blob: cf11d8333127f6e02516c6a26e920b14b89fc132 [file] [log] [blame]
//! x86 run-time feature detection is OS independent.
#[cfg(target_arch = "x86")]
use core::arch::x86::*;
#[cfg(target_arch = "x86_64")]
use core::arch::x86_64::*;
use core::mem;
use crate::detect::{Feature, bit, cache};
/// Run-time feature detection on x86 works by using the CPUID instruction.
///
/// The [CPUID Wikipedia page][wiki_cpuid] contains
/// all the information about which flags to set to query which values, and in
/// which registers these are reported.
///
/// The definitive references are:
/// - [Intel 64 and IA-32 Architectures Software Developer's Manual Volume 2:
/// Instruction Set Reference, A-Z][intel64_ref].
/// - [AMD64 Architecture Programmer's Manual, Volume 3: General-Purpose and
/// System Instructions][amd64_ref].
///
/// [wiki_cpuid]: https://en.wikipedia.org/wiki/CPUID
/// [intel64_ref]: http://www.intel.de/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
/// [amd64_ref]: http://support.amd.com/TechDocs/24594.pdf
#[allow(clippy::similar_names)]
pub(crate) fn detect_features() -> cache::Initializer {
let mut value = cache::Initializer::default();
if cfg!(target_env = "sgx") {
// doesn't support this because it is untrusted data
return value;
}
// Calling `__cpuid`/`__cpuid_count` from here on is safe because the CPU
// has `cpuid` support.
// 0. EAX = 0: Basic Information:
// - EAX returns the "Highest Function Parameter", that is, the maximum
// leaf value for subsequent calls of `cpuinfo` in range [0,
// 0x8000_0000]. - The vendor ID is stored in 12 u8 ascii chars,
// returned in EBX, EDX, and ECX (in that order):
let (max_basic_leaf, vendor_id) = unsafe {
let CpuidResult { eax: max_basic_leaf, ebx, ecx, edx } = __cpuid(0);
let vendor_id: [[u8; 4]; 3] = [ebx.to_ne_bytes(), edx.to_ne_bytes(), ecx.to_ne_bytes()];
let vendor_id: [u8; 12] = mem::transmute(vendor_id);
(max_basic_leaf, vendor_id)
};
if max_basic_leaf < 1 {
// Earlier Intel 486, CPUID not implemented
return value;
}
// EAX = 1, ECX = 0: Queries "Processor Info and Feature Bits";
// Contains information about most x86 features.
let CpuidResult { ecx: proc_info_ecx, edx: proc_info_edx, .. } =
unsafe { __cpuid(0x0000_0001_u32) };
// EAX = 7: Queries "Extended Features";
// Contains information about bmi,bmi2, and avx2 support.
let (
extended_features_ebx,
extended_features_ecx,
extended_features_edx,
extended_features_eax_leaf_1,
extended_features_edx_leaf_1,
) = if max_basic_leaf >= 7 {
let CpuidResult { ebx, ecx, edx, .. } = unsafe { __cpuid(0x0000_0007_u32) };
let CpuidResult { eax: eax_1, edx: edx_1, .. } =
unsafe { __cpuid_count(0x0000_0007_u32, 0x0000_0001_u32) };
(ebx, ecx, edx, eax_1, edx_1)
} else {
(0, 0, 0, 0, 0) // CPUID does not support "Extended Features"
};
// EAX = 0x8000_0000, ECX = 0: Get Highest Extended Function Supported
// - EAX returns the max leaf value for extended information, that is,
// `cpuid` calls in range [0x8000_0000; u32::MAX]:
let CpuidResult { eax: extended_max_basic_leaf, .. } = unsafe { __cpuid(0x8000_0000_u32) };
// EAX = 0x8000_0001, ECX=0: Queries "Extended Processor Info and Feature
// Bits"
let extended_proc_info_ecx = if extended_max_basic_leaf >= 1 {
let CpuidResult { ecx, .. } = unsafe { __cpuid(0x8000_0001_u32) };
ecx
} else {
0
};
{
// borrows value till the end of this scope:
let mut enable = |r, rb, f| {
let present = bit::test(r as usize, rb);
if present {
value.set(f as u32);
}
present
};
enable(proc_info_ecx, 0, Feature::sse3);
enable(proc_info_ecx, 1, Feature::pclmulqdq);
enable(proc_info_ecx, 9, Feature::ssse3);
enable(proc_info_ecx, 13, Feature::cmpxchg16b);
enable(proc_info_ecx, 19, Feature::sse4_1);
enable(proc_info_ecx, 20, Feature::sse4_2);
enable(proc_info_ecx, 22, Feature::movbe);
enable(proc_info_ecx, 23, Feature::popcnt);
enable(proc_info_ecx, 25, Feature::aes);
let f16c = enable(proc_info_ecx, 29, Feature::f16c);
enable(proc_info_ecx, 30, Feature::rdrand);
enable(extended_features_ebx, 18, Feature::rdseed);
enable(extended_features_ebx, 19, Feature::adx);
enable(extended_features_ebx, 11, Feature::rtm);
enable(proc_info_edx, 4, Feature::tsc);
enable(proc_info_edx, 23, Feature::mmx);
enable(proc_info_edx, 24, Feature::fxsr);
enable(proc_info_edx, 25, Feature::sse);
enable(proc_info_edx, 26, Feature::sse2);
enable(extended_features_ebx, 29, Feature::sha);
enable(extended_features_ecx, 8, Feature::gfni);
enable(extended_features_ecx, 9, Feature::vaes);
enable(extended_features_ecx, 10, Feature::vpclmulqdq);
enable(extended_features_ebx, 3, Feature::bmi1);
enable(extended_features_ebx, 8, Feature::bmi2);
enable(extended_features_ebx, 9, Feature::ermsb);
enable(extended_features_eax_leaf_1, 31, Feature::movrs);
// Detect if CPUID.19h available
if bit::test(extended_features_ecx as usize, 23) {
let CpuidResult { ebx, .. } = unsafe { __cpuid(0x19) };
enable(ebx, 0, Feature::kl);
enable(ebx, 2, Feature::widekl);
}
// This detects ABM on AMD CPUs and LZCNT on Intel CPUs.
// On intel CPUs with popcnt, lzcnt implements the
// "missing part" of ABM, so we map both to the same
// internal feature.
//
// The `is_x86_feature_detected!("lzcnt")` macro then
// internally maps to Feature::abm.
enable(extended_proc_info_ecx, 5, Feature::lzcnt);
// As Hygon Dhyana originates from AMD technology and shares most of the architecture with
// AMD's family 17h, but with different CPU Vendor ID("HygonGenuine")/Family series
// number(Family 18h).
//
// For CPUID feature bits, Hygon Dhyana(family 18h) share the same definition with AMD
// family 17h.
//
// Related AMD CPUID specification is https://www.amd.com/system/files/TechDocs/25481.pdf.
// Related Hygon kernel patch can be found on
// http://lkml.kernel.org/r/5ce86123a7b9dad925ac583d88d2f921040e859b.1538583282.git.puwen@hygon.cn
if vendor_id == *b"AuthenticAMD" || vendor_id == *b"HygonGenuine" {
// These features are available on AMD arch CPUs:
enable(extended_proc_info_ecx, 6, Feature::sse4a);
enable(extended_proc_info_ecx, 21, Feature::tbm);
enable(extended_proc_info_ecx, 11, Feature::xop);
}
// `XSAVE` and `AVX` support:
let cpu_xsave = bit::test(proc_info_ecx as usize, 26);
if cpu_xsave {
// 0. Here the CPU supports `XSAVE`.
// 1. Detect `OSXSAVE`, that is, whether the OS is AVX enabled and
// supports saving the state of the AVX/AVX2 vector registers on
// context-switches, see:
//
// - [intel: is avx enabled?][is_avx_enabled],
// - [mozilla: sse.cpp][mozilla_sse_cpp].
//
// [is_avx_enabled]: https://software.intel.com/en-us/blogs/2011/04/14/is-avx-enabled
// [mozilla_sse_cpp]: https://hg.mozilla.org/mozilla-central/file/64bab5cbb9b6/mozglue/build/SSE.cpp#l190
let cpu_osxsave = bit::test(proc_info_ecx as usize, 27);
if cpu_osxsave {
// 2. The OS must have signaled the CPU that it supports saving and
// restoring the:
//
// * SSE -> `XCR0.SSE[1]`
// * AVX -> `XCR0.AVX[2]`
// * AVX-512 -> `XCR0.AVX-512[7:5]`.
// * AMX -> `XCR0.AMX[18:17]`
// * APX -> `XCR0.APX[19]`
//
// by setting the corresponding bits of `XCR0` to `1`.
//
// This is safe because the CPU supports `xsave`
// and the OS has set `osxsave`.
let xcr0 = unsafe { _xgetbv(0) };
// Test `XCR0.SSE[1]` and `XCR0.AVX[2]` with the mask `0b110 == 6`:
let os_avx_support = xcr0 & 6 == 6;
// Test `XCR0.AVX-512[7:5]` with the mask `0b1110_0000 == 0xe0`:
let os_avx512_support = xcr0 & 0xe0 == 0xe0;
// Test `XCR0.AMX[18:17]` with the mask `0b110_0000_0000_0000_0000 == 0x60000`
let os_amx_support = xcr0 & 0x60000 == 0x60000;
// Test `XCR0.APX[19]` with the mask `0b1000_0000_0000_0000_0000 == 0x80000`
let os_apx_support = xcr0 & 0x80000 == 0x80000;
// Only if the OS and the CPU support saving/restoring the AVX
// registers we enable `xsave` support:
if os_avx_support {
// See "13.3 ENABLING THE XSAVE FEATURE SET AND XSAVE-ENABLED
// FEATURES" in the "Intel® 64 and IA-32 Architectures Software
// Developer’s Manual, Volume 1: Basic Architecture":
//
// "Software enables the XSAVE feature set by setting
// CR4.OSXSAVE[bit 18] to 1 (e.g., with the MOV to CR4
// instruction). If this bit is 0, execution of any of XGETBV,
// XRSTOR, XRSTORS, XSAVE, XSAVEC, XSAVEOPT, XSAVES, and XSETBV
// causes an invalid-opcode exception (#UD)"
//
enable(proc_info_ecx, 26, Feature::xsave);
// For `xsaveopt`, `xsavec`, and `xsaves` we need to query:
// Processor Extended State Enumeration Sub-leaf (EAX = 0DH,
// ECX = 1):
if max_basic_leaf >= 0xd {
let CpuidResult { eax: proc_extended_state1_eax, .. } =
unsafe { __cpuid_count(0xd_u32, 1) };
enable(proc_extended_state1_eax, 0, Feature::xsaveopt);
enable(proc_extended_state1_eax, 1, Feature::xsavec);
enable(proc_extended_state1_eax, 3, Feature::xsaves);
}
// FMA (uses 256-bit wide registers):
let fma = enable(proc_info_ecx, 12, Feature::fma);
// And AVX/AVX2:
enable(proc_info_ecx, 28, Feature::avx);
enable(extended_features_ebx, 5, Feature::avx2);
// "Short" versions of AVX512 instructions
enable(extended_features_eax_leaf_1, 4, Feature::avxvnni);
enable(extended_features_eax_leaf_1, 23, Feature::avxifma);
enable(extended_features_edx_leaf_1, 4, Feature::avxvnniint8);
enable(extended_features_edx_leaf_1, 5, Feature::avxneconvert);
enable(extended_features_edx_leaf_1, 10, Feature::avxvnniint16);
enable(extended_features_eax_leaf_1, 0, Feature::sha512);
enable(extended_features_eax_leaf_1, 1, Feature::sm3);
enable(extended_features_eax_leaf_1, 2, Feature::sm4);
// For AVX-512 the OS also needs to support saving/restoring
// the extended state, only then we enable AVX-512 support:
// Also, Rust makes `avx512f` imply `fma` and `f16c`, because
// otherwise the assembler is broken. But Intel doesn't guarantee
// that `fma` and `f16c` are available with `avx512f`, so we
// need to check for them separately.
if os_avx512_support && f16c && fma {
enable(extended_features_ebx, 16, Feature::avx512f);
enable(extended_features_ebx, 17, Feature::avx512dq);
enable(extended_features_ebx, 21, Feature::avx512ifma);
enable(extended_features_ebx, 26, Feature::avx512pf);
enable(extended_features_ebx, 27, Feature::avx512er);
enable(extended_features_ebx, 28, Feature::avx512cd);
enable(extended_features_ebx, 30, Feature::avx512bw);
enable(extended_features_ebx, 31, Feature::avx512vl);
enable(extended_features_ecx, 1, Feature::avx512vbmi);
enable(extended_features_ecx, 6, Feature::avx512vbmi2);
enable(extended_features_ecx, 11, Feature::avx512vnni);
enable(extended_features_ecx, 12, Feature::avx512bitalg);
enable(extended_features_ecx, 14, Feature::avx512vpopcntdq);
enable(extended_features_edx, 8, Feature::avx512vp2intersect);
enable(extended_features_edx, 23, Feature::avx512fp16);
enable(extended_features_eax_leaf_1, 5, Feature::avx512bf16);
}
}
if os_amx_support {
enable(extended_features_edx, 24, Feature::amx_tile);
enable(extended_features_edx, 25, Feature::amx_int8);
enable(extended_features_edx, 22, Feature::amx_bf16);
enable(extended_features_eax_leaf_1, 21, Feature::amx_fp16);
enable(extended_features_edx_leaf_1, 8, Feature::amx_complex);
if max_basic_leaf >= 0x1e {
let CpuidResult { eax: amx_feature_flags_eax, .. } =
unsafe { __cpuid_count(0x1e_u32, 1) };
enable(amx_feature_flags_eax, 4, Feature::amx_fp8);
enable(amx_feature_flags_eax, 5, Feature::amx_transpose);
enable(amx_feature_flags_eax, 6, Feature::amx_tf32);
enable(amx_feature_flags_eax, 7, Feature::amx_avx512);
enable(amx_feature_flags_eax, 8, Feature::amx_movrs);
}
}
if os_apx_support {
enable(extended_features_edx_leaf_1, 21, Feature::apxf);
}
let avx10_1 = enable(extended_features_edx_leaf_1, 19, Feature::avx10_1);
if avx10_1 {
let CpuidResult { ebx, .. } = unsafe { __cpuid(0x24) };
let avx10_version = ebx & 0xff;
if avx10_version >= 2 {
value.set(Feature::avx10_2 as u32);
}
}
}
}
}
// Unfortunately, some Skylake chips erroneously report support for BMI1 and
// BMI2 without actual support. These chips don't support AVX, and it seems
// that all Intel chips with non-erroneous support BMI do (I didn't check
// other vendors), so we can disable these flags for chips that don't also
// report support for AVX.
//
// It's possible this will pessimize future chips that do support BMI and
// not AVX, but this seems minor compared to a hard crash you get when
// executing an unsupported instruction (to put it another way, it's safe
// for us to under-report CPU features, but not to over-report them). Still,
// to limit any impact this may have in the future, we only do this for
// Intel chips, as it's a bug only present in their chips.
//
// This bug is documented as `SKL052` in the errata section of this document:
// http://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/desktop-6th-gen-core-family-spec-update.pdf
if vendor_id == *b"GenuineIntel" && !value.test(Feature::avx as u32) {
value.unset(Feature::bmi1 as u32);
value.unset(Feature::bmi2 as u32);
}
value
}