| //! [`CStr`] and its related types. |
| |
| use crate::cmp::Ordering; |
| use crate::error::Error; |
| use crate::ffi::c_char; |
| use crate::intrinsics::const_eval_select; |
| use crate::iter::FusedIterator; |
| use crate::marker::PhantomData; |
| use crate::ptr::NonNull; |
| use crate::slice::memchr; |
| use crate::{fmt, ops, slice, str}; |
| |
| // FIXME: because this is doc(inline)d, we *have* to use intra-doc links because the actual link |
| // depends on where the item is being documented. however, since this is libcore, we can't |
| // actually reference libstd or liballoc in intra-doc links. so, the best we can do is remove the |
| // links to `CString` and `String` for now until a solution is developed |
| |
| /// Representation of a borrowed C string. |
| /// |
| /// This type represents a borrowed reference to a nul-terminated |
| /// array of bytes. It can be constructed safely from a <code>&[[u8]]</code> |
| /// slice, or unsafely from a raw `*const c_char`. It can be expressed as a |
| /// literal in the form `c"Hello world"`. |
| /// |
| /// The `CStr` can then be converted to a Rust <code>&[str]</code> by performing |
| /// UTF-8 validation, or into an owned `CString`. |
| /// |
| /// `&CStr` is to `CString` as <code>&[str]</code> is to `String`: the former |
| /// in each pair are borrowed references; the latter are owned |
| /// strings. |
| /// |
| /// Note that this structure does **not** have a guaranteed layout (the `repr(transparent)` |
| /// notwithstanding) and should not be placed in the signatures of FFI functions. |
| /// Instead, safe wrappers of FFI functions may leverage [`CStr::as_ptr`] and the unsafe |
| /// [`CStr::from_ptr`] constructor to provide a safe interface to other consumers. |
| /// |
| /// # Examples |
| /// |
| /// Inspecting a foreign C string: |
| /// |
| /// ``` |
| /// use std::ffi::CStr; |
| /// use std::os::raw::c_char; |
| /// |
| /// # /* Extern functions are awkward in doc comments - fake it instead |
| /// extern "C" { fn my_string() -> *const c_char; } |
| /// # */ unsafe extern "C" fn my_string() -> *const c_char { c"hello".as_ptr() } |
| /// |
| /// unsafe { |
| /// let slice = CStr::from_ptr(my_string()); |
| /// println!("string buffer size without nul terminator: {}", slice.to_bytes().len()); |
| /// } |
| /// ``` |
| /// |
| /// Passing a Rust-originating C string: |
| /// |
| /// ``` |
| /// use std::ffi::CStr; |
| /// use std::os::raw::c_char; |
| /// |
| /// fn work(data: &CStr) { |
| /// unsafe extern "C" fn work_with(s: *const c_char) {} |
| /// unsafe { work_with(data.as_ptr()) } |
| /// } |
| /// |
| /// let s = c"Hello world!"; |
| /// work(&s); |
| /// ``` |
| /// |
| /// Converting a foreign C string into a Rust `String`: |
| /// |
| /// ``` |
| /// use std::ffi::CStr; |
| /// use std::os::raw::c_char; |
| /// |
| /// # /* Extern functions are awkward in doc comments - fake it instead |
| /// extern "C" { fn my_string() -> *const c_char; } |
| /// # */ unsafe extern "C" fn my_string() -> *const c_char { c"hello".as_ptr() } |
| /// |
| /// fn my_string_safe() -> String { |
| /// let cstr = unsafe { CStr::from_ptr(my_string()) }; |
| /// // Get a copy-on-write Cow<'_, str>, then extract the |
| /// // allocated String (or allocate a fresh one if needed). |
| /// cstr.to_string_lossy().into_owned() |
| /// } |
| /// |
| /// println!("string: {}", my_string_safe()); |
| /// ``` |
| /// |
| /// [str]: prim@str "str" |
| #[derive(PartialEq, Eq, Hash)] |
| #[stable(feature = "core_c_str", since = "1.64.0")] |
| #[rustc_diagnostic_item = "cstr_type"] |
| #[rustc_has_incoherent_inherent_impls] |
| #[lang = "CStr"] |
| // `fn from` in `impl From<&CStr> for Box<CStr>` current implementation relies |
| // on `CStr` being layout-compatible with `[u8]`. |
| // However, `CStr` layout is considered an implementation detail and must not be relied upon. We |
| // want `repr(transparent)` but we don't want it to show up in rustdoc, so we hide it under |
| // `cfg(doc)`. This is an ad-hoc implementation of attribute privacy. |
| #[repr(transparent)] |
| pub struct CStr { |
| // FIXME: this should not be represented with a DST slice but rather with |
| // just a raw `c_char` along with some form of marker to make |
| // this an unsized type. Essentially `sizeof(&CStr)` should be the |
| // same as `sizeof(&c_char)` but `CStr` should be an unsized type. |
| inner: [c_char], |
| } |
| |
| /// An error indicating that a nul byte was not in the expected position. |
| /// |
| /// The slice used to create a [`CStr`] must have one and only one nul byte, |
| /// positioned at the end. |
| /// |
| /// This error is created by the [`CStr::from_bytes_with_nul`] method. |
| /// See its documentation for more. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use std::ffi::{CStr, FromBytesWithNulError}; |
| /// |
| /// let _: FromBytesWithNulError = CStr::from_bytes_with_nul(b"f\0oo").unwrap_err(); |
| /// ``` |
| #[derive(Clone, Copy, PartialEq, Eq, Debug)] |
| #[stable(feature = "core_c_str", since = "1.64.0")] |
| pub enum FromBytesWithNulError { |
| /// Data provided contains an interior nul byte at byte `position`. |
| InteriorNul { |
| /// The position of the interior nul byte. |
| position: usize, |
| }, |
| /// Data provided is not nul terminated. |
| NotNulTerminated, |
| } |
| |
| #[stable(feature = "frombyteswithnulerror_impls", since = "1.17.0")] |
| impl fmt::Display for FromBytesWithNulError { |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| match self { |
| Self::InteriorNul { position } => { |
| write!(f, "data provided contains an interior nul byte at byte position {position}") |
| } |
| Self::NotNulTerminated => write!(f, "data provided is not nul terminated"), |
| } |
| } |
| } |
| |
| #[stable(feature = "frombyteswithnulerror_impls", since = "1.17.0")] |
| impl Error for FromBytesWithNulError {} |
| |
| /// An error indicating that no nul byte was present. |
| /// |
| /// A slice used to create a [`CStr`] must contain a nul byte somewhere |
| /// within the slice. |
| /// |
| /// This error is created by the [`CStr::from_bytes_until_nul`] method. |
| #[derive(Clone, PartialEq, Eq, Debug)] |
| #[stable(feature = "cstr_from_bytes_until_nul", since = "1.69.0")] |
| pub struct FromBytesUntilNulError(()); |
| |
| #[stable(feature = "cstr_from_bytes_until_nul", since = "1.69.0")] |
| impl fmt::Display for FromBytesUntilNulError { |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| write!(f, "data provided does not contain a nul") |
| } |
| } |
| |
| /// Shows the underlying bytes as a normal string, with invalid UTF-8 |
| /// presented as hex escape sequences. |
| #[stable(feature = "cstr_debug", since = "1.3.0")] |
| impl fmt::Debug for CStr { |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| fmt::Debug::fmt(crate::bstr::ByteStr::from_bytes(self.to_bytes()), f) |
| } |
| } |
| |
| #[stable(feature = "cstr_default", since = "1.10.0")] |
| impl Default for &CStr { |
| #[inline] |
| fn default() -> Self { |
| c"" |
| } |
| } |
| |
| impl CStr { |
| /// Wraps a raw C string with a safe C string wrapper. |
| /// |
| /// This function will wrap the provided `ptr` with a `CStr` wrapper, which |
| /// allows inspection and interoperation of non-owned C strings. The total |
| /// size of the terminated buffer must be smaller than [`isize::MAX`] **bytes** |
| /// in memory (a restriction from [`slice::from_raw_parts`]). |
| /// |
| /// # Safety |
| /// |
| /// * The memory pointed to by `ptr` must contain a valid nul terminator at the |
| /// end of the string. |
| /// |
| /// * `ptr` must be [valid] for reads of bytes up to and including the nul terminator. |
| /// This means in particular: |
| /// |
| /// * The entire memory range of this `CStr` must be contained within a single allocation! |
| /// * `ptr` must be non-null even for a zero-length cstr. |
| /// |
| /// * The memory referenced by the returned `CStr` must not be mutated for |
| /// the duration of lifetime `'a`. |
| /// |
| /// * The nul terminator must be within `isize::MAX` from `ptr` |
| /// |
| /// > **Note**: This operation is intended to be a 0-cost cast but it is |
| /// > currently implemented with an up-front calculation of the length of |
| /// > the string. This is not guaranteed to always be the case. |
| /// |
| /// # Caveat |
| /// |
| /// The lifetime for the returned slice is inferred from its usage. To prevent accidental misuse, |
| /// it's suggested to tie the lifetime to whichever source lifetime is safe in the context, |
| /// such as by providing a helper function taking the lifetime of a host value for the slice, |
| /// or by explicit annotation. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use std::ffi::{c_char, CStr}; |
| /// |
| /// fn my_string() -> *const c_char { |
| /// c"hello".as_ptr() |
| /// } |
| /// |
| /// unsafe { |
| /// let slice = CStr::from_ptr(my_string()); |
| /// assert_eq!(slice.to_str().unwrap(), "hello"); |
| /// } |
| /// ``` |
| /// |
| /// ``` |
| /// use std::ffi::{c_char, CStr}; |
| /// |
| /// const HELLO_PTR: *const c_char = { |
| /// const BYTES: &[u8] = b"Hello, world!\0"; |
| /// BYTES.as_ptr().cast() |
| /// }; |
| /// const HELLO: &CStr = unsafe { CStr::from_ptr(HELLO_PTR) }; |
| /// |
| /// assert_eq!(c"Hello, world!", HELLO); |
| /// ``` |
| /// |
| /// [valid]: core::ptr#safety |
| #[inline] // inline is necessary for codegen to see strlen. |
| #[must_use] |
| #[stable(feature = "rust1", since = "1.0.0")] |
| #[rustc_const_stable(feature = "const_cstr_from_ptr", since = "1.81.0")] |
| pub const unsafe fn from_ptr<'a>(ptr: *const c_char) -> &'a CStr { |
| // SAFETY: The caller has provided a pointer that points to a valid C |
| // string with a NUL terminator less than `isize::MAX` from `ptr`. |
| let len = unsafe { strlen(ptr) }; |
| |
| // SAFETY: The caller has provided a valid pointer with length less than |
| // `isize::MAX`, so `from_raw_parts` is safe. The content remains valid |
| // and doesn't change for the lifetime of the returned `CStr`. This |
| // means the call to `from_bytes_with_nul_unchecked` is correct. |
| // |
| // The cast from c_char to u8 is ok because a c_char is always one byte. |
| unsafe { Self::from_bytes_with_nul_unchecked(slice::from_raw_parts(ptr.cast(), len + 1)) } |
| } |
| |
| /// Creates a C string wrapper from a byte slice with any number of nuls. |
| /// |
| /// This method will create a `CStr` from any byte slice that contains at |
| /// least one nul byte. Unlike with [`CStr::from_bytes_with_nul`], the caller |
| /// does not need to know where the nul byte is located. |
| /// |
| /// If the first byte is a nul character, this method will return an |
| /// empty `CStr`. If multiple nul characters are present, the `CStr` will |
| /// end at the first one. |
| /// |
| /// If the slice only has a single nul byte at the end, this method is |
| /// equivalent to [`CStr::from_bytes_with_nul`]. |
| /// |
| /// # Examples |
| /// ``` |
| /// use std::ffi::CStr; |
| /// |
| /// let mut buffer = [0u8; 16]; |
| /// unsafe { |
| /// // Here we might call an unsafe C function that writes a string |
| /// // into the buffer. |
| /// let buf_ptr = buffer.as_mut_ptr(); |
| /// buf_ptr.write_bytes(b'A', 8); |
| /// } |
| /// // Attempt to extract a C nul-terminated string from the buffer. |
| /// let c_str = CStr::from_bytes_until_nul(&buffer[..]).unwrap(); |
| /// assert_eq!(c_str.to_str().unwrap(), "AAAAAAAA"); |
| /// ``` |
| /// |
| #[stable(feature = "cstr_from_bytes_until_nul", since = "1.69.0")] |
| #[rustc_const_stable(feature = "cstr_from_bytes_until_nul", since = "1.69.0")] |
| pub const fn from_bytes_until_nul(bytes: &[u8]) -> Result<&CStr, FromBytesUntilNulError> { |
| let nul_pos = memchr::memchr(0, bytes); |
| match nul_pos { |
| Some(nul_pos) => { |
| // FIXME(const-hack) replace with range index |
| // SAFETY: nul_pos + 1 <= bytes.len() |
| let subslice = unsafe { crate::slice::from_raw_parts(bytes.as_ptr(), nul_pos + 1) }; |
| // SAFETY: We know there is a nul byte at nul_pos, so this slice |
| // (ending at the nul byte) is a well-formed C string. |
| Ok(unsafe { CStr::from_bytes_with_nul_unchecked(subslice) }) |
| } |
| None => Err(FromBytesUntilNulError(())), |
| } |
| } |
| |
| /// Creates a C string wrapper from a byte slice with exactly one nul |
| /// terminator. |
| /// |
| /// This function will cast the provided `bytes` to a `CStr` |
| /// wrapper after ensuring that the byte slice is nul-terminated |
| /// and does not contain any interior nul bytes. |
| /// |
| /// If the nul byte may not be at the end, |
| /// [`CStr::from_bytes_until_nul`] can be used instead. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use std::ffi::CStr; |
| /// |
| /// let cstr = CStr::from_bytes_with_nul(b"hello\0"); |
| /// assert_eq!(cstr, Ok(c"hello")); |
| /// ``` |
| /// |
| /// Creating a `CStr` without a trailing nul terminator is an error: |
| /// |
| /// ``` |
| /// use std::ffi::{CStr, FromBytesWithNulError}; |
| /// |
| /// let cstr = CStr::from_bytes_with_nul(b"hello"); |
| /// assert_eq!(cstr, Err(FromBytesWithNulError::NotNulTerminated)); |
| /// ``` |
| /// |
| /// Creating a `CStr` with an interior nul byte is an error: |
| /// |
| /// ``` |
| /// use std::ffi::{CStr, FromBytesWithNulError}; |
| /// |
| /// let cstr = CStr::from_bytes_with_nul(b"he\0llo\0"); |
| /// assert_eq!(cstr, Err(FromBytesWithNulError::InteriorNul { position: 2 })); |
| /// ``` |
| #[stable(feature = "cstr_from_bytes", since = "1.10.0")] |
| #[rustc_const_stable(feature = "const_cstr_methods", since = "1.72.0")] |
| pub const fn from_bytes_with_nul(bytes: &[u8]) -> Result<&Self, FromBytesWithNulError> { |
| let nul_pos = memchr::memchr(0, bytes); |
| match nul_pos { |
| Some(nul_pos) if nul_pos + 1 == bytes.len() => { |
| // SAFETY: We know there is only one nul byte, at the end |
| // of the byte slice. |
| Ok(unsafe { Self::from_bytes_with_nul_unchecked(bytes) }) |
| } |
| Some(position) => Err(FromBytesWithNulError::InteriorNul { position }), |
| None => Err(FromBytesWithNulError::NotNulTerminated), |
| } |
| } |
| |
| /// Unsafely creates a C string wrapper from a byte slice. |
| /// |
| /// This function will cast the provided `bytes` to a `CStr` wrapper without |
| /// performing any sanity checks. |
| /// |
| /// # Safety |
| /// The provided slice **must** be nul-terminated and not contain any interior |
| /// nul bytes. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use std::ffi::CStr; |
| /// |
| /// let bytes = b"Hello world!\0"; |
| /// |
| /// let cstr = unsafe { CStr::from_bytes_with_nul_unchecked(bytes) }; |
| /// assert_eq!(cstr.to_bytes_with_nul(), bytes); |
| /// ``` |
| #[inline] |
| #[must_use] |
| #[stable(feature = "cstr_from_bytes", since = "1.10.0")] |
| #[rustc_const_stable(feature = "const_cstr_unchecked", since = "1.59.0")] |
| #[rustc_allow_const_fn_unstable(const_eval_select)] |
| pub const unsafe fn from_bytes_with_nul_unchecked(bytes: &[u8]) -> &CStr { |
| const_eval_select!( |
| @capture { bytes: &[u8] } -> &CStr: |
| if const { |
| // Saturating so that an empty slice panics in the assert with a good |
| // message, not here due to underflow. |
| let mut i = bytes.len().saturating_sub(1); |
| assert!(!bytes.is_empty() && bytes[i] == 0, "input was not nul-terminated"); |
| |
| // Ending nul byte exists, skip to the rest. |
| while i != 0 { |
| i -= 1; |
| let byte = bytes[i]; |
| assert!(byte != 0, "input contained interior nul"); |
| } |
| |
| // SAFETY: See runtime cast comment below. |
| unsafe { &*(bytes as *const [u8] as *const CStr) } |
| } else { |
| // Chance at catching some UB at runtime with debug builds. |
| debug_assert!(!bytes.is_empty() && bytes[bytes.len() - 1] == 0); |
| |
| // SAFETY: Casting to CStr is safe because its internal representation |
| // is a [u8] too (safe only inside std). |
| // Dereferencing the obtained pointer is safe because it comes from a |
| // reference. Making a reference is then safe because its lifetime |
| // is bound by the lifetime of the given `bytes`. |
| unsafe { &*(bytes as *const [u8] as *const CStr) } |
| } |
| ) |
| } |
| |
| /// Returns the inner pointer to this C string. |
| /// |
| /// The returned pointer will be valid for as long as `self` is, and points |
| /// to a contiguous region of memory terminated with a 0 byte to represent |
| /// the end of the string. |
| /// |
| /// The type of the returned pointer is |
| /// [`*const c_char`][crate::ffi::c_char], and whether it's |
| /// an alias for `*const i8` or `*const u8` is platform-specific. |
| /// |
| /// **WARNING** |
| /// |
| /// The returned pointer is read-only; writing to it (including passing it |
| /// to C code that writes to it) causes undefined behavior. |
| /// |
| /// It is your responsibility to make sure that the underlying memory is not |
| /// freed too early. For example, the following code will cause undefined |
| /// behavior when `ptr` is used inside the `unsafe` block: |
| /// |
| /// ```no_run |
| /// # #![expect(dangling_pointers_from_temporaries)] |
| /// use std::ffi::{CStr, CString}; |
| /// |
| /// // 💀 The meaning of this entire program is undefined, |
| /// // 💀 and nothing about its behavior is guaranteed, |
| /// // 💀 not even that its behavior resembles the code as written, |
| /// // 💀 just because it contains a single instance of undefined behavior! |
| /// |
| /// // 🚨 creates a dangling pointer to a temporary `CString` |
| /// // 🚨 that is deallocated at the end of the statement |
| /// let ptr = CString::new("Hi!".to_uppercase()).unwrap().as_ptr(); |
| /// |
| /// // without undefined behavior, you would expect that `ptr` equals: |
| /// dbg!(CStr::from_bytes_with_nul(b"HI!\0").unwrap()); |
| /// |
| /// // 🙏 Possibly the program behaved as expected so far, |
| /// // 🙏 and this just shows `ptr` is now garbage..., but |
| /// // 💀 this violates `CStr::from_ptr`'s safety contract |
| /// // 💀 leading to a dereference of a dangling pointer, |
| /// // 💀 which is immediate undefined behavior. |
| /// // 💀 *BOOM*, you're dead, your entire program has no meaning. |
| /// dbg!(unsafe { CStr::from_ptr(ptr) }); |
| /// ``` |
| /// |
| /// This happens because, the pointer returned by `as_ptr` does not carry any |
| /// lifetime information, and the `CString` is deallocated immediately after |
| /// the expression that it is part of has been evaluated. |
| /// To fix the problem, bind the `CString` to a local variable: |
| /// |
| /// ``` |
| /// use std::ffi::{CStr, CString}; |
| /// |
| /// let c_str = CString::new("Hi!".to_uppercase()).unwrap(); |
| /// let ptr = c_str.as_ptr(); |
| /// |
| /// assert_eq!(unsafe { CStr::from_ptr(ptr) }, c"HI!"); |
| /// ``` |
| #[inline] |
| #[must_use] |
| #[stable(feature = "rust1", since = "1.0.0")] |
| #[rustc_const_stable(feature = "const_str_as_ptr", since = "1.32.0")] |
| #[rustc_as_ptr] |
| #[rustc_never_returns_null_ptr] |
| pub const fn as_ptr(&self) -> *const c_char { |
| self.inner.as_ptr() |
| } |
| |
| /// We could eventually expose this publicly, if we wanted. |
| #[inline] |
| #[must_use] |
| const fn as_non_null_ptr(&self) -> NonNull<c_char> { |
| // FIXME(const_trait_impl) replace with `NonNull::from` |
| // SAFETY: a reference is never null |
| unsafe { NonNull::new_unchecked(&self.inner as *const [c_char] as *mut [c_char]) } |
| .as_non_null_ptr() |
| } |
| |
| /// Returns the length of `self`. Like C's `strlen`, this does not include the nul terminator. |
| /// |
| /// > **Note**: This method is currently implemented as a constant-time |
| /// > cast, but it is planned to alter its definition in the future to |
| /// > perform the length calculation whenever this method is called. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// assert_eq!(c"foo".count_bytes(), 3); |
| /// assert_eq!(c"".count_bytes(), 0); |
| /// ``` |
| #[inline] |
| #[must_use] |
| #[doc(alias("len", "strlen"))] |
| #[stable(feature = "cstr_count_bytes", since = "1.79.0")] |
| #[rustc_const_stable(feature = "const_cstr_from_ptr", since = "1.81.0")] |
| pub const fn count_bytes(&self) -> usize { |
| self.inner.len() - 1 |
| } |
| |
| /// Returns `true` if `self.to_bytes()` has a length of 0. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// assert!(!c"foo".is_empty()); |
| /// assert!(c"".is_empty()); |
| /// ``` |
| #[inline] |
| #[stable(feature = "cstr_is_empty", since = "1.71.0")] |
| #[rustc_const_stable(feature = "cstr_is_empty", since = "1.71.0")] |
| pub const fn is_empty(&self) -> bool { |
| // SAFETY: We know there is at least one byte; for empty strings it |
| // is the NUL terminator. |
| // FIXME(const-hack): use get_unchecked |
| unsafe { *self.inner.as_ptr() == 0 } |
| } |
| |
| /// Converts this C string to a byte slice. |
| /// |
| /// The returned slice will **not** contain the trailing nul terminator that this C |
| /// string has. |
| /// |
| /// > **Note**: This method is currently implemented as a constant-time |
| /// > cast, but it is planned to alter its definition in the future to |
| /// > perform the length calculation whenever this method is called. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// assert_eq!(c"foo".to_bytes(), b"foo"); |
| /// ``` |
| #[inline] |
| #[must_use = "this returns the result of the operation, \ |
| without modifying the original"] |
| #[stable(feature = "rust1", since = "1.0.0")] |
| #[rustc_const_stable(feature = "const_cstr_methods", since = "1.72.0")] |
| pub const fn to_bytes(&self) -> &[u8] { |
| let bytes = self.to_bytes_with_nul(); |
| // FIXME(const-hack) replace with range index |
| // SAFETY: to_bytes_with_nul returns slice with length at least 1 |
| unsafe { slice::from_raw_parts(bytes.as_ptr(), bytes.len() - 1) } |
| } |
| |
| /// Converts this C string to a byte slice containing the trailing 0 byte. |
| /// |
| /// This function is the equivalent of [`CStr::to_bytes`] except that it |
| /// will retain the trailing nul terminator instead of chopping it off. |
| /// |
| /// > **Note**: This method is currently implemented as a 0-cost cast, but |
| /// > it is planned to alter its definition in the future to perform the |
| /// > length calculation whenever this method is called. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// assert_eq!(c"foo".to_bytes_with_nul(), b"foo\0"); |
| /// ``` |
| #[inline] |
| #[must_use = "this returns the result of the operation, \ |
| without modifying the original"] |
| #[stable(feature = "rust1", since = "1.0.0")] |
| #[rustc_const_stable(feature = "const_cstr_methods", since = "1.72.0")] |
| pub const fn to_bytes_with_nul(&self) -> &[u8] { |
| // SAFETY: Transmuting a slice of `c_char`s to a slice of `u8`s |
| // is safe on all supported targets. |
| unsafe { &*((&raw const self.inner) as *const [u8]) } |
| } |
| |
| /// Iterates over the bytes in this C string. |
| /// |
| /// The returned iterator will **not** contain the trailing nul terminator |
| /// that this C string has. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// #![feature(cstr_bytes)] |
| /// |
| /// assert!(c"foo".bytes().eq(*b"foo")); |
| /// ``` |
| #[inline] |
| #[unstable(feature = "cstr_bytes", issue = "112115")] |
| pub fn bytes(&self) -> Bytes<'_> { |
| Bytes::new(self) |
| } |
| |
| /// Yields a <code>&[str]</code> slice if the `CStr` contains valid UTF-8. |
| /// |
| /// If the contents of the `CStr` are valid UTF-8 data, this |
| /// function will return the corresponding <code>&[str]</code> slice. Otherwise, |
| /// it will return an error with details of where UTF-8 validation failed. |
| /// |
| /// [str]: prim@str "str" |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// assert_eq!(c"foo".to_str(), Ok("foo")); |
| /// ``` |
| #[stable(feature = "cstr_to_str", since = "1.4.0")] |
| #[rustc_const_stable(feature = "const_cstr_methods", since = "1.72.0")] |
| pub const fn to_str(&self) -> Result<&str, str::Utf8Error> { |
| // N.B., when `CStr` is changed to perform the length check in `.to_bytes()` |
| // instead of in `from_ptr()`, it may be worth considering if this should |
| // be rewritten to do the UTF-8 check inline with the length calculation |
| // instead of doing it afterwards. |
| str::from_utf8(self.to_bytes()) |
| } |
| |
| /// Returns an object that implements [`Display`] for safely printing a [`CStr`] that may |
| /// contain non-Unicode data. |
| /// |
| /// Behaves as if `self` were first lossily converted to a `str`, with invalid UTF-8 presented |
| /// as the Unicode replacement character: �. |
| /// |
| /// [`Display`]: fmt::Display |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// #![feature(cstr_display)] |
| /// |
| /// let cstr = c"Hello, world!"; |
| /// println!("{}", cstr.display()); |
| /// ``` |
| #[unstable(feature = "cstr_display", issue = "139984")] |
| #[must_use = "this does not display the `CStr`; \ |
| it returns an object that can be displayed"] |
| #[inline] |
| pub fn display(&self) -> impl fmt::Display { |
| crate::bstr::ByteStr::from_bytes(self.to_bytes()) |
| } |
| } |
| |
| #[stable(feature = "c_string_eq_c_str", since = "1.90.0")] |
| impl PartialEq<&Self> for CStr { |
| #[inline] |
| fn eq(&self, other: &&Self) -> bool { |
| *self == **other |
| } |
| |
| #[inline] |
| fn ne(&self, other: &&Self) -> bool { |
| *self != **other |
| } |
| } |
| |
| // `.to_bytes()` representations are compared instead of the inner `[c_char]`s, |
| // because `c_char` is `i8` (not `u8`) on some platforms. |
| // That is why this is implemented manually and not derived. |
| #[stable(feature = "rust1", since = "1.0.0")] |
| impl PartialOrd for CStr { |
| #[inline] |
| fn partial_cmp(&self, other: &CStr) -> Option<Ordering> { |
| self.to_bytes().partial_cmp(&other.to_bytes()) |
| } |
| } |
| |
| #[stable(feature = "rust1", since = "1.0.0")] |
| impl Ord for CStr { |
| #[inline] |
| fn cmp(&self, other: &CStr) -> Ordering { |
| self.to_bytes().cmp(&other.to_bytes()) |
| } |
| } |
| |
| #[stable(feature = "cstr_range_from", since = "1.47.0")] |
| impl ops::Index<ops::RangeFrom<usize>> for CStr { |
| type Output = CStr; |
| |
| #[inline] |
| fn index(&self, index: ops::RangeFrom<usize>) -> &CStr { |
| let bytes = self.to_bytes_with_nul(); |
| // we need to manually check the starting index to account for the null |
| // byte, since otherwise we could get an empty string that doesn't end |
| // in a null. |
| if index.start < bytes.len() { |
| // SAFETY: Non-empty tail of a valid `CStr` is still a valid `CStr`. |
| unsafe { CStr::from_bytes_with_nul_unchecked(&bytes[index.start..]) } |
| } else { |
| panic!( |
| "index out of bounds: the len is {} but the index is {}", |
| bytes.len(), |
| index.start |
| ); |
| } |
| } |
| } |
| |
| #[stable(feature = "cstring_asref", since = "1.7.0")] |
| #[rustc_const_unstable(feature = "const_convert", issue = "143773")] |
| impl const AsRef<CStr> for CStr { |
| #[inline] |
| fn as_ref(&self) -> &CStr { |
| self |
| } |
| } |
| |
| /// Calculate the length of a nul-terminated string. Defers to C's `strlen` when possible. |
| /// |
| /// # Safety |
| /// |
| /// The pointer must point to a valid buffer that contains a NUL terminator. The NUL must be |
| /// located within `isize::MAX` from `ptr`. |
| #[inline] |
| #[unstable(feature = "cstr_internals", issue = "none")] |
| #[rustc_allow_const_fn_unstable(const_eval_select)] |
| const unsafe fn strlen(ptr: *const c_char) -> usize { |
| const_eval_select!( |
| @capture { s: *const c_char = ptr } -> usize: |
| if const { |
| let mut len = 0; |
| |
| // SAFETY: Outer caller has provided a pointer to a valid C string. |
| while unsafe { *s.add(len) } != 0 { |
| len += 1; |
| } |
| |
| len |
| } else { |
| unsafe extern "C" { |
| /// Provided by libc or compiler_builtins. |
| fn strlen(s: *const c_char) -> usize; |
| } |
| |
| // SAFETY: Outer caller has provided a pointer to a valid C string. |
| unsafe { strlen(s) } |
| } |
| ) |
| } |
| |
| /// An iterator over the bytes of a [`CStr`], without the nul terminator. |
| /// |
| /// This struct is created by the [`bytes`] method on [`CStr`]. |
| /// See its documentation for more. |
| /// |
| /// [`bytes`]: CStr::bytes |
| #[must_use = "iterators are lazy and do nothing unless consumed"] |
| #[unstable(feature = "cstr_bytes", issue = "112115")] |
| #[derive(Clone, Debug)] |
| pub struct Bytes<'a> { |
| // since we know the string is nul-terminated, we only need one pointer |
| ptr: NonNull<u8>, |
| phantom: PhantomData<&'a [c_char]>, |
| } |
| |
| #[unstable(feature = "cstr_bytes", issue = "112115")] |
| unsafe impl Send for Bytes<'_> {} |
| |
| #[unstable(feature = "cstr_bytes", issue = "112115")] |
| unsafe impl Sync for Bytes<'_> {} |
| |
| impl<'a> Bytes<'a> { |
| #[inline] |
| fn new(s: &'a CStr) -> Self { |
| Self { ptr: s.as_non_null_ptr().cast(), phantom: PhantomData } |
| } |
| |
| #[inline] |
| fn is_empty(&self) -> bool { |
| // SAFETY: We uphold that the pointer is always valid to dereference |
| // by starting with a valid C string and then never incrementing beyond |
| // the nul terminator. |
| unsafe { self.ptr.read() == 0 } |
| } |
| } |
| |
| #[unstable(feature = "cstr_bytes", issue = "112115")] |
| impl Iterator for Bytes<'_> { |
| type Item = u8; |
| |
| #[inline] |
| fn next(&mut self) -> Option<u8> { |
| // SAFETY: We only choose a pointer from a valid C string, which must |
| // be non-null and contain at least one value. Since we always stop at |
| // the nul terminator, which is guaranteed to exist, we can assume that |
| // the pointer is non-null and valid. This lets us safely dereference |
| // it and assume that adding 1 will create a new, non-null, valid |
| // pointer. |
| unsafe { |
| let ret = self.ptr.read(); |
| if ret == 0 { |
| None |
| } else { |
| self.ptr = self.ptr.add(1); |
| Some(ret) |
| } |
| } |
| } |
| |
| #[inline] |
| fn size_hint(&self) -> (usize, Option<usize>) { |
| if self.is_empty() { (0, Some(0)) } else { (1, None) } |
| } |
| |
| #[inline] |
| fn count(self) -> usize { |
| // SAFETY: We always hold a valid pointer to a C string |
| unsafe { strlen(self.ptr.as_ptr().cast()) } |
| } |
| } |
| |
| #[unstable(feature = "cstr_bytes", issue = "112115")] |
| impl FusedIterator for Bytes<'_> {} |