| //! Helper trait for generic float types. |
| |
| use core::f64; |
| |
| use crate::fmt::{Debug, LowerExp}; |
| use crate::num::FpCategory; |
| use crate::ops::{self, Add, Div, Mul, Neg}; |
| |
| /// Lossy `as` casting between two types. |
| pub trait CastInto<T: Copy>: Copy { |
| fn cast(self) -> T; |
| } |
| |
| /// Collection of traits that allow us to be generic over integer size. |
| pub trait Integer: |
| Sized |
| + Clone |
| + Copy |
| + Debug |
| + ops::Shr<u32, Output = Self> |
| + ops::Shl<u32, Output = Self> |
| + ops::BitAnd<Output = Self> |
| + ops::BitOr<Output = Self> |
| + PartialEq |
| + CastInto<i16> |
| { |
| const ZERO: Self; |
| const ONE: Self; |
| } |
| |
| macro_rules! int { |
| ($($ty:ty),+) => { |
| $( |
| impl CastInto<i16> for $ty { |
| fn cast(self) -> i16 { |
| self as i16 |
| } |
| } |
| |
| impl Integer for $ty { |
| const ZERO: Self = 0; |
| const ONE: Self = 1; |
| } |
| )+ |
| } |
| } |
| |
| int!(u16, u32, u64); |
| |
| /// A helper trait to avoid duplicating basically all the conversion code for IEEE floats. |
| /// |
| /// See the parent module's doc comment for why this is necessary. |
| /// |
| /// Should **never ever** be implemented for other types or be used outside the `dec2flt` module. |
| #[doc(hidden)] |
| pub trait RawFloat: |
| Sized |
| + Div<Output = Self> |
| + Neg<Output = Self> |
| + Mul<Output = Self> |
| + Add<Output = Self> |
| + LowerExp |
| + PartialEq |
| + PartialOrd |
| + Default |
| + Clone |
| + Copy |
| + Debug |
| { |
| /// The unsigned integer with the same size as the float |
| type Int: Integer + Into<u64>; |
| |
| /* general constants */ |
| |
| const INFINITY: Self; |
| const NEG_INFINITY: Self; |
| const NAN: Self; |
| const NEG_NAN: Self; |
| |
| /// Bit width of the float |
| const BITS: u32; |
| |
| /// The number of bits in the significand, *including* the hidden bit. |
| const SIG_TOTAL_BITS: u32; |
| |
| const EXP_MASK: Self::Int; |
| const SIG_MASK: Self::Int; |
| |
| /// The number of bits in the significand, *excluding* the hidden bit. |
| const SIG_BITS: u32 = Self::SIG_TOTAL_BITS - 1; |
| |
| /// Number of bits in the exponent. |
| const EXP_BITS: u32 = Self::BITS - Self::SIG_BITS - 1; |
| |
| /// The saturated (maximum bitpattern) value of the exponent, i.e. the infinite |
| /// representation. |
| /// |
| /// This shifted fully right, use `EXP_MASK` for the shifted value. |
| const EXP_SAT: u32 = (1 << Self::EXP_BITS) - 1; |
| |
| /// Signed version of `EXP_SAT` since we convert a lot. |
| const INFINITE_POWER: i32 = Self::EXP_SAT as i32; |
| |
| /// The exponent bias value. This is also the maximum value of the exponent. |
| const EXP_BIAS: u32 = Self::EXP_SAT >> 1; |
| |
| /// Minimum exponent value of normal values. |
| const EXP_MIN: i32 = -(Self::EXP_BIAS as i32 - 1); |
| |
| /// Round-to-even only happens for negative values of q |
| /// when q ≥ −4 in the 64-bit case and when q ≥ −17 in |
| /// the 32-bit case. |
| /// |
| /// When q ≥ 0,we have that 5^q ≤ 2m+1. In the 64-bit case,we |
| /// have 5^q ≤ 2m+1 ≤ 2^54 or q ≤ 23. In the 32-bit case,we have |
| /// 5^q ≤ 2m+1 ≤ 2^25 or q ≤ 10. |
| /// |
| /// When q < 0, we have w ≥ (2m+1)×5^−q. We must have that w < 2^64 |
| /// so (2m+1)×5^−q < 2^64. We have that 2m+1 > 2^53 (64-bit case) |
| /// or 2m+1 > 2^24 (32-bit case). Hence,we must have 2^53×5^−q < 2^64 |
| /// (64-bit) and 2^24×5^−q < 2^64 (32-bit). Hence we have 5^−q < 2^11 |
| /// or q ≥ −4 (64-bit case) and 5^−q < 2^40 or q ≥ −17 (32-bit case). |
| /// |
| /// Thus we have that we only need to round ties to even when |
| /// we have that q ∈ [−4,23](in the 64-bit case) or q∈[−17,10] |
| /// (in the 32-bit case). In both cases,the power of five(5^|q|) |
| /// fits in a 64-bit word. |
| const MIN_EXPONENT_ROUND_TO_EVEN: i32; |
| const MAX_EXPONENT_ROUND_TO_EVEN: i32; |
| |
| /* limits related to Fast pathing */ |
| |
| /// Largest decimal exponent for a non-infinite value. |
| /// |
| /// This is the max exponent in binary converted to the max exponent in decimal. Allows fast |
| /// pathing anything larger than `10^LARGEST_POWER_OF_TEN`, which will round to infinity. |
| const LARGEST_POWER_OF_TEN: i32 = { |
| let largest_pow2 = Self::EXP_BIAS + 1; |
| pow2_to_pow10(largest_pow2 as i64) as i32 |
| }; |
| |
| /// Smallest decimal exponent for a non-zero value. This allows for fast pathing anything |
| /// smaller than `10^SMALLEST_POWER_OF_TEN`, which will round to zero. |
| /// |
| /// The smallest power of ten is represented by `⌊log10(2^-n / (2^64 - 1))⌋`, where `n` is |
| /// the smallest power of two. The `2^64 - 1)` denominator comes from the number of values |
| /// that are representable by the intermediate storage format. I don't actually know _why_ |
| /// the storage format is relevant here. |
| /// |
| /// The values may be calculated using the formula. Unfortunately we cannot calculate them at |
| /// compile time since intermediates exceed the range of an `f64`. |
| const SMALLEST_POWER_OF_TEN: i32; |
| |
| /// Maximum exponent for a fast path case, or `⌊(SIG_BITS+1)/log2(5)⌋` |
| // assuming FLT_EVAL_METHOD = 0 |
| const MAX_EXPONENT_FAST_PATH: i64 = { |
| let log2_5 = f64::consts::LOG2_10 - 1.0; |
| (Self::SIG_TOTAL_BITS as f64 / log2_5) as i64 |
| }; |
| |
| /// Minimum exponent for a fast path case, or `-⌊(SIG_BITS+1)/log2(5)⌋` |
| const MIN_EXPONENT_FAST_PATH: i64 = -Self::MAX_EXPONENT_FAST_PATH; |
| |
| /// Maximum exponent that can be represented for a disguised-fast path case. |
| /// This is `MAX_EXPONENT_FAST_PATH + ⌊(SIG_BITS+1)/log2(10)⌋` |
| const MAX_EXPONENT_DISGUISED_FAST_PATH: i64 = |
| Self::MAX_EXPONENT_FAST_PATH + (Self::SIG_TOTAL_BITS as f64 / f64::consts::LOG2_10) as i64; |
| |
| /// Maximum mantissa for the fast-path (`1 << 53` for f64). |
| const MAX_MANTISSA_FAST_PATH: u64 = 1 << Self::SIG_TOTAL_BITS; |
| |
| /// Converts integer into float through an as cast. |
| /// This is only called in the fast-path algorithm, and therefore |
| /// will not lose precision, since the value will always have |
| /// only if the value is <= Self::MAX_MANTISSA_FAST_PATH. |
| fn from_u64(v: u64) -> Self; |
| |
| /// Performs a raw transmutation from an integer. |
| fn from_u64_bits(v: u64) -> Self; |
| |
| /// Gets a small power-of-ten for fast-path multiplication. |
| fn pow10_fast_path(exponent: usize) -> Self; |
| |
| /// Returns the category that this number falls into. |
| fn classify(self) -> FpCategory; |
| |
| /// Transmute to the integer representation |
| fn to_bits(self) -> Self::Int; |
| |
| /// Returns the mantissa, exponent and sign as integers. |
| /// |
| /// This returns `(m, p, s)` such that `s * m * 2^p` represents the original float. For 0, the |
| /// exponent will be `-(EXP_BIAS + SIG_BITS)`, which is the minimum subnormal power. For |
| /// infinity or NaN, the exponent will be `EXP_SAT - EXP_BIAS - SIG_BITS`. |
| /// |
| /// If subnormal, the mantissa will be shifted one bit to the left. Otherwise, it is returned |
| /// with the explicit bit set but otherwise unshifted |
| /// |
| /// `s` is only ever +/-1. |
| fn integer_decode(self) -> (u64, i16, i8) { |
| let bits = self.to_bits(); |
| let sign: i8 = if bits >> (Self::BITS - 1) == Self::Int::ZERO { 1 } else { -1 }; |
| let mut exponent: i16 = ((bits & Self::EXP_MASK) >> Self::SIG_BITS).cast(); |
| let mantissa = if exponent == 0 { |
| (bits & Self::SIG_MASK) << 1 |
| } else { |
| (bits & Self::SIG_MASK) | (Self::Int::ONE << Self::SIG_BITS) |
| }; |
| // Exponent bias + mantissa shift |
| exponent -= (Self::EXP_BIAS + Self::SIG_BITS) as i16; |
| (mantissa.into(), exponent, sign) |
| } |
| } |
| |
| /// Solve for `b` in `10^b = 2^a` |
| const fn pow2_to_pow10(a: i64) -> i64 { |
| let res = (a as f64) / f64::consts::LOG2_10; |
| res as i64 |
| } |
| |
| #[cfg(target_has_reliable_f16)] |
| impl RawFloat for f16 { |
| type Int = u16; |
| |
| const INFINITY: Self = Self::INFINITY; |
| const NEG_INFINITY: Self = Self::NEG_INFINITY; |
| const NAN: Self = Self::NAN; |
| const NEG_NAN: Self = -Self::NAN; |
| |
| const BITS: u32 = 16; |
| const SIG_TOTAL_BITS: u32 = Self::MANTISSA_DIGITS; |
| const EXP_MASK: Self::Int = Self::EXP_MASK; |
| const SIG_MASK: Self::Int = Self::MAN_MASK; |
| |
| const MIN_EXPONENT_ROUND_TO_EVEN: i32 = -22; |
| const MAX_EXPONENT_ROUND_TO_EVEN: i32 = 5; |
| const SMALLEST_POWER_OF_TEN: i32 = -27; |
| |
| #[inline] |
| fn from_u64(v: u64) -> Self { |
| debug_assert!(v <= Self::MAX_MANTISSA_FAST_PATH); |
| v as _ |
| } |
| |
| #[inline] |
| fn from_u64_bits(v: u64) -> Self { |
| Self::from_bits((v & 0xFFFF) as u16) |
| } |
| |
| fn pow10_fast_path(exponent: usize) -> Self { |
| #[allow(clippy::use_self)] |
| const TABLE: [f16; 8] = [1e0, 1e1, 1e2, 1e3, 1e4, 0.0, 0.0, 0.]; |
| TABLE[exponent & 7] |
| } |
| |
| fn to_bits(self) -> Self::Int { |
| self.to_bits() |
| } |
| |
| fn classify(self) -> FpCategory { |
| self.classify() |
| } |
| } |
| |
| impl RawFloat for f32 { |
| type Int = u32; |
| |
| const INFINITY: Self = f32::INFINITY; |
| const NEG_INFINITY: Self = f32::NEG_INFINITY; |
| const NAN: Self = f32::NAN; |
| const NEG_NAN: Self = -f32::NAN; |
| |
| const BITS: u32 = 32; |
| const SIG_TOTAL_BITS: u32 = Self::MANTISSA_DIGITS; |
| const EXP_MASK: Self::Int = Self::EXP_MASK; |
| const SIG_MASK: Self::Int = Self::MAN_MASK; |
| |
| const MIN_EXPONENT_ROUND_TO_EVEN: i32 = -17; |
| const MAX_EXPONENT_ROUND_TO_EVEN: i32 = 10; |
| const SMALLEST_POWER_OF_TEN: i32 = -65; |
| |
| #[inline] |
| fn from_u64(v: u64) -> Self { |
| debug_assert!(v <= Self::MAX_MANTISSA_FAST_PATH); |
| v as _ |
| } |
| |
| #[inline] |
| fn from_u64_bits(v: u64) -> Self { |
| f32::from_bits((v & 0xFFFFFFFF) as u32) |
| } |
| |
| fn pow10_fast_path(exponent: usize) -> Self { |
| #[allow(clippy::use_self)] |
| const TABLE: [f32; 16] = |
| [1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10, 0., 0., 0., 0., 0.]; |
| TABLE[exponent & 15] |
| } |
| |
| fn to_bits(self) -> Self::Int { |
| self.to_bits() |
| } |
| |
| fn classify(self) -> FpCategory { |
| self.classify() |
| } |
| } |
| |
| impl RawFloat for f64 { |
| type Int = u64; |
| |
| const INFINITY: Self = Self::INFINITY; |
| const NEG_INFINITY: Self = Self::NEG_INFINITY; |
| const NAN: Self = Self::NAN; |
| const NEG_NAN: Self = -Self::NAN; |
| |
| const BITS: u32 = 64; |
| const SIG_TOTAL_BITS: u32 = Self::MANTISSA_DIGITS; |
| const EXP_MASK: Self::Int = Self::EXP_MASK; |
| const SIG_MASK: Self::Int = Self::MAN_MASK; |
| |
| const MIN_EXPONENT_ROUND_TO_EVEN: i32 = -4; |
| const MAX_EXPONENT_ROUND_TO_EVEN: i32 = 23; |
| const SMALLEST_POWER_OF_TEN: i32 = -342; |
| |
| #[inline] |
| fn from_u64(v: u64) -> Self { |
| debug_assert!(v <= Self::MAX_MANTISSA_FAST_PATH); |
| v as _ |
| } |
| |
| #[inline] |
| fn from_u64_bits(v: u64) -> Self { |
| f64::from_bits(v) |
| } |
| |
| fn pow10_fast_path(exponent: usize) -> Self { |
| const TABLE: [f64; 32] = [ |
| 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, |
| 1e16, 1e17, 1e18, 1e19, 1e20, 1e21, 1e22, 0., 0., 0., 0., 0., 0., 0., 0., 0., |
| ]; |
| TABLE[exponent & 31] |
| } |
| |
| fn to_bits(self) -> Self::Int { |
| self.to_bits() |
| } |
| |
| fn classify(self) -> FpCategory { |
| self.classify() |
| } |
| } |