blob: 82e5fe05db5e3c12524b99d97358d1972ed1e37c [file] [log] [blame]
use super::poison::once::ExclusiveState;
use crate::cell::UnsafeCell;
use crate::mem::ManuallyDrop;
use crate::ops::{Deref, DerefMut};
use crate::panic::{RefUnwindSafe, UnwindSafe};
use crate::sync::Once;
use crate::{fmt, ptr};
// We use the state of a Once as discriminant value. Upon creation, the state is
// "incomplete" and `f` contains the initialization closure. In the first call to
// `call_once`, `f` is taken and run. If it succeeds, `value` is set and the state
// is changed to "complete". If it panics, the Once is poisoned, so none of the
// two fields is initialized.
union Data<T, F> {
value: ManuallyDrop<T>,
f: ManuallyDrop<F>,
}
/// A value which is initialized on the first access.
///
/// This type is a thread-safe [`LazyCell`], and can be used in statics.
/// Since initialization may be called from multiple threads, any
/// dereferencing call will block the calling thread if another
/// initialization routine is currently running.
///
/// [`LazyCell`]: crate::cell::LazyCell
///
/// # Examples
///
/// Initialize static variables with `LazyLock`.
/// ```
/// use std::sync::LazyLock;
///
/// // Note: static items do not call [`Drop`] on program termination, so this won't be deallocated.
/// // this is fine, as the OS can deallocate the terminated program faster than we can free memory
/// // but tools like valgrind might report "memory leaks" as it isn't obvious this is intentional.
/// static DEEP_THOUGHT: LazyLock<String> = LazyLock::new(|| {
/// # mod another_crate {
/// # pub fn great_question() -> String { "42".to_string() }
/// # }
/// // M3 Ultra takes about 16 million years in --release config
/// another_crate::great_question()
/// });
///
/// // The `String` is built, stored in the `LazyLock`, and returned as `&String`.
/// let _ = &*DEEP_THOUGHT;
/// ```
///
/// Initialize fields with `LazyLock`.
/// ```
/// use std::sync::LazyLock;
///
/// #[derive(Debug)]
/// struct UseCellLock {
/// number: LazyLock<u32>,
/// }
/// fn main() {
/// let lock: LazyLock<u32> = LazyLock::new(|| 0u32);
///
/// let data = UseCellLock { number: lock };
/// println!("{}", *data.number);
/// }
/// ```
#[stable(feature = "lazy_cell", since = "1.80.0")]
pub struct LazyLock<T, F = fn() -> T> {
// FIXME(nonpoison_once): if possible, switch to nonpoison version once it is available
once: Once,
data: UnsafeCell<Data<T, F>>,
}
impl<T, F: FnOnce() -> T> LazyLock<T, F> {
/// Creates a new lazy value with the given initializing function.
///
/// # Examples
///
/// ```
/// use std::sync::LazyLock;
///
/// let hello = "Hello, World!".to_string();
///
/// let lazy = LazyLock::new(|| hello.to_uppercase());
///
/// assert_eq!(&*lazy, "HELLO, WORLD!");
/// ```
#[inline]
#[stable(feature = "lazy_cell", since = "1.80.0")]
#[rustc_const_stable(feature = "lazy_cell", since = "1.80.0")]
pub const fn new(f: F) -> LazyLock<T, F> {
LazyLock { once: Once::new(), data: UnsafeCell::new(Data { f: ManuallyDrop::new(f) }) }
}
/// Creates a new lazy value that is already initialized.
#[inline]
#[cfg(test)]
pub(crate) fn preinit(value: T) -> LazyLock<T, F> {
let once = Once::new();
once.call_once(|| {});
LazyLock { once, data: UnsafeCell::new(Data { value: ManuallyDrop::new(value) }) }
}
/// Consumes this `LazyLock` returning the stored value.
///
/// Returns `Ok(value)` if `Lazy` is initialized and `Err(f)` otherwise.
///
/// # Examples
///
/// ```
/// #![feature(lazy_cell_into_inner)]
///
/// use std::sync::LazyLock;
///
/// let hello = "Hello, World!".to_string();
///
/// let lazy = LazyLock::new(|| hello.to_uppercase());
///
/// assert_eq!(&*lazy, "HELLO, WORLD!");
/// assert_eq!(LazyLock::into_inner(lazy).ok(), Some("HELLO, WORLD!".to_string()));
/// ```
#[unstable(feature = "lazy_cell_into_inner", issue = "125623")]
pub fn into_inner(mut this: Self) -> Result<T, F> {
let state = this.once.state();
match state {
ExclusiveState::Poisoned => panic_poisoned(),
state => {
let this = ManuallyDrop::new(this);
let data = unsafe { ptr::read(&this.data) }.into_inner();
match state {
ExclusiveState::Incomplete => Err(ManuallyDrop::into_inner(unsafe { data.f })),
ExclusiveState::Complete => Ok(ManuallyDrop::into_inner(unsafe { data.value })),
ExclusiveState::Poisoned => unreachable!(),
}
}
}
}
/// Forces the evaluation of this lazy value and returns a mutable reference to
/// the result.
///
/// # Examples
///
/// ```
/// #![feature(lazy_get)]
/// use std::sync::LazyLock;
///
/// let mut lazy = LazyLock::new(|| 92);
///
/// let p = LazyLock::force_mut(&mut lazy);
/// assert_eq!(*p, 92);
/// *p = 44;
/// assert_eq!(*lazy, 44);
/// ```
#[inline]
#[unstable(feature = "lazy_get", issue = "129333")]
pub fn force_mut(this: &mut LazyLock<T, F>) -> &mut T {
#[cold]
/// # Safety
/// May only be called when the state is `Incomplete`.
unsafe fn really_init_mut<T, F: FnOnce() -> T>(this: &mut LazyLock<T, F>) -> &mut T {
struct PoisonOnPanic<'a, T, F>(&'a mut LazyLock<T, F>);
impl<T, F> Drop for PoisonOnPanic<'_, T, F> {
#[inline]
fn drop(&mut self) {
self.0.once.set_state(ExclusiveState::Poisoned);
}
}
// SAFETY: We always poison if the initializer panics (then we never check the data),
// or set the data on success.
let f = unsafe { ManuallyDrop::take(&mut this.data.get_mut().f) };
// INVARIANT: Initiated from mutable reference, don't drop because we read it.
let guard = PoisonOnPanic(this);
let data = f();
guard.0.data.get_mut().value = ManuallyDrop::new(data);
guard.0.once.set_state(ExclusiveState::Complete);
core::mem::forget(guard);
// SAFETY: We put the value there above.
unsafe { &mut this.data.get_mut().value }
}
let state = this.once.state();
match state {
ExclusiveState::Poisoned => panic_poisoned(),
// SAFETY: The `Once` states we completed the initialization.
ExclusiveState::Complete => unsafe { &mut this.data.get_mut().value },
// SAFETY: The state is `Incomplete`.
ExclusiveState::Incomplete => unsafe { really_init_mut(this) },
}
}
/// Forces the evaluation of this lazy value and returns a reference to
/// result. This is equivalent to the `Deref` impl, but is explicit.
///
/// This method will block the calling thread if another initialization
/// routine is currently running.
///
/// # Examples
///
/// ```
/// use std::sync::LazyLock;
///
/// let lazy = LazyLock::new(|| 92);
///
/// assert_eq!(LazyLock::force(&lazy), &92);
/// assert_eq!(&*lazy, &92);
/// ```
#[inline]
#[stable(feature = "lazy_cell", since = "1.80.0")]
pub fn force(this: &LazyLock<T, F>) -> &T {
this.once.call_once(|| {
// SAFETY: `call_once` only runs this closure once, ever.
let data = unsafe { &mut *this.data.get() };
let f = unsafe { ManuallyDrop::take(&mut data.f) };
let value = f();
data.value = ManuallyDrop::new(value);
});
// SAFETY:
// There are four possible scenarios:
// * the closure was called and initialized `value`.
// * the closure was called and panicked, so this point is never reached.
// * the closure was not called, but a previous call initialized `value`.
// * the closure was not called because the Once is poisoned, so this point
// is never reached.
// So `value` has definitely been initialized and will not be modified again.
unsafe { &*(*this.data.get()).value }
}
}
impl<T, F> LazyLock<T, F> {
/// Returns a mutable reference to the value if initialized, or `None` if not.
///
/// # Examples
///
/// ```
/// #![feature(lazy_get)]
///
/// use std::sync::LazyLock;
///
/// let mut lazy = LazyLock::new(|| 92);
///
/// assert_eq!(LazyLock::get_mut(&mut lazy), None);
/// let _ = LazyLock::force(&lazy);
/// *LazyLock::get_mut(&mut lazy).unwrap() = 44;
/// assert_eq!(*lazy, 44);
/// ```
#[inline]
#[unstable(feature = "lazy_get", issue = "129333")]
pub fn get_mut(this: &mut LazyLock<T, F>) -> Option<&mut T> {
// `state()` does not perform an atomic load, so prefer it over `is_complete()`.
let state = this.once.state();
match state {
// SAFETY:
// The closure has been run successfully, so `value` has been initialized.
ExclusiveState::Complete => Some(unsafe { &mut this.data.get_mut().value }),
_ => None,
}
}
/// Returns a reference to the value if initialized, or `None` if not.
///
/// # Examples
///
/// ```
/// #![feature(lazy_get)]
///
/// use std::sync::LazyLock;
///
/// let lazy = LazyLock::new(|| 92);
///
/// assert_eq!(LazyLock::get(&lazy), None);
/// let _ = LazyLock::force(&lazy);
/// assert_eq!(LazyLock::get(&lazy), Some(&92));
/// ```
#[inline]
#[unstable(feature = "lazy_get", issue = "129333")]
pub fn get(this: &LazyLock<T, F>) -> Option<&T> {
if this.once.is_completed() {
// SAFETY:
// The closure has been run successfully, so `value` has been initialized
// and will not be modified again.
Some(unsafe { &(*this.data.get()).value })
} else {
None
}
}
}
#[stable(feature = "lazy_cell", since = "1.80.0")]
impl<T, F> Drop for LazyLock<T, F> {
fn drop(&mut self) {
match self.once.state() {
ExclusiveState::Incomplete => unsafe { ManuallyDrop::drop(&mut self.data.get_mut().f) },
ExclusiveState::Complete => unsafe {
ManuallyDrop::drop(&mut self.data.get_mut().value)
},
ExclusiveState::Poisoned => {}
}
}
}
#[stable(feature = "lazy_cell", since = "1.80.0")]
impl<T, F: FnOnce() -> T> Deref for LazyLock<T, F> {
type Target = T;
/// Dereferences the value.
///
/// This method will block the calling thread if another initialization
/// routine is currently running.
///
#[inline]
fn deref(&self) -> &T {
LazyLock::force(self)
}
}
#[stable(feature = "lazy_deref_mut", since = "CURRENT_RUSTC_VERSION")]
impl<T, F: FnOnce() -> T> DerefMut for LazyLock<T, F> {
#[inline]
fn deref_mut(&mut self) -> &mut T {
LazyLock::force_mut(self)
}
}
#[stable(feature = "lazy_cell", since = "1.80.0")]
impl<T: Default> Default for LazyLock<T> {
/// Creates a new lazy value using `Default` as the initializing function.
#[inline]
fn default() -> LazyLock<T> {
LazyLock::new(T::default)
}
}
#[stable(feature = "lazy_cell", since = "1.80.0")]
impl<T: fmt::Debug, F> fmt::Debug for LazyLock<T, F> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let mut d = f.debug_tuple("LazyLock");
match LazyLock::get(self) {
Some(v) => d.field(v),
None => d.field(&format_args!("<uninit>")),
};
d.finish()
}
}
#[cold]
#[inline(never)]
fn panic_poisoned() -> ! {
panic!("LazyLock instance has previously been poisoned")
}
// We never create a `&F` from a `&LazyLock<T, F>` so it is fine
// to not impl `Sync` for `F`.
#[stable(feature = "lazy_cell", since = "1.80.0")]
unsafe impl<T: Sync + Send, F: Send> Sync for LazyLock<T, F> {}
// auto-derived `Send` impl is OK.
#[stable(feature = "lazy_cell", since = "1.80.0")]
impl<T: RefUnwindSafe + UnwindSafe, F: UnwindSafe> RefUnwindSafe for LazyLock<T, F> {}
#[stable(feature = "lazy_cell", since = "1.80.0")]
impl<T: UnwindSafe, F: UnwindSafe> UnwindSafe for LazyLock<T, F> {}