blob: f459c58270818eab188745915527b8b3c53595eb [file] [log] [blame]
//! Helper code for character escaping.
use crate::ascii;
use crate::fmt::{self, Write};
use crate::marker::PhantomData;
use crate::num::NonZero;
use crate::ops::Range;
const HEX_DIGITS: [ascii::Char; 16] = *b"0123456789abcdef".as_ascii().unwrap();
/// Escapes a character with `\x` representation.
///
/// Returns a buffer with the escaped representation and its corresponding range.
#[inline]
const fn backslash<const N: usize>(a: ascii::Char) -> ([ascii::Char; N], Range<u8>) {
const { assert!(N >= 2) };
let mut output = [ascii::Char::Null; N];
output[0] = ascii::Char::ReverseSolidus;
output[1] = a;
(output, 0..2)
}
/// Escapes a character with `\xNN` representation.
///
/// Returns a buffer with the escaped representation and its corresponding range.
#[inline]
const fn hex_escape<const N: usize>(byte: u8) -> ([ascii::Char; N], Range<u8>) {
const { assert!(N >= 4) };
let mut output = [ascii::Char::Null; N];
let hi = HEX_DIGITS[(byte >> 4) as usize];
let lo = HEX_DIGITS[(byte & 0xf) as usize];
output[0] = ascii::Char::ReverseSolidus;
output[1] = ascii::Char::SmallX;
output[2] = hi;
output[3] = lo;
(output, 0..4)
}
/// Returns a buffer with the verbatim character and its corresponding range.
#[inline]
const fn verbatim<const N: usize>(a: ascii::Char) -> ([ascii::Char; N], Range<u8>) {
const { assert!(N >= 1) };
let mut output = [ascii::Char::Null; N];
output[0] = a;
(output, 0..1)
}
/// Escapes an ASCII character.
///
/// Returns a buffer with the escaped representation and its corresponding range.
const fn escape_ascii<const N: usize>(byte: u8) -> ([ascii::Char; N], Range<u8>) {
const { assert!(N >= 4) };
#[cfg(feature = "optimize_for_size")]
{
match byte {
b'\t' => backslash(ascii::Char::SmallT),
b'\r' => backslash(ascii::Char::SmallR),
b'\n' => backslash(ascii::Char::SmallN),
b'\\' => backslash(ascii::Char::ReverseSolidus),
b'\'' => backslash(ascii::Char::Apostrophe),
b'"' => backslash(ascii::Char::QuotationMark),
0x00..=0x1F | 0x7F => hex_escape(byte),
_ => match ascii::Char::from_u8(byte) {
Some(a) => verbatim(a),
None => hex_escape(byte),
},
}
}
#[cfg(not(feature = "optimize_for_size"))]
{
/// Lookup table helps us determine how to display character.
///
/// Since ASCII characters will always be 7 bits, we can exploit this to store the 8th bit to
/// indicate whether the result is escaped or unescaped.
///
/// We additionally use 0x80 (escaped NUL character) to indicate hex-escaped bytes, since
/// escaped NUL will not occur.
const LOOKUP: [u8; 256] = {
let mut arr = [0; 256];
let mut idx = 0;
while idx <= 255 {
arr[idx] = match idx as u8 {
// use 8th bit to indicate escaped
b'\t' => 0x80 | b't',
b'\r' => 0x80 | b'r',
b'\n' => 0x80 | b'n',
b'\\' => 0x80 | b'\\',
b'\'' => 0x80 | b'\'',
b'"' => 0x80 | b'"',
// use NUL to indicate hex-escaped
0x00..=0x1F | 0x7F..=0xFF => 0x80 | b'\0',
idx => idx,
};
idx += 1;
}
arr
};
let lookup = LOOKUP[byte as usize];
// 8th bit indicates escape
let lookup_escaped = lookup & 0x80 != 0;
// SAFETY: We explicitly mask out the eighth bit to get a 7-bit ASCII character.
let lookup_ascii = unsafe { ascii::Char::from_u8_unchecked(lookup & 0x7F) };
if lookup_escaped {
// NUL indicates hex-escaped
if matches!(lookup_ascii, ascii::Char::Null) {
hex_escape(byte)
} else {
backslash(lookup_ascii)
}
} else {
verbatim(lookup_ascii)
}
}
}
/// Escapes a character with `\u{NNNN}` representation.
///
/// Returns a buffer with the escaped representation and its corresponding range.
const fn escape_unicode<const N: usize>(c: char) -> ([ascii::Char; N], Range<u8>) {
const { assert!(N >= 10 && N < u8::MAX as usize) };
let c = c as u32;
// OR-ing `1` ensures that for `c == 0` the code computes that
// one digit should be printed.
let start = (c | 1).leading_zeros() as usize / 4 - 2;
let mut output = [ascii::Char::Null; N];
output[3] = HEX_DIGITS[((c >> 20) & 15) as usize];
output[4] = HEX_DIGITS[((c >> 16) & 15) as usize];
output[5] = HEX_DIGITS[((c >> 12) & 15) as usize];
output[6] = HEX_DIGITS[((c >> 8) & 15) as usize];
output[7] = HEX_DIGITS[((c >> 4) & 15) as usize];
output[8] = HEX_DIGITS[((c >> 0) & 15) as usize];
output[9] = ascii::Char::RightCurlyBracket;
output[start + 0] = ascii::Char::ReverseSolidus;
output[start + 1] = ascii::Char::SmallU;
output[start + 2] = ascii::Char::LeftCurlyBracket;
(output, (start as u8)..(N as u8))
}
#[derive(Clone, Copy)]
union MaybeEscapedCharacter<const N: usize> {
pub escape_seq: [ascii::Char; N],
pub literal: char,
}
/// Marker type to indicate that the character is always escaped,
/// used to optimize the iterator implementation.
#[derive(Clone, Copy)]
#[non_exhaustive]
pub(crate) struct AlwaysEscaped;
/// Marker type to indicate that the character may be escaped,
/// used to optimize the iterator implementation.
#[derive(Clone, Copy)]
#[non_exhaustive]
pub(crate) struct MaybeEscaped;
/// An iterator over a possibly escaped character.
#[derive(Clone)]
pub(crate) struct EscapeIterInner<const N: usize, ESCAPING> {
// Invariant:
//
// If `alive.end <= Self::LITERAL_ESCAPE_START`, `data` must contain
// printable ASCII characters in the `alive` range of its `escape_seq` variant.
//
// If `alive.end > Self::LITERAL_ESCAPE_START`, `data` must contain a
// `char` in its `literal` variant, and the `alive` range must have a
// length of at most `1`.
data: MaybeEscapedCharacter<N>,
alive: Range<u8>,
escaping: PhantomData<ESCAPING>,
}
impl<const N: usize, ESCAPING> EscapeIterInner<N, ESCAPING> {
const LITERAL_ESCAPE_START: u8 = 128;
/// # Safety
///
/// `data.escape_seq` must contain an escape sequence in the range given by `alive`.
#[inline]
const unsafe fn new(data: MaybeEscapedCharacter<N>, alive: Range<u8>) -> Self {
// Longer escape sequences are not useful given `alive.end` is at most
// `Self::LITERAL_ESCAPE_START`.
const { assert!(N < Self::LITERAL_ESCAPE_START as usize) };
// Check bounds, which implicitly also checks the invariant
// `alive.end <= Self::LITERAL_ESCAPE_START`.
debug_assert!(alive.end <= (N + 1) as u8);
Self { data, alive, escaping: PhantomData }
}
pub(crate) const fn backslash(c: ascii::Char) -> Self {
let (escape_seq, alive) = backslash(c);
// SAFETY: `escape_seq` contains an escape sequence in the range given by `alive`.
unsafe { Self::new(MaybeEscapedCharacter { escape_seq }, alive) }
}
pub(crate) const fn ascii(c: u8) -> Self {
let (escape_seq, alive) = escape_ascii(c);
// SAFETY: `escape_seq` contains an escape sequence in the range given by `alive`.
unsafe { Self::new(MaybeEscapedCharacter { escape_seq }, alive) }
}
pub(crate) const fn unicode(c: char) -> Self {
let (escape_seq, alive) = escape_unicode(c);
// SAFETY: `escape_seq` contains an escape sequence in the range given by `alive`.
unsafe { Self::new(MaybeEscapedCharacter { escape_seq }, alive) }
}
#[inline]
pub(crate) const fn empty() -> Self {
// SAFETY: `0..0` ensures an empty escape sequence.
unsafe { Self::new(MaybeEscapedCharacter { escape_seq: [ascii::Char::Null; N] }, 0..0) }
}
#[inline]
pub(crate) fn len(&self) -> usize {
usize::from(self.alive.end - self.alive.start)
}
#[inline]
pub(crate) fn advance_by(&mut self, n: usize) -> Result<(), NonZero<usize>> {
self.alive.advance_by(n)
}
#[inline]
pub(crate) fn advance_back_by(&mut self, n: usize) -> Result<(), NonZero<usize>> {
self.alive.advance_back_by(n)
}
/// Returns a `char` if `self.data` contains one in its `literal` variant.
#[inline]
const fn to_char(&self) -> Option<char> {
if self.alive.end > Self::LITERAL_ESCAPE_START {
// SAFETY: We just checked that `self.data` contains a `char` in
// its `literal` variant.
return Some(unsafe { self.data.literal });
}
None
}
/// Returns the printable ASCII characters in the `escape_seq` variant of `self.data`
/// as a string.
///
/// # Safety
///
/// - `self.data` must contain printable ASCII characters in its `escape_seq` variant.
/// - `self.alive` must be a valid range for `self.data.escape_seq`.
#[inline]
unsafe fn to_str_unchecked(&self) -> &str {
debug_assert!(self.alive.end <= Self::LITERAL_ESCAPE_START);
// SAFETY: The caller guarantees `self.data` contains printable ASCII
// characters in its `escape_seq` variant, and `self.alive` is
// a valid range for `self.data.escape_seq`.
unsafe {
self.data
.escape_seq
.get_unchecked(usize::from(self.alive.start)..usize::from(self.alive.end))
.as_str()
}
}
}
impl<const N: usize> EscapeIterInner<N, AlwaysEscaped> {
pub(crate) fn next(&mut self) -> Option<u8> {
let i = self.alive.next()?;
// SAFETY: The `AlwaysEscaped` marker guarantees that `self.data`
// contains printable ASCII characters in its `escape_seq`
// variant, and `i` is guaranteed to be a valid index for
// `self.data.escape_seq`.
unsafe { Some(self.data.escape_seq.get_unchecked(usize::from(i)).to_u8()) }
}
pub(crate) fn next_back(&mut self) -> Option<u8> {
let i = self.alive.next_back()?;
// SAFETY: The `AlwaysEscaped` marker guarantees that `self.data`
// contains printable ASCII characters in its `escape_seq`
// variant, and `i` is guaranteed to be a valid index for
// `self.data.escape_seq`.
unsafe { Some(self.data.escape_seq.get_unchecked(usize::from(i)).to_u8()) }
}
}
impl<const N: usize> EscapeIterInner<N, MaybeEscaped> {
// This is the only way to create any `EscapeIterInner` containing a `char` in
// the `literal` variant of its `self.data`, meaning the `AlwaysEscaped` marker
// guarantees that `self.data` contains printable ASCII characters in its
// `escape_seq` variant.
pub(crate) const fn printable(c: char) -> Self {
Self {
data: MaybeEscapedCharacter { literal: c },
// Uphold the invariant `alive.end > Self::LITERAL_ESCAPE_START`, and ensure
// `len` behaves correctly for iterating through one character literal.
alive: Self::LITERAL_ESCAPE_START..(Self::LITERAL_ESCAPE_START + 1),
escaping: PhantomData,
}
}
pub(crate) fn next(&mut self) -> Option<char> {
let i = self.alive.next()?;
if let Some(c) = self.to_char() {
return Some(c);
}
// SAFETY: At this point, `self.data` must contain printable ASCII
// characters in its `escape_seq` variant, and `i` is
// guaranteed to be a valid index for `self.data.escape_seq`.
Some(char::from(unsafe { self.data.escape_seq.get_unchecked(usize::from(i)).to_u8() }))
}
}
impl<const N: usize> fmt::Display for EscapeIterInner<N, AlwaysEscaped> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
// SAFETY: The `AlwaysEscaped` marker guarantees that `self.data`
// contains printable ASCII chars, and `self.alive` is
// guaranteed to be a valid range for `self.data`.
f.write_str(unsafe { self.to_str_unchecked() })
}
}
impl<const N: usize> fmt::Display for EscapeIterInner<N, MaybeEscaped> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
if let Some(c) = self.to_char() {
return f.write_char(c);
}
// SAFETY: At this point, `self.data` must contain printable ASCII
// characters in its `escape_seq` variant, and `self.alive`
// is guaranteed to be a valid range for `self.data`.
f.write_str(unsafe { self.to_str_unchecked() })
}
}
impl<const N: usize> fmt::Debug for EscapeIterInner<N, AlwaysEscaped> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_tuple("EscapeIterInner").field(&format_args!("'{}'", self)).finish()
}
}
impl<const N: usize> fmt::Debug for EscapeIterInner<N, MaybeEscaped> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_tuple("EscapeIterInner").field(&format_args!("'{}'", self)).finish()
}
}