Not; |
| Ok(()) |
| } |
| |
| /// Create a lazy debug printer that prints the given allocation and all allocations it points |
| /// to, recursively. |
| #[must_use] |
| pub fn dump_alloc<'a>(&'a self, id: AllocId) -> DumpAllocs<'a, 'mir, 'tcx, M> { |
| self.dump_allocs(vec![id]) |
| } |
| |
| /// Create a lazy debug printer for a list of allocations and all allocations they point to, |
| /// recursively. |
| #[must_use] |
| pub fn dump_allocs<'a>(&'a self, mut allocs: Vec<AllocId>) -> DumpAllocs<'a, 'mir, 'tcx, M> { |
| allocs.sort(); |
| allocs.dedup(); |
| DumpAllocs { mem: self, allocs } |
| } |
| |
| /// Print leaked memory. Allocations reachable from `static_roots` or a `Global` allocation |
| /// are not considered leaked. Leaks whose kind `may_leak()` returns true are not reported. |
| pub fn leak_report(&self, static_roots: &[AllocId]) -> usize { |
| // Collect the set of allocations that are *reachable* from `Global` allocations. |
| let reachable = { |
| let mut reachable = FxHashSet::default(); |
| let global_kind = M::GLOBAL_KIND.map(MemoryKind::Machine); |
| let mut todo: Vec<_> = self.alloc_map.filter_map_collect(move |&id, &(kind, _)| { |
| if Some(kind) == global_kind { Some(id) } else { None } |
| }); |
| todo.extend(static_roots); |
| while let Some(id) = todo.pop() { |
| if reachable.insert(id) { |
| // This is a new allocation, add its relocations to `todo`. |
| if let Some((_, alloc)) = self.alloc_map.get(id) { |
| todo.extend(alloc.relocations().values().map(|&(_, target_id)| target_id)); |
| } |
| } |
| } |
| reachable |
| }; |
| |
| // All allocations that are *not* `reachable` and *not* `may_leak` are considered leaking. |
| let leaks: Vec<_> = self.alloc_map.filter_map_collect(|&id, &(kind, _)| { |
| if kind.may_leak() || reachable.contains(&id) { None } else { Some(id) } |
| }); |
| let n = leaks.len(); |
| if n > 0 { |
| eprintln!("The following memory was leaked: {:?}", self.dump_allocs(leaks)); |
| } |
| n |
| } |
| |
| /// This is used by [priroda](https://github.com/oli-obk/priroda) |
| pub fn alloc_map(&self) -> &M::MemoryMap { |
| &self.alloc_map |
| } |
| } |
| |
| #[doc(hidden)] |
| /// There's no way to use this directly, it's just a helper struct for the `dump_alloc(s)` methods. |
| pub struct DumpAllocs<'a, 'mir, 'tcx, M: Machine<'mir, 'tcx>> { |
| mem: &'a Memory<'mir, 'tcx, M>, |
| allocs: Vec<AllocId>, |
| } |
| |
| impl<'a, 'mir, 'tcx, M: Machine<'mir, 'tcx>> std::fmt::Debug for DumpAllocs<'a, 'mir, 'tcx, M> { |
| fn fmt(&self, fmt: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { |
| // Cannot be a closure because it is generic in `Tag`, `Extra`. |
| fn write_allocation_track_relocs<'tcx, Tag: Copy + fmt::Debug, Extra>( |
| fmt: &mut std::fmt::Formatter<'_>, |
| tcx: TyCtxt<'tcx>, |
| allocs_to_print: &mut VecDeque<AllocId>, |
| alloc: &Allocation<Tag, Extra>, |
| ) -> std::fmt::Result { |
| for &(_, target_id) in alloc.relocations().values() { |
| allocs_to_print.push_back(target_id); |
| } |
| write!(fmt, "{}", pretty::display_allocation(tcx, alloc)) |
| } |
| |
| let mut allocs_to_print: VecDeque<_> = self.allocs.iter().copied().collect(); |
| // `allocs_printed` contains all allocations that we have already printed. |
| let mut allocs_printed = FxHashSet::default(); |
| |
| while let Some(id) = allocs_to_print.pop_front() { |
| if !allocs_printed.insert(id) { |
| // Already printed, so skip this. |
| continue; |
| } |
| |
| write!(fmt, "{}", id)?; |
| match self.mem.alloc_map.get(id) { |
| Some(&(kind, ref alloc)) => { |
| // normal alloc |
| write!(fmt, " ({}, ", kind)?; |
| write_allocation_track_relocs( |
| &mut *fmt, |
| self.mem.tcx, |
| &mut allocs_to_print, |
| alloc, |
| )?; |
| } |
| None => { |
| // global alloc |
| match self.mem.tcx.get_global_alloc(id) { |
| Some(GlobalAlloc::Memory(alloc)) => { |
| write!(fmt, " (unchanged global, ")?; |
| write_allocation_track_relocs( |
| &mut *fmt, |
| self.mem.tcx, |
| &mut allocs_to_print, |
| alloc, |
| )?; |
| } |
| Some(GlobalAlloc::Function(func)) => { |
| write!(fmt, " (fn: {})", func)?; |
| } |
| Some(GlobalAlloc::Static(did)) => { |
| write!(fmt, " (static: {})", self.mem.tcx.def_path_str(did))?; |
| } |
| None => { |
| write!(fmt, " (deallocated)")?; |
| } |
| } |
| } |
| } |
| writeln!(fmt)?; |
| } |
| Ok(()) |
| } |
| } |
| |
| /// Reading and writing. |
| impl<'tcx, 'a, Tag: Copy, Extra> AllocRefMut<'a, 'tcx, Tag, Extra> { |
| pub fn write_scalar( |
| &mut self, |
| range: AllocRange, |
| val: ScalarMaybeUninit<Tag>, |
| ) -> InterpResult<'tcx> { |
| Ok(self |
| .alloc |
| .write_scalar(&self.tcx, self.range.subrange(range), val) |
| .map_err(|e| e.to_interp_error(self.alloc_id))?) |
| } |
| |
| pub fn write_ptr_sized( |
| &mut self, |
| offset: Size, |
| val: ScalarMaybeUninit<Tag>, |
| ) -> InterpResult<'tcx> { |
| self.write_scalar(alloc_range(offset, self.tcx.data_layout().pointer_size), val) |
| } |
| } |
| |
| impl<'tcx, 'a, Tag: Copy, Extra> AllocRef<'a, 'tcx, Tag, Extra> { |
| pub fn read_scalar(&self, range: AllocRange) -> InterpResult<'tcx, ScalarMaybeUninit<Tag>> { |
| Ok(self |
| .alloc |
| .read_scalar(&self.tcx, self.range.subrange(range)) |
| .map_err(|e| e.to_interp_error(self.alloc_id))?) |
| } |
| |
| pub fn read_ptr_sized(&self, offset: Size) -> InterpResult<'tcx, ScalarMaybeUninit<Tag>> { |
| self.read_scalar(alloc_range(offset, self.tcx.data_layout().pointer_size)) |
| } |
| |
| pub fn check_bytes(&self, range: AllocRange, allow_uninit_and_ptr: bool) -> InterpResult<'tcx> { |
| Ok(self |
| .alloc |
| .check_bytes(&self.tcx, self.range.subrange(range), allow_uninit_and_ptr) |
| .map_err(|e| e.to_interp_error(self.alloc_id))?) |
| } |
| } |
| |
| impl<'mir, 'tcx, M: Machine<'mir, 'tcx>> Memory<'mir, 'tcx, M> { |
| /// Reads the given number of bytes from memory. Returns them as a slice. |
| /// |
| /// Performs appropriate bounds checks. |
| pub fn read_bytes(&self, sptr: Scalar<M::PointerTag>, size: Size) -> InterpResult<'tcx, &[u8]> { |
| let alloc_ref = match self.get(sptr, size, Align::ONE)? { |
| Some(a) => a, |
| None => return Ok(&[]), // zero-sized access |
| }; |
| // Side-step AllocRef and directly access the underlying bytes more efficiently. |
| // (We are staying inside the bounds here so all is good.) |
| Ok(alloc_ref |
| .alloc |
| .get_bytes(&alloc_ref.tcx, alloc_ref.range) |
| .map_err(|e| e.to_interp_error(alloc_ref.alloc_id))?) |
| } |
| |
| /// Writes the given stream of bytes into memory. |
| /// |
| /// Performs appropriate bounds checks. |
| pub fn write_bytes( |
| &mut self, |
| sptr: Scalar<M::PointerTag>, |
| src: impl IntoIterator<Item = u8>, |
| ) -> InterpResult<'tcx> { |
| let mut src = src.into_iter(); |
| let (lower, upper) = src.size_hint(); |
| let len = upper.expect("can only write bounded iterators"); |
| assert_eq!(lower, len, "can only write iterators with a precise length"); |
| |
| let size = Size::from_bytes(len); |
| let alloc_ref = match self.get_mut(sptr, size, Align::ONE)? { |
| Some(alloc_ref) => alloc_ref, |
| None => { |
| // zero-sized access |
| assert_matches!( |
| src.next(), |
| None, |
| "iterator said it was empty but returned an element" |
| ); |
| return Ok(()); |
| } |
| }; |
| |
| // Side-step AllocRef and directly access the underlying bytes more efficiently. |
| // (We are staying inside the bounds here so all is good.) |
| let bytes = alloc_ref.alloc.get_bytes_mut(&alloc_ref.tcx, alloc_ref.range); |
| // `zip` would stop when the first iterator ends; we want to definitely |
| // cover all of `bytes`. |
| for dest in bytes { |
| *dest = src.next().expect("iterator was shorter than it said it would be"); |
| } |
| assert_matches!(src.next(), None, "iterator was longer than it said it would be"); |
| Ok(()) |
| } |
| |
| pub fn copy( |
| &mut self, |
| src: Scalar<M::PointerTag>, |
| src_align: Align, |
| dest: Scalar<M::PointerTag>, |
| dest_align: Align, |
| size: Size, |
| nonoverlapping: bool, |
| ) -> InterpResult<'tcx> { |
| self.copy_repeatedly(src, src_align, dest, dest_align, size, 1, nonoverlapping) |
| } |
| |
| pub fn copy_repeatedly( |
| &mut self, |
| src: Scalar<M::PointerTag>, |
| src_align: Align, |
| dest: Scalar<M::PointerTag>, |
| dest_align: Align, |
| size: Size, |
| num_copies: u64, |
| nonoverlapping: bool, |
| ) -> InterpResult<'tcx> { |
| let tcx = self.tcx; |
| // We need to do our own bounds-checks. |
| let src = self.check_ptr_access(src, size, src_align)?; |
| let dest = self.check_ptr_access(dest, size * num_copies, dest_align)?; // `Size` multiplication |
| |
| // FIXME: we look up both allocations twice here, once ebfore for the `check_ptr_access` |
| // and once below to get the underlying `&[mut] Allocation`. |
| |
| // Source alloc preparations and access hooks. |
| let src = match src { |
| None => return Ok(()), // Zero-sized *source*, that means dst is also zero-sized and we have nothing to do. |
| Some(src_ptr) => src_ptr, |
| }; |
| let src_alloc = self.get_raw(src.alloc_id)?; |
| M::memory_read(&self.extra, &src_alloc.extra, src, size)?; |
| // We need the `dest` ptr for the next operation, so we get it now. |
| // We already did the source checks and called the hooks so we are good to return early. |
| let dest = match dest { |
| None => return Ok(()), // Zero-sized *destiantion*. |
| Some(dest_ptr) => dest_ptr, |
| }; |
| |
| // first copy the relocations to a temporary buffer, because |
| // `get_bytes_mut` will clear the relocations, which is correct, |
| // since we don't want to keep any relocations at the target. |
| // (`get_bytes_with_uninit_and_ptr` below checks that there are no |
| // relocations overlapping the edges; those would not be handled correctly). |
| let relocations = src_alloc.prepare_relocation_copy( |
| self, |
| alloc_range(src.offset, size), |
| dest.offset, |
| num_copies, |
| ); |
| // Prepare a copy of the initialization mask. |
| let compressed = src_alloc.compress_uninit_range(src, size); |
| // This checks relocation edges on the src. |
| let src_bytes = src_alloc |
| .get_bytes_with_uninit_and_ptr(&tcx, alloc_range(src.offset, size)) |
| .map_err(|e| e.to_interp_error(src.alloc_id))? |
| .as_ptr(); // raw ptr, so we can also get a ptr to the destination allocation |
| |
| // Destination alloc preparations and access hooks. |
| let (dest_alloc, extra) = self.get_raw_mut(dest.alloc_id)?; |
| M::memory_written(extra, &mut dest_alloc.extra, dest, size * num_copies)?; |
| let dest_bytes = dest_alloc |
| .get_bytes_mut_ptr(&tcx, alloc_range(dest.offset, size * num_copies)) |
| .as_mut_ptr(); |
| |
| if compressed.no_bytes_init() { |
| // Fast path: If all bytes are `uninit` then there is nothing to copy. The target range |
| // is marked as uninitialized but we otherwise omit changing the byte representation which may |
| // be arbitrary for uninitialized bytes. |
| // This also avoids writing to the target bytes so that the backing allocation is never |
| // touched if the bytes stay uninitialized for the whole interpreter execution. On contemporary |
| // operating system this can avoid physically allocating the page. |
| dest_alloc.mark_init(alloc_range(dest.offset, size * num_copies), false); // `Size` multiplication |
| dest_alloc.mark_relocation_range(relocations); |
| return Ok(()); |
| } |
| |
| // SAFE: The above indexing would have panicked if there weren't at least `size` bytes |
| // behind `src` and `dest`. Also, we use the overlapping-safe `ptr::copy` if `src` and |
| // `dest` could possibly overlap. |
| // The pointers above remain valid even if the `HashMap` table is moved around because they |
| // point into the `Vec` storing the bytes. |
| unsafe { |
| if src.alloc_id == dest.alloc_id { |
| if nonoverlapping { |
| // `Size` additions |
| if (src.offset <= dest.offset && src.offset + size > dest.offset) |
| || (dest.offset <= src.offset && dest.offset + size > src.offset) |
| { |
| throw_ub_format!("copy_nonoverlapping called on overlapping ranges") |
| } |
| } |
| |
| for i in 0..num_copies { |
| ptr::copy( |
| src_bytes, |
| dest_bytes.add((size * i).bytes_usize()), // `Size` multiplication |
| size.bytes_usize(), |
| ); |
| } |
| } else { |
| for i in 0..num_copies { |
| ptr::copy_nonoverlapping( |
| src_bytes, |
| dest_bytes.add((size * i).bytes_usize()), // `Size` multiplication |
| size.bytes_usize(), |
| ); |
| } |
| } |
| } |
| |
| // now fill in all the "init" data |
| dest_alloc.mark_compressed_init_range(&compressed, dest, size, num_copies); |
| // copy the relocations to the destination |
| dest_alloc.mark_relocation_range(relocations); |
| |
| Ok(()) |
| } |
| } |
| |
| /// Machine pointer introspection. |
| impl<'mir, 'tcx, M: Machine<'mir, 'tcx>> Memory<'mir, 'tcx, M> { |
| pub fn force_ptr( |
| &self, |
| scalar: Scalar<M::PointerTag>, |
| ) -> InterpResult<'tcx, Pointer<M::PointerTag>> { |
| match scalar { |
| Scalar::Ptr(ptr) => Ok(ptr), |
| _ => M::int_to_ptr(&self, scalar.to_machine_usize(self)?), |
| } |
| } |
| |
| pub fn force_bits( |
| &self, |
| scalar: Scalar<M::PointerTag>, |
| size: Size, |
| ) -> InterpResult<'tcx, u128> { |
| match scalar.to_bits_or_ptr(size, self) { |
| Ok(bits) => Ok(bits), |
| Err(ptr) => Ok(M::ptr_to_int(&self, ptr)?.into()), |
| } |
| } |
| } |