blob: 8b738bec796de1bb730b15b51a3372daa46c9ba4 [file] [log] [blame]
use crate::mem::{self, MaybeUninit};
use crate::ptr;
/// Private specialization trait used by CloneToUninit, as per
/// [the dev guide](https://std-dev-guide.rust-lang.org/policy/specialization.html).
pub(super) unsafe trait CopySpec: Clone {
unsafe fn clone_one(src: &Self, dst: *mut Self);
unsafe fn clone_slice(src: &[Self], dst: *mut [Self]);
}
unsafe impl<T: Clone> CopySpec for T {
#[inline]
default unsafe fn clone_one(src: &Self, dst: *mut Self) {
// SAFETY: The safety conditions of clone_to_uninit() are a superset of those of
// ptr::write().
unsafe {
// We hope the optimizer will figure out to create the cloned value in-place,
// skipping ever storing it on the stack and the copy to the destination.
ptr::write(dst, src.clone());
}
}
#[inline]
#[cfg_attr(debug_assertions, track_caller)]
default unsafe fn clone_slice(src: &[Self], dst: *mut [Self]) {
let len = src.len();
// This is the most likely mistake to make, so check it as a debug assertion.
debug_assert_eq!(
len,
dst.len(),
"clone_to_uninit() source and destination must have equal lengths",
);
// SAFETY: The produced `&mut` is valid because:
// * The caller is obligated to provide a pointer which is valid for writes.
// * All bytes pointed to are in MaybeUninit, so we don't care about the memory's
// initialization status.
let uninit_ref = unsafe { &mut *(dst as *mut [MaybeUninit<T>]) };
// Copy the elements
let mut initializing = InitializingSlice::from_fully_uninit(uninit_ref);
for element_ref in src {
// If the clone() panics, `initializing` will take care of the cleanup.
initializing.push(element_ref.clone());
}
// If we reach here, then the entire slice is initialized, and we've satisfied our
// responsibilities to the caller. Disarm the cleanup guard by forgetting it.
mem::forget(initializing);
}
}
// Specialized implementation for types that are [`Copy`], not just [`Clone`],
// and can therefore be copied bitwise.
unsafe impl<T: Copy> CopySpec for T {
#[inline]
unsafe fn clone_one(src: &Self, dst: *mut Self) {
// SAFETY: The safety conditions of clone_to_uninit() are a superset of those of
// ptr::copy_nonoverlapping().
unsafe {
ptr::copy_nonoverlapping(src, dst, 1);
}
}
#[inline]
#[cfg_attr(debug_assertions, track_caller)]
unsafe fn clone_slice(src: &[Self], dst: *mut [Self]) {
let len = src.len();
// This is the most likely mistake to make, so check it as a debug assertion.
debug_assert_eq!(
len,
dst.len(),
"clone_to_uninit() source and destination must have equal lengths",
);
// SAFETY: The safety conditions of clone_to_uninit() are a superset of those of
// ptr::copy_nonoverlapping().
unsafe {
ptr::copy_nonoverlapping(src.as_ptr(), dst.as_mut_ptr(), len);
}
}
}
/// Ownership of a collection of values stored in a non-owned `[MaybeUninit<T>]`, some of which
/// are not yet initialized. This is sort of like a `Vec` that doesn't own its allocation.
/// Its responsibility is to provide cleanup on unwind by dropping the values that *are*
/// initialized, unless disarmed by forgetting.
///
/// This is a helper for `impl<T: Clone> CloneToUninit for [T]`.
struct InitializingSlice<'a, T> {
data: &'a mut [MaybeUninit<T>],
/// Number of elements of `*self.data` that are initialized.
initialized_len: usize,
}
impl<'a, T> InitializingSlice<'a, T> {
#[inline]
fn from_fully_uninit(data: &'a mut [MaybeUninit<T>]) -> Self {
Self { data, initialized_len: 0 }
}
/// Push a value onto the end of the initialized part of the slice.
///
/// # Panics
///
/// Panics if the slice is already fully initialized.
#[inline]
fn push(&mut self, value: T) {
MaybeUninit::write(&mut self.data[self.initialized_len], value);
self.initialized_len += 1;
}
}
impl<'a, T> Drop for InitializingSlice<'a, T> {
#[cold] // will only be invoked on unwind
fn drop(&mut self) {
let initialized_slice = ptr::slice_from_raw_parts_mut(
MaybeUninit::slice_as_mut_ptr(self.data),
self.initialized_len,
);
// SAFETY:
// * the pointer is valid because it was made from a mutable reference
// * `initialized_len` counts the initialized elements as an invariant of this type,
// so each of the pointed-to elements is initialized and may be dropped.
unsafe {
ptr::drop_in_place::<[T]>(initialized_slice);
}
}
}