|  | /* origin: FreeBSD /usr/src/lib/msun/src/s_expm1f.c */ | 
|  | /* | 
|  | * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. | 
|  | */ | 
|  | /* | 
|  | * ==================================================== | 
|  | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. | 
|  | * | 
|  | * Developed at SunPro, a Sun Microsystems, Inc. business. | 
|  | * Permission to use, copy, modify, and distribute this | 
|  | * software is freely granted, provided that this notice | 
|  | * is preserved. | 
|  | * ==================================================== | 
|  | */ | 
|  |  | 
|  | const O_THRESHOLD: f32 = 8.8721679688e+01; /* 0x42b17180 */ | 
|  | const LN2_HI: f32 = 6.9313812256e-01; /* 0x3f317180 */ | 
|  | const LN2_LO: f32 = 9.0580006145e-06; /* 0x3717f7d1 */ | 
|  | const INV_LN2: f32 = 1.4426950216e+00; /* 0x3fb8aa3b */ | 
|  | /* | 
|  | * Domain [-0.34568, 0.34568], range ~[-6.694e-10, 6.696e-10]: | 
|  | * |6 / x * (1 + 2 * (1 / (exp(x) - 1) - 1 / x)) - q(x)| < 2**-30.04 | 
|  | * Scaled coefficients: Qn_here = 2**n * Qn_for_q (see s_expm1.c): | 
|  | */ | 
|  | const Q1: f32 = -3.3333212137e-2; /* -0x888868.0p-28 */ | 
|  | const Q2: f32 = 1.5807170421e-3; /*  0xcf3010.0p-33 */ | 
|  |  | 
|  | /// Exponential, base *e*, of x-1 (f32) | 
|  | /// | 
|  | /// Calculates the exponential of `x` and subtract 1, that is, *e* raised | 
|  | /// to the power `x` minus 1 (where *e* is the base of the natural | 
|  | /// system of logarithms, approximately 2.71828). | 
|  | /// The result is accurate even for small values of `x`, | 
|  | /// where using `exp(x)-1` would lose many significant digits. | 
|  | #[cfg_attr(assert_no_panic, no_panic::no_panic)] | 
|  | pub fn expm1f(mut x: f32) -> f32 { | 
|  | let x1p127 = f32::from_bits(0x7f000000); // 0x1p127f === 2 ^ 127 | 
|  |  | 
|  | let mut hx = x.to_bits(); | 
|  | let sign = (hx >> 31) != 0; | 
|  | hx &= 0x7fffffff; | 
|  |  | 
|  | /* filter out huge and non-finite argument */ | 
|  | if hx >= 0x4195b844 { | 
|  | /* if |x|>=27*ln2 */ | 
|  | if hx > 0x7f800000 { | 
|  | /* NaN */ | 
|  | return x; | 
|  | } | 
|  | if sign { | 
|  | return -1.; | 
|  | } | 
|  | if x > O_THRESHOLD { | 
|  | x *= x1p127; | 
|  | return x; | 
|  | } | 
|  | } | 
|  |  | 
|  | let k: i32; | 
|  | let hi: f32; | 
|  | let lo: f32; | 
|  | let mut c = 0f32; | 
|  | /* argument reduction */ | 
|  | if hx > 0x3eb17218 { | 
|  | /* if  |x| > 0.5 ln2 */ | 
|  | if hx < 0x3F851592 { | 
|  | /* and |x| < 1.5 ln2 */ | 
|  | if !sign { | 
|  | hi = x - LN2_HI; | 
|  | lo = LN2_LO; | 
|  | k = 1; | 
|  | } else { | 
|  | hi = x + LN2_HI; | 
|  | lo = -LN2_LO; | 
|  | k = -1; | 
|  | } | 
|  | } else { | 
|  | k = (INV_LN2 * x + (if sign { -0.5 } else { 0.5 })) as i32; | 
|  | let t = k as f32; | 
|  | hi = x - t * LN2_HI; /* t*ln2_hi is exact here */ | 
|  | lo = t * LN2_LO; | 
|  | } | 
|  | x = hi - lo; | 
|  | c = (hi - x) - lo; | 
|  | } else if hx < 0x33000000 { | 
|  | /* when |x|<2**-25, return x */ | 
|  | if hx < 0x00800000 { | 
|  | force_eval!(x * x); | 
|  | } | 
|  | return x; | 
|  | } else { | 
|  | k = 0; | 
|  | } | 
|  |  | 
|  | /* x is now in primary range */ | 
|  | let hfx = 0.5 * x; | 
|  | let hxs = x * hfx; | 
|  | let r1 = 1. + hxs * (Q1 + hxs * Q2); | 
|  | let t = 3. - r1 * hfx; | 
|  | let mut e = hxs * ((r1 - t) / (6. - x * t)); | 
|  | if k == 0 { | 
|  | /* c is 0 */ | 
|  | return x - (x * e - hxs); | 
|  | } | 
|  | e = x * (e - c) - c; | 
|  | e -= hxs; | 
|  | /* exp(x) ~ 2^k (x_reduced - e + 1) */ | 
|  | if k == -1 { | 
|  | return 0.5 * (x - e) - 0.5; | 
|  | } | 
|  | if k == 1 { | 
|  | if x < -0.25 { | 
|  | return -2. * (e - (x + 0.5)); | 
|  | } | 
|  | return 1. + 2. * (x - e); | 
|  | } | 
|  | let twopk = f32::from_bits(((0x7f + k) << 23) as u32); /* 2^k */ | 
|  | if !(0..=56).contains(&k) { | 
|  | /* suffice to return exp(x)-1 */ | 
|  | let mut y = x - e + 1.; | 
|  | if k == 128 { | 
|  | y = y * 2. * x1p127; | 
|  | } else { | 
|  | y = y * twopk; | 
|  | } | 
|  | return y - 1.; | 
|  | } | 
|  | let uf = f32::from_bits(((0x7f - k) << 23) as u32); /* 2^-k */ | 
|  | if k < 23 { | 
|  | (x - e + (1. - uf)) * twopk | 
|  | } else { | 
|  | (x - (e + uf) + 1.) * twopk | 
|  | } | 
|  | } |