blob: b71d8b1357b5ab9b88353f559aaa032eb1b4299e [file] [log] [blame]
#![unstable(issue = "none", feature = "windows_net")]
use core::ffi::{c_int, c_long, c_ulong, c_ushort};
use super::{getsockopt, setsockopt, socket_addr_from_c, socket_addr_to_c};
use crate::io::{self, BorrowedBuf, BorrowedCursor, IoSlice, IoSliceMut, Read};
use crate::net::{Shutdown, SocketAddr};
use crate::os::windows::io::{
AsRawSocket, AsSocket, BorrowedSocket, FromRawSocket, IntoRawSocket, OwnedSocket, RawSocket,
};
use crate::sync::atomic::Atomic;
use crate::sync::atomic::Ordering::{AcqRel, Relaxed};
use crate::sys::c;
use crate::sys_common::{AsInner, FromInner, IntoInner};
use crate::time::Duration;
use crate::{cmp, mem, ptr, sys};
#[allow(non_camel_case_types)]
pub type wrlen_t = i32;
pub(super) mod netc {
//! BSD socket compatibility shim
//!
//! Some Windows API types are not quite what's expected by our cross-platform
//! net code. E.g. naming differences or different pointer types.
use core::ffi::{c_char, c_int, c_uint, c_ulong, c_ushort, c_void};
use crate::sys::c::{self, ADDRESS_FAMILY, ADDRINFOA, SOCKADDR, SOCKET};
// re-exports from Windows API bindings.
pub use crate::sys::c::{
ADDRESS_FAMILY as sa_family_t, ADDRINFOA as addrinfo, IP_ADD_MEMBERSHIP,
IP_DROP_MEMBERSHIP, IP_MULTICAST_LOOP, IP_MULTICAST_TTL, IP_TTL, IPPROTO_IP, IPPROTO_IPV6,
IPV6_ADD_MEMBERSHIP, IPV6_DROP_MEMBERSHIP, IPV6_MULTICAST_LOOP, IPV6_V6ONLY, SO_BROADCAST,
SO_RCVTIMEO, SO_SNDTIMEO, SOCK_DGRAM, SOCK_STREAM, SOCKADDR as sockaddr,
SOCKADDR_STORAGE as sockaddr_storage, SOL_SOCKET, bind, connect, freeaddrinfo, getpeername,
getsockname, getsockopt, listen, setsockopt,
};
#[allow(non_camel_case_types)]
pub type socklen_t = c_int;
pub const AF_INET: i32 = c::AF_INET as i32;
pub const AF_INET6: i32 = c::AF_INET6 as i32;
// The following two structs use a union in the generated bindings but
// our cross-platform code expects a normal field so it's redefined here.
// As a consequence, we also need to redefine other structs that use this struct.
#[repr(C)]
#[derive(Copy, Clone)]
pub struct in_addr {
pub s_addr: u32,
}
#[repr(C)]
#[derive(Copy, Clone)]
pub struct in6_addr {
pub s6_addr: [u8; 16],
}
#[repr(C)]
pub struct ip_mreq {
pub imr_multiaddr: in_addr,
pub imr_interface: in_addr,
}
#[repr(C)]
pub struct ipv6_mreq {
pub ipv6mr_multiaddr: in6_addr,
pub ipv6mr_interface: c_uint,
}
#[repr(C)]
#[derive(Copy, Clone)]
pub struct sockaddr_in {
pub sin_family: ADDRESS_FAMILY,
pub sin_port: c_ushort,
pub sin_addr: in_addr,
pub sin_zero: [c_char; 8],
}
#[repr(C)]
#[derive(Copy, Clone)]
pub struct sockaddr_in6 {
pub sin6_family: ADDRESS_FAMILY,
pub sin6_port: c_ushort,
pub sin6_flowinfo: c_ulong,
pub sin6_addr: in6_addr,
pub sin6_scope_id: c_ulong,
}
pub unsafe fn send(socket: SOCKET, buf: *const c_void, len: c_int, flags: c_int) -> c_int {
unsafe { c::send(socket, buf.cast::<u8>(), len, flags) }
}
pub unsafe fn sendto(
socket: SOCKET,
buf: *const c_void,
len: c_int,
flags: c_int,
addr: *const SOCKADDR,
addrlen: c_int,
) -> c_int {
unsafe { c::sendto(socket, buf.cast::<u8>(), len, flags, addr, addrlen) }
}
pub unsafe fn getaddrinfo(
node: *const c_char,
service: *const c_char,
hints: *const ADDRINFOA,
res: *mut *mut ADDRINFOA,
) -> c_int {
unsafe { c::getaddrinfo(node.cast::<u8>(), service.cast::<u8>(), hints, res) }
}
}
#[expect(missing_debug_implementations)]
pub struct Socket(OwnedSocket);
static WSA_INITIALIZED: Atomic<bool> = Atomic::<bool>::new(false);
/// Checks whether the Windows socket interface has been started already, and
/// if not, starts it.
#[inline]
pub fn init() {
if !WSA_INITIALIZED.load(Relaxed) {
wsa_startup();
}
}
#[cold]
fn wsa_startup() {
unsafe {
let mut data: c::WSADATA = mem::zeroed();
let ret = c::WSAStartup(
0x202, // version 2.2
&mut data,
);
assert_eq!(ret, 0);
if WSA_INITIALIZED.swap(true, AcqRel) {
// If another thread raced with us and called WSAStartup first then call
// WSACleanup so it's as though WSAStartup was only called once.
c::WSACleanup();
}
}
}
pub fn cleanup() {
// We don't need to call WSACleanup here because exiting the process will cause
// the OS to clean everything for us, which is faster than doing it manually.
// See #141799.
}
/// Returns the last error from the Windows socket interface.
fn last_error() -> io::Error {
io::Error::from_raw_os_error(unsafe { c::WSAGetLastError() })
}
#[doc(hidden)]
pub trait IsMinusOne {
fn is_minus_one(&self) -> bool;
}
macro_rules! impl_is_minus_one {
($($t:ident)*) => ($(impl IsMinusOne for $t {
fn is_minus_one(&self) -> bool {
*self == -1
}
})*)
}
impl_is_minus_one! { i8 i16 i32 i64 isize }
/// Checks if the signed integer is the Windows constant `SOCKET_ERROR` (-1)
/// and if so, returns the last error from the Windows socket interface. This
/// function must be called before another call to the socket API is made.
pub fn cvt<T: IsMinusOne>(t: T) -> io::Result<T> {
if t.is_minus_one() { Err(last_error()) } else { Ok(t) }
}
/// A variant of `cvt` for `getaddrinfo` which return 0 for a success.
pub fn cvt_gai(err: c_int) -> io::Result<()> {
if err == 0 { Ok(()) } else { Err(last_error()) }
}
/// Just to provide the same interface as sys/pal/unix/net.rs
pub fn cvt_r<T, F>(mut f: F) -> io::Result<T>
where
T: IsMinusOne,
F: FnMut() -> T,
{
cvt(f())
}
impl Socket {
pub fn new(addr: &SocketAddr, ty: c_int) -> io::Result<Socket> {
let family = match *addr {
SocketAddr::V4(..) => netc::AF_INET,
SocketAddr::V6(..) => netc::AF_INET6,
};
let socket = unsafe {
c::WSASocketW(
family,
ty,
0,
ptr::null_mut(),
0,
c::WSA_FLAG_OVERLAPPED | c::WSA_FLAG_NO_HANDLE_INHERIT,
)
};
if socket != c::INVALID_SOCKET {
unsafe { Ok(Self::from_raw(socket)) }
} else {
let error = unsafe { c::WSAGetLastError() };
if error != c::WSAEPROTOTYPE && error != c::WSAEINVAL {
return Err(io::Error::from_raw_os_error(error));
}
let socket =
unsafe { c::WSASocketW(family, ty, 0, ptr::null_mut(), 0, c::WSA_FLAG_OVERLAPPED) };
if socket == c::INVALID_SOCKET {
return Err(last_error());
}
unsafe {
let socket = Self::from_raw(socket);
socket.0.set_no_inherit()?;
Ok(socket)
}
}
}
pub fn connect(&self, addr: &SocketAddr) -> io::Result<()> {
let (addr, len) = socket_addr_to_c(addr);
let result = unsafe { c::connect(self.as_raw(), addr.as_ptr(), len) };
cvt(result).map(drop)
}
pub fn connect_timeout(&self, addr: &SocketAddr, timeout: Duration) -> io::Result<()> {
self.set_nonblocking(true)?;
let result = self.connect(addr);
self.set_nonblocking(false)?;
match result {
Err(ref error) if error.kind() == io::ErrorKind::WouldBlock => {
if timeout.as_secs() == 0 && timeout.subsec_nanos() == 0 {
return Err(io::Error::ZERO_TIMEOUT);
}
let mut timeout = c::TIMEVAL {
tv_sec: cmp::min(timeout.as_secs(), c_long::MAX as u64) as c_long,
tv_usec: timeout.subsec_micros() as c_long,
};
if timeout.tv_sec == 0 && timeout.tv_usec == 0 {
timeout.tv_usec = 1;
}
let fds = {
let mut fds = unsafe { mem::zeroed::<c::FD_SET>() };
fds.fd_count = 1;
fds.fd_array[0] = self.as_raw();
fds
};
let mut writefds = fds;
let mut errorfds = fds;
let count = {
let result = unsafe {
c::select(1, ptr::null_mut(), &mut writefds, &mut errorfds, &timeout)
};
cvt(result)?
};
match count {
0 => Err(io::const_error!(io::ErrorKind::TimedOut, "connection timed out")),
_ => {
if writefds.fd_count != 1 {
if let Some(e) = self.take_error()? {
return Err(e);
}
}
Ok(())
}
}
}
_ => result,
}
}
pub fn accept(&self, storage: *mut c::SOCKADDR, len: *mut c_int) -> io::Result<Socket> {
let socket = unsafe { c::accept(self.as_raw(), storage, len) };
match socket {
c::INVALID_SOCKET => Err(last_error()),
_ => unsafe { Ok(Self::from_raw(socket)) },
}
}
pub fn duplicate(&self) -> io::Result<Socket> {
Ok(Self(self.0.try_clone()?))
}
fn recv_with_flags(&self, mut buf: BorrowedCursor<'_>, flags: c_int) -> io::Result<()> {
// On unix when a socket is shut down all further reads return 0, so we
// do the same on windows to map a shut down socket to returning EOF.
let length = cmp::min(buf.capacity(), i32::MAX as usize) as i32;
let result =
unsafe { c::recv(self.as_raw(), buf.as_mut().as_mut_ptr() as *mut _, length, flags) };
match result {
c::SOCKET_ERROR => {
let error = unsafe { c::WSAGetLastError() };
if error == c::WSAESHUTDOWN {
Ok(())
} else {
Err(io::Error::from_raw_os_error(error))
}
}
_ => {
unsafe { buf.advance_unchecked(result as usize) };
Ok(())
}
}
}
pub fn read(&self, buf: &mut [u8]) -> io::Result<usize> {
let mut buf = BorrowedBuf::from(buf);
self.recv_with_flags(buf.unfilled(), 0)?;
Ok(buf.len())
}
pub fn read_buf(&self, buf: BorrowedCursor<'_>) -> io::Result<()> {
self.recv_with_flags(buf, 0)
}
pub fn read_vectored(&self, bufs: &mut [IoSliceMut<'_>]) -> io::Result<usize> {
// On unix when a socket is shut down all further reads return 0, so we
// do the same on windows to map a shut down socket to returning EOF.
let length = cmp::min(bufs.len(), u32::MAX as usize) as u32;
let mut nread = 0;
let mut flags = 0;
let result = unsafe {
c::WSARecv(
self.as_raw(),
bufs.as_mut_ptr() as *mut c::WSABUF,
length,
&mut nread,
&mut flags,
ptr::null_mut(),
None,
)
};
match result {
0 => Ok(nread as usize),
_ => {
let error = unsafe { c::WSAGetLastError() };
if error == c::WSAESHUTDOWN {
Ok(0)
} else {
Err(io::Error::from_raw_os_error(error))
}
}
}
}
#[inline]
pub fn is_read_vectored(&self) -> bool {
true
}
pub fn peek(&self, buf: &mut [u8]) -> io::Result<usize> {
let mut buf = BorrowedBuf::from(buf);
self.recv_with_flags(buf.unfilled(), c::MSG_PEEK)?;
Ok(buf.len())
}
fn recv_from_with_flags(
&self,
buf: &mut [u8],
flags: c_int,
) -> io::Result<(usize, SocketAddr)> {
let mut storage = unsafe { mem::zeroed::<c::SOCKADDR_STORAGE>() };
let mut addrlen = size_of_val(&storage) as netc::socklen_t;
let length = cmp::min(buf.len(), <wrlen_t>::MAX as usize) as wrlen_t;
// On unix when a socket is shut down all further reads return 0, so we
// do the same on windows to map a shut down socket to returning EOF.
let result = unsafe {
c::recvfrom(
self.as_raw(),
buf.as_mut_ptr() as *mut _,
length,
flags,
(&raw mut storage) as *mut _,
&mut addrlen,
)
};
match result {
c::SOCKET_ERROR => {
let error = unsafe { c::WSAGetLastError() };
if error == c::WSAESHUTDOWN {
Ok((0, unsafe { socket_addr_from_c(&storage, addrlen as usize)? }))
} else {
Err(io::Error::from_raw_os_error(error))
}
}
_ => Ok((result as usize, unsafe { socket_addr_from_c(&storage, addrlen as usize)? })),
}
}
pub fn recv_from(&self, buf: &mut [u8]) -> io::Result<(usize, SocketAddr)> {
self.recv_from_with_flags(buf, 0)
}
pub fn peek_from(&self, buf: &mut [u8]) -> io::Result<(usize, SocketAddr)> {
self.recv_from_with_flags(buf, c::MSG_PEEK)
}
pub fn write_vectored(&self, bufs: &[IoSlice<'_>]) -> io::Result<usize> {
let length = cmp::min(bufs.len(), u32::MAX as usize) as u32;
let mut nwritten = 0;
let result = unsafe {
c::WSASend(
self.as_raw(),
bufs.as_ptr() as *const c::WSABUF as *mut _,
length,
&mut nwritten,
0,
ptr::null_mut(),
None,
)
};
cvt(result).map(|_| nwritten as usize)
}
#[inline]
pub fn is_write_vectored(&self) -> bool {
true
}
pub fn set_timeout(&self, dur: Option<Duration>, kind: c_int) -> io::Result<()> {
let timeout = match dur {
Some(dur) => {
let timeout = sys::dur2timeout(dur);
if timeout == 0 {
return Err(io::Error::ZERO_TIMEOUT);
}
timeout
}
None => 0,
};
setsockopt(self, c::SOL_SOCKET, kind, timeout)
}
pub fn timeout(&self, kind: c_int) -> io::Result<Option<Duration>> {
let raw: u32 = getsockopt(self, c::SOL_SOCKET, kind)?;
if raw == 0 {
Ok(None)
} else {
let secs = raw / 1000;
let nsec = (raw % 1000) * 1000000;
Ok(Some(Duration::new(secs as u64, nsec as u32)))
}
}
pub fn shutdown(&self, how: Shutdown) -> io::Result<()> {
let how = match how {
Shutdown::Write => c::SD_SEND,
Shutdown::Read => c::SD_RECEIVE,
Shutdown::Both => c::SD_BOTH,
};
let result = unsafe { c::shutdown(self.as_raw(), how) };
cvt(result).map(drop)
}
pub fn set_nonblocking(&self, nonblocking: bool) -> io::Result<()> {
let mut nonblocking = nonblocking as c_ulong;
let result =
unsafe { c::ioctlsocket(self.as_raw(), c::FIONBIO as c_int, &mut nonblocking) };
cvt(result).map(drop)
}
pub fn set_linger(&self, linger: Option<Duration>) -> io::Result<()> {
let linger = c::LINGER {
l_onoff: linger.is_some() as c_ushort,
l_linger: linger.unwrap_or_default().as_secs() as c_ushort,
};
setsockopt(self, c::SOL_SOCKET, c::SO_LINGER, linger)
}
pub fn linger(&self) -> io::Result<Option<Duration>> {
let val: c::LINGER = getsockopt(self, c::SOL_SOCKET, c::SO_LINGER)?;
Ok((val.l_onoff != 0).then(|| Duration::from_secs(val.l_linger as u64)))
}
pub fn set_nodelay(&self, nodelay: bool) -> io::Result<()> {
setsockopt(self, c::IPPROTO_TCP, c::TCP_NODELAY, nodelay as c::BOOL)
}
pub fn nodelay(&self) -> io::Result<bool> {
let raw: c::BOOL = getsockopt(self, c::IPPROTO_TCP, c::TCP_NODELAY)?;
Ok(raw != 0)
}
pub fn take_error(&self) -> io::Result<Option<io::Error>> {
let raw: c_int = getsockopt(self, c::SOL_SOCKET, c::SO_ERROR)?;
if raw == 0 { Ok(None) } else { Ok(Some(io::Error::from_raw_os_error(raw as i32))) }
}
// This is used by sys_common code to abstract over Windows and Unix.
pub fn as_raw(&self) -> c::SOCKET {
debug_assert_eq!(size_of::<c::SOCKET>(), size_of::<RawSocket>());
debug_assert_eq!(align_of::<c::SOCKET>(), align_of::<RawSocket>());
self.as_inner().as_raw_socket() as c::SOCKET
}
pub unsafe fn from_raw(raw: c::SOCKET) -> Self {
debug_assert_eq!(size_of::<c::SOCKET>(), size_of::<RawSocket>());
debug_assert_eq!(align_of::<c::SOCKET>(), align_of::<RawSocket>());
unsafe { Self::from_raw_socket(raw as RawSocket) }
}
}
#[unstable(reason = "not public", issue = "none", feature = "fd_read")]
impl<'a> Read for &'a Socket {
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
(**self).read(buf)
}
}
impl AsInner<OwnedSocket> for Socket {
#[inline]
fn as_inner(&self) -> &OwnedSocket {
&self.0
}
}
impl FromInner<OwnedSocket> for Socket {
fn from_inner(sock: OwnedSocket) -> Socket {
Socket(sock)
}
}
impl IntoInner<OwnedSocket> for Socket {
fn into_inner(self) -> OwnedSocket {
self.0
}
}
impl AsSocket for Socket {
fn as_socket(&self) -> BorrowedSocket<'_> {
self.0.as_socket()
}
}
impl AsRawSocket for Socket {
fn as_raw_socket(&self) -> RawSocket {
self.0.as_raw_socket()
}
}
impl IntoRawSocket for Socket {
fn into_raw_socket(self) -> RawSocket {
self.0.into_raw_socket()
}
}
impl FromRawSocket for Socket {
unsafe fn from_raw_socket(raw_socket: RawSocket) -> Self {
unsafe { Self(FromRawSocket::from_raw_socket(raw_socket)) }
}
}