| // FIXME(f16_f128): only tested on platforms that have symbols and aren't buggy |
| #![cfg(target_has_reliable_f128)] |
| |
| use std::f128::consts; |
| use std::ops::{Add, Div, Mul, Sub}; |
| |
| // Note these tolerances make sense around zero, but not for more extreme exponents. |
| |
| /// Default tolerances. Works for values that should be near precise but not exact. Roughly |
| /// the precision carried by `100 * 100`. |
| #[cfg(not(miri))] |
| #[cfg(target_has_reliable_f128_math)] |
| const TOL: f128 = 1e-12; |
| |
| /// For operations that are near exact, usually not involving math of different |
| /// signs. |
| const TOL_PRECISE: f128 = 1e-28; |
| |
| /// Tolerances for math that is allowed to be imprecise, usually due to multiple chained |
| /// operations. |
| #[cfg(not(miri))] |
| #[cfg(target_has_reliable_f128_math)] |
| const TOL_IMPR: f128 = 1e-10; |
| |
| /// Compare by representation |
| #[allow(unused_macros)] |
| macro_rules! assert_f128_biteq { |
| ($a:expr, $b:expr) => { |
| let (l, r): (&f128, &f128) = (&$a, &$b); |
| let lb = l.to_bits(); |
| let rb = r.to_bits(); |
| assert_eq!(lb, rb, "float {l:?} is not bitequal to {r:?}.\na: {lb:#034x}\nb: {rb:#034x}"); |
| }; |
| } |
| |
| #[test] |
| fn test_num_f128() { |
| // FIXME(f16_f128): replace with a `test_num` call once the required `fmodl`/`fmodf128` |
| // function is available on all platforms. |
| let ten = 10f128; |
| let two = 2f128; |
| assert_eq!(ten.add(two), ten + two); |
| assert_eq!(ten.sub(two), ten - two); |
| assert_eq!(ten.mul(two), ten * two); |
| assert_eq!(ten.div(two), ten / two); |
| } |
| |
| // Many math functions allow for less accurate results, so the next tolerance up is used |
| |
| #[test] |
| #[cfg(not(miri))] |
| #[cfg(target_has_reliable_f128_math)] |
| fn test_powf() { |
| let nan: f128 = f128::NAN; |
| let inf: f128 = f128::INFINITY; |
| let neg_inf: f128 = f128::NEG_INFINITY; |
| assert_eq!(1.0f128.powf(1.0), 1.0); |
| assert_approx_eq!(3.4f128.powf(4.5), 246.40818323761892815995637964326426756, TOL_IMPR); |
| assert_approx_eq!(2.7f128.powf(-3.2), 0.041652009108526178281070304373500889273, TOL_IMPR); |
| assert_approx_eq!((-3.1f128).powf(2.0), 9.6100000000000005506706202140776519387, TOL_IMPR); |
| assert_approx_eq!(5.9f128.powf(-2.0), 0.028727377190462507313100483690639638451, TOL_IMPR); |
| assert_eq!(8.3f128.powf(0.0), 1.0); |
| assert!(nan.powf(2.0).is_nan()); |
| assert_eq!(inf.powf(2.0), inf); |
| assert_eq!(neg_inf.powf(3.0), neg_inf); |
| } |
| |
| #[test] |
| #[cfg(not(miri))] |
| #[cfg(target_has_reliable_f128_math)] |
| fn test_exp() { |
| assert_eq!(1.0, 0.0f128.exp()); |
| assert_approx_eq!(consts::E, 1.0f128.exp(), TOL); |
| assert_approx_eq!(148.41315910257660342111558004055227962348775, 5.0f128.exp(), TOL); |
| |
| let inf: f128 = f128::INFINITY; |
| let neg_inf: f128 = f128::NEG_INFINITY; |
| let nan: f128 = f128::NAN; |
| assert_eq!(inf, inf.exp()); |
| assert_eq!(0.0, neg_inf.exp()); |
| assert!(nan.exp().is_nan()); |
| } |
| |
| #[test] |
| #[cfg(not(miri))] |
| #[cfg(target_has_reliable_f128_math)] |
| fn test_exp2() { |
| assert_eq!(32.0, 5.0f128.exp2()); |
| assert_eq!(1.0, 0.0f128.exp2()); |
| |
| let inf: f128 = f128::INFINITY; |
| let neg_inf: f128 = f128::NEG_INFINITY; |
| let nan: f128 = f128::NAN; |
| assert_eq!(inf, inf.exp2()); |
| assert_eq!(0.0, neg_inf.exp2()); |
| assert!(nan.exp2().is_nan()); |
| } |
| |
| #[test] |
| #[cfg(not(miri))] |
| #[cfg(target_has_reliable_f128_math)] |
| fn test_ln() { |
| let nan: f128 = f128::NAN; |
| let inf: f128 = f128::INFINITY; |
| let neg_inf: f128 = f128::NEG_INFINITY; |
| assert_approx_eq!(1.0f128.exp().ln(), 1.0, TOL); |
| assert!(nan.ln().is_nan()); |
| assert_eq!(inf.ln(), inf); |
| assert!(neg_inf.ln().is_nan()); |
| assert!((-2.3f128).ln().is_nan()); |
| assert_eq!((-0.0f128).ln(), neg_inf); |
| assert_eq!(0.0f128.ln(), neg_inf); |
| assert_approx_eq!(4.0f128.ln(), 1.3862943611198906188344642429163531366, TOL); |
| } |
| |
| #[test] |
| #[cfg(not(miri))] |
| #[cfg(target_has_reliable_f128_math)] |
| fn test_log() { |
| let nan: f128 = f128::NAN; |
| let inf: f128 = f128::INFINITY; |
| let neg_inf: f128 = f128::NEG_INFINITY; |
| assert_eq!(10.0f128.log(10.0), 1.0); |
| assert_approx_eq!(2.3f128.log(3.5), 0.66485771361478710036766645911922010272, TOL); |
| assert_eq!(1.0f128.exp().log(1.0f128.exp()), 1.0); |
| assert!(1.0f128.log(1.0).is_nan()); |
| assert!(1.0f128.log(-13.9).is_nan()); |
| assert!(nan.log(2.3).is_nan()); |
| assert_eq!(inf.log(10.0), inf); |
| assert!(neg_inf.log(8.8).is_nan()); |
| assert!((-2.3f128).log(0.1).is_nan()); |
| assert_eq!((-0.0f128).log(2.0), neg_inf); |
| assert_eq!(0.0f128.log(7.0), neg_inf); |
| } |
| |
| #[test] |
| #[cfg(not(miri))] |
| #[cfg(target_has_reliable_f128_math)] |
| fn test_log2() { |
| let nan: f128 = f128::NAN; |
| let inf: f128 = f128::INFINITY; |
| let neg_inf: f128 = f128::NEG_INFINITY; |
| assert_approx_eq!(10.0f128.log2(), 3.32192809488736234787031942948939017, TOL); |
| assert_approx_eq!(2.3f128.log2(), 1.2016338611696504130002982471978765921, TOL); |
| assert_approx_eq!(1.0f128.exp().log2(), 1.4426950408889634073599246810018921381, TOL); |
| assert!(nan.log2().is_nan()); |
| assert_eq!(inf.log2(), inf); |
| assert!(neg_inf.log2().is_nan()); |
| assert!((-2.3f128).log2().is_nan()); |
| assert_eq!((-0.0f128).log2(), neg_inf); |
| assert_eq!(0.0f128.log2(), neg_inf); |
| } |
| |
| #[test] |
| #[cfg(not(miri))] |
| #[cfg(target_has_reliable_f128_math)] |
| fn test_log10() { |
| let nan: f128 = f128::NAN; |
| let inf: f128 = f128::INFINITY; |
| let neg_inf: f128 = f128::NEG_INFINITY; |
| assert_eq!(10.0f128.log10(), 1.0); |
| assert_approx_eq!(2.3f128.log10(), 0.36172783601759284532595218865859309898, TOL); |
| assert_approx_eq!(1.0f128.exp().log10(), 0.43429448190325182765112891891660508222, TOL); |
| assert_eq!(1.0f128.log10(), 0.0); |
| assert!(nan.log10().is_nan()); |
| assert_eq!(inf.log10(), inf); |
| assert!(neg_inf.log10().is_nan()); |
| assert!((-2.3f128).log10().is_nan()); |
| assert_eq!((-0.0f128).log10(), neg_inf); |
| assert_eq!(0.0f128.log10(), neg_inf); |
| } |
| |
| #[test] |
| #[cfg(not(miri))] |
| #[cfg(target_has_reliable_f128_math)] |
| fn test_asinh() { |
| // Lower accuracy results are allowed, use increased tolerances |
| assert_eq!(0.0f128.asinh(), 0.0f128); |
| assert_eq!((-0.0f128).asinh(), -0.0f128); |
| |
| let inf: f128 = f128::INFINITY; |
| let neg_inf: f128 = f128::NEG_INFINITY; |
| let nan: f128 = f128::NAN; |
| assert_eq!(inf.asinh(), inf); |
| assert_eq!(neg_inf.asinh(), neg_inf); |
| assert!(nan.asinh().is_nan()); |
| assert!((-0.0f128).asinh().is_sign_negative()); |
| |
| // issue 63271 |
| assert_approx_eq!(2.0f128.asinh(), 1.443635475178810342493276740273105f128, TOL_IMPR); |
| assert_approx_eq!((-2.0f128).asinh(), -1.443635475178810342493276740273105f128, TOL_IMPR); |
| // regression test for the catastrophic cancellation fixed in 72486 |
| assert_approx_eq!( |
| (-67452098.07139316f128).asinh(), |
| -18.720075426274544393985484294000831757220, |
| TOL_IMPR |
| ); |
| |
| // test for low accuracy from issue 104548 |
| assert_approx_eq!(60.0f128, 60.0f128.sinh().asinh(), TOL_IMPR); |
| // mul needed for approximate comparison to be meaningful |
| assert_approx_eq!(1.0f128, 1e-15f128.sinh().asinh() * 1e15f128, TOL_IMPR); |
| } |
| |
| #[test] |
| #[cfg(not(miri))] |
| #[cfg(target_has_reliable_f128_math)] |
| fn test_acosh() { |
| assert_eq!(1.0f128.acosh(), 0.0f128); |
| assert!(0.999f128.acosh().is_nan()); |
| |
| let inf: f128 = f128::INFINITY; |
| let neg_inf: f128 = f128::NEG_INFINITY; |
| let nan: f128 = f128::NAN; |
| assert_eq!(inf.acosh(), inf); |
| assert!(neg_inf.acosh().is_nan()); |
| assert!(nan.acosh().is_nan()); |
| assert_approx_eq!(2.0f128.acosh(), 1.31695789692481670862504634730796844f128, TOL_IMPR); |
| assert_approx_eq!(3.0f128.acosh(), 1.76274717403908605046521864995958461f128, TOL_IMPR); |
| |
| // test for low accuracy from issue 104548 |
| assert_approx_eq!(60.0f128, 60.0f128.cosh().acosh(), TOL_IMPR); |
| } |
| |
| #[test] |
| #[cfg(not(miri))] |
| #[cfg(target_has_reliable_f128_math)] |
| fn test_atanh() { |
| assert_eq!(0.0f128.atanh(), 0.0f128); |
| assert_eq!((-0.0f128).atanh(), -0.0f128); |
| |
| let inf: f128 = f128::INFINITY; |
| let neg_inf: f128 = f128::NEG_INFINITY; |
| let nan: f128 = f128::NAN; |
| assert_eq!(1.0f128.atanh(), inf); |
| assert_eq!((-1.0f128).atanh(), neg_inf); |
| assert!(2f128.atanh().atanh().is_nan()); |
| assert!((-2f128).atanh().atanh().is_nan()); |
| assert!(inf.atanh().is_nan()); |
| assert!(neg_inf.atanh().is_nan()); |
| assert!(nan.atanh().is_nan()); |
| assert_approx_eq!(0.5f128.atanh(), 0.54930614433405484569762261846126285f128, TOL_IMPR); |
| assert_approx_eq!((-0.5f128).atanh(), -0.54930614433405484569762261846126285f128, TOL_IMPR); |
| } |
| |
| #[test] |
| #[cfg(not(miri))] |
| #[cfg(target_has_reliable_f128_math)] |
| fn test_gamma() { |
| // precision can differ among platforms |
| assert_approx_eq!(1.0f128.gamma(), 1.0f128, TOL_IMPR); |
| assert_approx_eq!(2.0f128.gamma(), 1.0f128, TOL_IMPR); |
| assert_approx_eq!(3.0f128.gamma(), 2.0f128, TOL_IMPR); |
| assert_approx_eq!(4.0f128.gamma(), 6.0f128, TOL_IMPR); |
| assert_approx_eq!(5.0f128.gamma(), 24.0f128, TOL_IMPR); |
| assert_approx_eq!(0.5f128.gamma(), consts::PI.sqrt(), TOL_IMPR); |
| assert_approx_eq!((-0.5f128).gamma(), -2.0 * consts::PI.sqrt(), TOL_IMPR); |
| assert_eq!(0.0f128.gamma(), f128::INFINITY); |
| assert_eq!((-0.0f128).gamma(), f128::NEG_INFINITY); |
| assert!((-1.0f128).gamma().is_nan()); |
| assert!((-2.0f128).gamma().is_nan()); |
| assert!(f128::NAN.gamma().is_nan()); |
| assert!(f128::NEG_INFINITY.gamma().is_nan()); |
| assert_eq!(f128::INFINITY.gamma(), f128::INFINITY); |
| assert_eq!(1760.9f128.gamma(), f128::INFINITY); |
| } |
| |
| #[test] |
| #[cfg(not(miri))] |
| #[cfg(target_has_reliable_f128_math)] |
| fn test_ln_gamma() { |
| assert_approx_eq!(1.0f128.ln_gamma().0, 0.0f128, TOL_IMPR); |
| assert_eq!(1.0f128.ln_gamma().1, 1); |
| assert_approx_eq!(2.0f128.ln_gamma().0, 0.0f128, TOL_IMPR); |
| assert_eq!(2.0f128.ln_gamma().1, 1); |
| assert_approx_eq!(3.0f128.ln_gamma().0, 2.0f128.ln(), TOL_IMPR); |
| assert_eq!(3.0f128.ln_gamma().1, 1); |
| assert_approx_eq!((-0.5f128).ln_gamma().0, (2.0 * consts::PI.sqrt()).ln(), TOL_IMPR); |
| assert_eq!((-0.5f128).ln_gamma().1, -1); |
| } |
| |
| #[test] |
| fn test_real_consts() { |
| let pi: f128 = consts::PI; |
| let frac_pi_2: f128 = consts::FRAC_PI_2; |
| let frac_pi_3: f128 = consts::FRAC_PI_3; |
| let frac_pi_4: f128 = consts::FRAC_PI_4; |
| let frac_pi_6: f128 = consts::FRAC_PI_6; |
| let frac_pi_8: f128 = consts::FRAC_PI_8; |
| let frac_1_pi: f128 = consts::FRAC_1_PI; |
| let frac_2_pi: f128 = consts::FRAC_2_PI; |
| |
| assert_approx_eq!(frac_pi_2, pi / 2f128, TOL_PRECISE); |
| assert_approx_eq!(frac_pi_3, pi / 3f128, TOL_PRECISE); |
| assert_approx_eq!(frac_pi_4, pi / 4f128, TOL_PRECISE); |
| assert_approx_eq!(frac_pi_6, pi / 6f128, TOL_PRECISE); |
| assert_approx_eq!(frac_pi_8, pi / 8f128, TOL_PRECISE); |
| assert_approx_eq!(frac_1_pi, 1f128 / pi, TOL_PRECISE); |
| assert_approx_eq!(frac_2_pi, 2f128 / pi, TOL_PRECISE); |
| |
| #[cfg(not(miri))] |
| #[cfg(target_has_reliable_f128_math)] |
| { |
| let frac_2_sqrtpi: f128 = consts::FRAC_2_SQRT_PI; |
| let sqrt2: f128 = consts::SQRT_2; |
| let frac_1_sqrt2: f128 = consts::FRAC_1_SQRT_2; |
| let e: f128 = consts::E; |
| let log2_e: f128 = consts::LOG2_E; |
| let log10_e: f128 = consts::LOG10_E; |
| let ln_2: f128 = consts::LN_2; |
| let ln_10: f128 = consts::LN_10; |
| |
| assert_approx_eq!(frac_2_sqrtpi, 2f128 / pi.sqrt(), TOL_PRECISE); |
| assert_approx_eq!(sqrt2, 2f128.sqrt(), TOL_PRECISE); |
| assert_approx_eq!(frac_1_sqrt2, 1f128 / 2f128.sqrt(), TOL_PRECISE); |
| assert_approx_eq!(log2_e, e.log2(), TOL_PRECISE); |
| assert_approx_eq!(log10_e, e.log10(), TOL_PRECISE); |
| assert_approx_eq!(ln_2, 2f128.ln(), TOL_PRECISE); |
| assert_approx_eq!(ln_10, 10f128.ln(), TOL_PRECISE); |
| } |
| } |