|  | /* origin: FreeBSD /usr/src/lib/msun/src/e_lgammaf_r.c */ | 
|  | /* | 
|  | * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. | 
|  | */ | 
|  | /* | 
|  | * ==================================================== | 
|  | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. | 
|  | * | 
|  | * Developed at SunPro, a Sun Microsystems, Inc. business. | 
|  | * Permission to use, copy, modify, and distribute this | 
|  | * software is freely granted, provided that this notice | 
|  | * is preserved. | 
|  | * ==================================================== | 
|  | */ | 
|  |  | 
|  | use super::{floorf, k_cosf, k_sinf, logf}; | 
|  |  | 
|  | const PI: f32 = 3.1415927410e+00; /* 0x40490fdb */ | 
|  | const A0: f32 = 7.7215664089e-02; /* 0x3d9e233f */ | 
|  | const A1: f32 = 3.2246702909e-01; /* 0x3ea51a66 */ | 
|  | const A2: f32 = 6.7352302372e-02; /* 0x3d89f001 */ | 
|  | const A3: f32 = 2.0580807701e-02; /* 0x3ca89915 */ | 
|  | const A4: f32 = 7.3855509982e-03; /* 0x3bf2027e */ | 
|  | const A5: f32 = 2.8905137442e-03; /* 0x3b3d6ec6 */ | 
|  | const A6: f32 = 1.1927076848e-03; /* 0x3a9c54a1 */ | 
|  | const A7: f32 = 5.1006977446e-04; /* 0x3a05b634 */ | 
|  | const A8: f32 = 2.2086278477e-04; /* 0x39679767 */ | 
|  | const A9: f32 = 1.0801156895e-04; /* 0x38e28445 */ | 
|  | const A10: f32 = 2.5214456400e-05; /* 0x37d383a2 */ | 
|  | const A11: f32 = 4.4864096708e-05; /* 0x383c2c75 */ | 
|  | const TC: f32 = 1.4616321325e+00; /* 0x3fbb16c3 */ | 
|  | const TF: f32 = -1.2148628384e-01; /* 0xbdf8cdcd */ | 
|  | /* TT = -(tail of TF) */ | 
|  | const TT: f32 = 6.6971006518e-09; /* 0x31e61c52 */ | 
|  | const T0: f32 = 4.8383611441e-01; /* 0x3ef7b95e */ | 
|  | const T1: f32 = -1.4758771658e-01; /* 0xbe17213c */ | 
|  | const T2: f32 = 6.4624942839e-02; /* 0x3d845a15 */ | 
|  | const T3: f32 = -3.2788541168e-02; /* 0xbd064d47 */ | 
|  | const T4: f32 = 1.7970675603e-02; /* 0x3c93373d */ | 
|  | const T5: f32 = -1.0314224288e-02; /* 0xbc28fcfe */ | 
|  | const T6: f32 = 6.1005386524e-03; /* 0x3bc7e707 */ | 
|  | const T7: f32 = -3.6845202558e-03; /* 0xbb7177fe */ | 
|  | const T8: f32 = 2.2596477065e-03; /* 0x3b141699 */ | 
|  | const T9: f32 = -1.4034647029e-03; /* 0xbab7f476 */ | 
|  | const T10: f32 = 8.8108185446e-04; /* 0x3a66f867 */ | 
|  | const T11: f32 = -5.3859531181e-04; /* 0xba0d3085 */ | 
|  | const T12: f32 = 3.1563205994e-04; /* 0x39a57b6b */ | 
|  | const T13: f32 = -3.1275415677e-04; /* 0xb9a3f927 */ | 
|  | const T14: f32 = 3.3552918467e-04; /* 0x39afe9f7 */ | 
|  | const U0: f32 = -7.7215664089e-02; /* 0xbd9e233f */ | 
|  | const U1: f32 = 6.3282704353e-01; /* 0x3f2200f4 */ | 
|  | const U2: f32 = 1.4549225569e+00; /* 0x3fba3ae7 */ | 
|  | const U3: f32 = 9.7771751881e-01; /* 0x3f7a4bb2 */ | 
|  | const U4: f32 = 2.2896373272e-01; /* 0x3e6a7578 */ | 
|  | const U5: f32 = 1.3381091878e-02; /* 0x3c5b3c5e */ | 
|  | const V1: f32 = 2.4559779167e+00; /* 0x401d2ebe */ | 
|  | const V2: f32 = 2.1284897327e+00; /* 0x4008392d */ | 
|  | const V3: f32 = 7.6928514242e-01; /* 0x3f44efdf */ | 
|  | const V4: f32 = 1.0422264785e-01; /* 0x3dd572af */ | 
|  | const V5: f32 = 3.2170924824e-03; /* 0x3b52d5db */ | 
|  | const S0: f32 = -7.7215664089e-02; /* 0xbd9e233f */ | 
|  | const S1: f32 = 2.1498242021e-01; /* 0x3e5c245a */ | 
|  | const S2: f32 = 3.2577878237e-01; /* 0x3ea6cc7a */ | 
|  | const S3: f32 = 1.4635047317e-01; /* 0x3e15dce6 */ | 
|  | const S4: f32 = 2.6642270386e-02; /* 0x3cda40e4 */ | 
|  | const S5: f32 = 1.8402845599e-03; /* 0x3af135b4 */ | 
|  | const S6: f32 = 3.1947532989e-05; /* 0x3805ff67 */ | 
|  | const R1: f32 = 1.3920053244e+00; /* 0x3fb22d3b */ | 
|  | const R2: f32 = 7.2193557024e-01; /* 0x3f38d0c5 */ | 
|  | const R3: f32 = 1.7193385959e-01; /* 0x3e300f6e */ | 
|  | const R4: f32 = 1.8645919859e-02; /* 0x3c98bf54 */ | 
|  | const R5: f32 = 7.7794247773e-04; /* 0x3a4beed6 */ | 
|  | const R6: f32 = 7.3266842264e-06; /* 0x36f5d7bd */ | 
|  | const W0: f32 = 4.1893854737e-01; /* 0x3ed67f1d */ | 
|  | const W1: f32 = 8.3333335817e-02; /* 0x3daaaaab */ | 
|  | const W2: f32 = -2.7777778450e-03; /* 0xbb360b61 */ | 
|  | const W3: f32 = 7.9365057172e-04; /* 0x3a500cfd */ | 
|  | const W4: f32 = -5.9518753551e-04; /* 0xba1c065c */ | 
|  | const W5: f32 = 8.3633989561e-04; /* 0x3a5b3dd2 */ | 
|  | const W6: f32 = -1.6309292987e-03; /* 0xbad5c4e8 */ | 
|  |  | 
|  | /* sin(PI*x) assuming x > 2^-100, if sin(PI*x)==0 the sign is arbitrary */ | 
|  | fn sin_pi(mut x: f32) -> f32 { | 
|  | let mut y: f64; | 
|  | let mut n: isize; | 
|  |  | 
|  | /* spurious inexact if odd int */ | 
|  | x = 2.0 * (x * 0.5 - floorf(x * 0.5)); /* x mod 2.0 */ | 
|  |  | 
|  | n = (x * 4.0) as isize; | 
|  | n = div!(n + 1, 2); | 
|  | y = (x as f64) - (n as f64) * 0.5; | 
|  | y *= 3.14159265358979323846; | 
|  | match n { | 
|  | 1 => k_cosf(y), | 
|  | 2 => k_sinf(-y), | 
|  | 3 => -k_cosf(y), | 
|  | // 0 | 
|  | _ => k_sinf(y), | 
|  | } | 
|  | } | 
|  |  | 
|  | #[cfg_attr(assert_no_panic, no_panic::no_panic)] | 
|  | pub fn lgammaf_r(mut x: f32) -> (f32, i32) { | 
|  | let u = x.to_bits(); | 
|  | let mut t: f32; | 
|  | let y: f32; | 
|  | let mut z: f32; | 
|  | let nadj: f32; | 
|  | let p: f32; | 
|  | let p1: f32; | 
|  | let p2: f32; | 
|  | let p3: f32; | 
|  | let q: f32; | 
|  | let mut r: f32; | 
|  | let w: f32; | 
|  | let ix: u32; | 
|  | let i: i32; | 
|  | let sign: bool; | 
|  | let mut signgam: i32; | 
|  |  | 
|  | /* purge off +-inf, NaN, +-0, tiny and negative arguments */ | 
|  | signgam = 1; | 
|  | sign = (u >> 31) != 0; | 
|  | ix = u & 0x7fffffff; | 
|  | if ix >= 0x7f800000 { | 
|  | return (x * x, signgam); | 
|  | } | 
|  | if ix < 0x35000000 { | 
|  | /* |x| < 2**-21, return -log(|x|) */ | 
|  | if sign { | 
|  | signgam = -1; | 
|  | x = -x; | 
|  | } | 
|  | return (-logf(x), signgam); | 
|  | } | 
|  | if sign { | 
|  | x = -x; | 
|  | t = sin_pi(x); | 
|  | if t == 0.0 { | 
|  | /* -integer */ | 
|  | return (1.0 / (x - x), signgam); | 
|  | } | 
|  | if t > 0.0 { | 
|  | signgam = -1; | 
|  | } else { | 
|  | t = -t; | 
|  | } | 
|  | nadj = logf(PI / (t * x)); | 
|  | } else { | 
|  | nadj = 0.0; | 
|  | } | 
|  |  | 
|  | /* purge off 1 and 2 */ | 
|  | if ix == 0x3f800000 || ix == 0x40000000 { | 
|  | r = 0.0; | 
|  | } | 
|  | /* for x < 2.0 */ | 
|  | else if ix < 0x40000000 { | 
|  | if ix <= 0x3f666666 { | 
|  | /* lgamma(x) = lgamma(x+1)-log(x) */ | 
|  | r = -logf(x); | 
|  | if ix >= 0x3f3b4a20 { | 
|  | y = 1.0 - x; | 
|  | i = 0; | 
|  | } else if ix >= 0x3e6d3308 { | 
|  | y = x - (TC - 1.0); | 
|  | i = 1; | 
|  | } else { | 
|  | y = x; | 
|  | i = 2; | 
|  | } | 
|  | } else { | 
|  | r = 0.0; | 
|  | if ix >= 0x3fdda618 { | 
|  | /* [1.7316,2] */ | 
|  | y = 2.0 - x; | 
|  | i = 0; | 
|  | } else if ix >= 0x3F9da620 { | 
|  | /* [1.23,1.73] */ | 
|  | y = x - TC; | 
|  | i = 1; | 
|  | } else { | 
|  | y = x - 1.0; | 
|  | i = 2; | 
|  | } | 
|  | } | 
|  | match i { | 
|  | 0 => { | 
|  | z = y * y; | 
|  | p1 = A0 + z * (A2 + z * (A4 + z * (A6 + z * (A8 + z * A10)))); | 
|  | p2 = z * (A1 + z * (A3 + z * (A5 + z * (A7 + z * (A9 + z * A11))))); | 
|  | p = y * p1 + p2; | 
|  | r += p - 0.5 * y; | 
|  | } | 
|  | 1 => { | 
|  | z = y * y; | 
|  | w = z * y; | 
|  | p1 = T0 + w * (T3 + w * (T6 + w * (T9 + w * T12))); /* parallel comp */ | 
|  | p2 = T1 + w * (T4 + w * (T7 + w * (T10 + w * T13))); | 
|  | p3 = T2 + w * (T5 + w * (T8 + w * (T11 + w * T14))); | 
|  | p = z * p1 - (TT - w * (p2 + y * p3)); | 
|  | r += TF + p; | 
|  | } | 
|  | 2 => { | 
|  | p1 = y * (U0 + y * (U1 + y * (U2 + y * (U3 + y * (U4 + y * U5))))); | 
|  | p2 = 1.0 + y * (V1 + y * (V2 + y * (V3 + y * (V4 + y * V5)))); | 
|  | r += -0.5 * y + p1 / p2; | 
|  | } | 
|  | #[cfg(debug_assertions)] | 
|  | _ => unreachable!(), | 
|  | #[cfg(not(debug_assertions))] | 
|  | _ => {} | 
|  | } | 
|  | } else if ix < 0x41000000 { | 
|  | /* x < 8.0 */ | 
|  | i = x as i32; | 
|  | y = x - (i as f32); | 
|  | p = y * (S0 + y * (S1 + y * (S2 + y * (S3 + y * (S4 + y * (S5 + y * S6)))))); | 
|  | q = 1.0 + y * (R1 + y * (R2 + y * (R3 + y * (R4 + y * (R5 + y * R6))))); | 
|  | r = 0.5 * y + p / q; | 
|  | z = 1.0; /* lgamma(1+s) = log(s) + lgamma(s) */ | 
|  | // TODO: In C, this was implemented using switch jumps with fallthrough. | 
|  | // Does this implementation have performance problems? | 
|  | if i >= 7 { | 
|  | z *= y + 6.0; | 
|  | } | 
|  | if i >= 6 { | 
|  | z *= y + 5.0; | 
|  | } | 
|  | if i >= 5 { | 
|  | z *= y + 4.0; | 
|  | } | 
|  | if i >= 4 { | 
|  | z *= y + 3.0; | 
|  | } | 
|  | if i >= 3 { | 
|  | z *= y + 2.0; | 
|  | r += logf(z); | 
|  | } | 
|  | } else if ix < 0x5c800000 { | 
|  | /* 8.0 <= x < 2**58 */ | 
|  | t = logf(x); | 
|  | z = 1.0 / x; | 
|  | y = z * z; | 
|  | w = W0 + z * (W1 + y * (W2 + y * (W3 + y * (W4 + y * (W5 + y * W6))))); | 
|  | r = (x - 0.5) * (t - 1.0) + w; | 
|  | } else { | 
|  | /* 2**58 <= x <= inf */ | 
|  | r = x * (logf(x) - 1.0); | 
|  | } | 
|  | if sign { | 
|  | r = nadj - r; | 
|  | } | 
|  | return (r, signgam); | 
|  | } |