blob: c8558b90053d10099fbb0ac3ac9a807a5a2ecd02 [file] [log] [blame]
//! Utilities for working with hex float formats.
use super::{Round, Status, f32_from_bits, f64_from_bits};
/// Construct a 16-bit float from hex float representation (C-style)
#[cfg(f16_enabled)]
pub const fn hf16(s: &str) -> f16 {
match parse_hex_exact(s, 16, 10) {
Ok(bits) => f16::from_bits(bits as u16),
Err(HexFloatParseError(s)) => panic!("{}", s),
}
}
/// Construct a 32-bit float from hex float representation (C-style)
#[allow(unused)]
pub const fn hf32(s: &str) -> f32 {
match parse_hex_exact(s, 32, 23) {
Ok(bits) => f32_from_bits(bits as u32),
Err(HexFloatParseError(s)) => panic!("{}", s),
}
}
/// Construct a 64-bit float from hex float representation (C-style)
pub const fn hf64(s: &str) -> f64 {
match parse_hex_exact(s, 64, 52) {
Ok(bits) => f64_from_bits(bits as u64),
Err(HexFloatParseError(s)) => panic!("{}", s),
}
}
/// Construct a 128-bit float from hex float representation (C-style)
#[cfg(f128_enabled)]
pub const fn hf128(s: &str) -> f128 {
match parse_hex_exact(s, 128, 112) {
Ok(bits) => f128::from_bits(bits),
Err(HexFloatParseError(s)) => panic!("{}", s),
}
}
#[derive(Copy, Clone, Debug)]
pub struct HexFloatParseError(&'static str);
/// Parses any float to its bitwise representation, returning an error if it cannot be represented exactly
pub const fn parse_hex_exact(
s: &str,
bits: u32,
sig_bits: u32,
) -> Result<u128, HexFloatParseError> {
match parse_any(s, bits, sig_bits, Round::Nearest) {
Err(e) => Err(e),
Ok((bits, Status::OK)) => Ok(bits),
Ok((_, status)) if status.overflow() => Err(HexFloatParseError("the value is too huge")),
Ok((_, status)) if status.underflow() => Err(HexFloatParseError("the value is too tiny")),
Ok((_, status)) if status.inexact() => Err(HexFloatParseError("the value is too precise")),
Ok(_) => unreachable!(),
}
}
/// Parse any float from hex to its bitwise representation.
pub const fn parse_any(
s: &str,
bits: u32,
sig_bits: u32,
round: Round,
) -> Result<(u128, Status), HexFloatParseError> {
let mut b = s.as_bytes();
if sig_bits > 119 || bits > 128 || bits < sig_bits + 3 || bits > sig_bits + 30 {
return Err(HexFloatParseError("unsupported target float configuration"));
}
let neg = matches!(b, [b'-', ..]);
if let &[b'-' | b'+', ref rest @ ..] = b {
b = rest;
}
let sign_bit = 1 << (bits - 1);
let quiet_bit = 1 << (sig_bits - 1);
let nan = sign_bit - quiet_bit;
let inf = nan - quiet_bit;
let (mut x, status) = match *b {
[b'i' | b'I', b'n' | b'N', b'f' | b'F'] => (inf, Status::OK),
[b'n' | b'N', b'a' | b'A', b'n' | b'N'] => (nan, Status::OK),
[b'0', b'x' | b'X', ref rest @ ..] => {
let round = match (neg, round) {
// parse("-x", Round::Positive) == -parse("x", Round::Negative)
(true, Round::Positive) => Round::Negative,
(true, Round::Negative) => Round::Positive,
// rounding toward nearest or zero are symmetric
(true, Round::Nearest | Round::Zero) | (false, _) => round,
};
match parse_finite(rest, bits, sig_bits, round) {
Err(e) => return Err(e),
Ok(res) => res,
}
}
_ => return Err(HexFloatParseError("no hex indicator")),
};
if neg {
x ^= sign_bit;
}
Ok((x, status))
}
const fn parse_finite(
b: &[u8],
bits: u32,
sig_bits: u32,
rounding_mode: Round,
) -> Result<(u128, Status), HexFloatParseError> {
let exp_bits: u32 = bits - sig_bits - 1;
let max_msb: i32 = (1 << (exp_bits - 1)) - 1;
// The exponent of one ULP in the subnormals
let min_lsb: i32 = 1 - max_msb - sig_bits as i32;
let (mut sig, mut exp) = match parse_hex(b) {
Err(e) => return Err(e),
Ok(Parsed { sig: 0, .. }) => return Ok((0, Status::OK)),
Ok(Parsed { sig, exp }) => (sig, exp),
};
let mut round_bits = u128_ilog2(sig) as i32 - sig_bits as i32;
// Round at least up to min_lsb
if exp < min_lsb - round_bits {
round_bits = min_lsb - exp;
}
let mut status = Status::OK;
exp += round_bits;
if round_bits > 0 {
// first, prepare for rounding exactly two bits
if round_bits == 1 {
sig <<= 1;
} else if round_bits > 2 {
sig = shr_odd_rounding(sig, (round_bits - 2) as u32);
}
if sig & 0b11 != 0 {
status = Status::INEXACT;
}
sig = shr2_round(sig, rounding_mode);
} else if round_bits < 0 {
sig <<= -round_bits;
}
// The parsed value is X = sig * 2^exp
// Expressed as a multiple U of the smallest subnormal value:
// X = U * 2^min_lsb, so U = sig * 2^(exp-min_lsb)
let uexp = (exp - min_lsb) as u128;
let uexp = uexp << sig_bits;
// Note that it is possible for the exponent bits to equal 2 here
// if the value rounded up, but that means the mantissa is all zeroes
// so the value is still correct
debug_assert!(sig <= 2 << sig_bits);
let inf = ((1 << exp_bits) - 1) << sig_bits;
let bits = match sig.checked_add(uexp) {
Some(bits) if bits < inf => {
// inexact subnormal or zero?
if status.inexact() && bits < (1 << sig_bits) {
status = status.with(Status::UNDERFLOW);
}
bits
}
_ => {
// overflow to infinity
status = status.with(Status::OVERFLOW).with(Status::INEXACT);
match rounding_mode {
Round::Positive | Round::Nearest => inf,
Round::Negative | Round::Zero => inf - 1,
}
}
};
Ok((bits, status))
}
/// Shift right, rounding all inexact divisions to the nearest odd number
/// E.g. (0 >> 4) -> 0, (1..=31 >> 4) -> 1, (32 >> 4) -> 2, ...
///
/// Useful for reducing a number before rounding the last two bits, since
/// the result of the final rounding is preserved for all rounding modes.
const fn shr_odd_rounding(x: u128, k: u32) -> u128 {
if k < 128 {
let inexact = x.trailing_zeros() < k;
(x >> k) | (inexact as u128)
} else {
(x != 0) as u128
}
}
/// Divide by 4, rounding with the given mode
const fn shr2_round(mut x: u128, round: Round) -> u128 {
let t = (x as u32) & 0b111;
x >>= 2;
match round {
// Look-up-table on the last three bits for when to round up
Round::Nearest => x + ((0b11001000_u8 >> t) & 1) as u128,
Round::Negative => x,
Round::Zero => x,
Round::Positive => x + (t & 0b11 != 0) as u128,
}
}
/// A parsed finite and unsigned floating point number.
struct Parsed {
/// Absolute value sig * 2^exp
sig: u128,
exp: i32,
}
/// Parse a hexadecimal float x
const fn parse_hex(mut b: &[u8]) -> Result<Parsed, HexFloatParseError> {
let mut sig: u128 = 0;
let mut exp: i32 = 0;
let mut seen_point = false;
let mut some_digits = false;
let mut inexact = false;
while let &[c, ref rest @ ..] = b {
b = rest;
match c {
b'.' => {
if seen_point {
return Err(HexFloatParseError(
"unexpected '.' parsing fractional digits",
));
}
seen_point = true;
continue;
}
b'p' | b'P' => break,
c => {
let digit = match hex_digit(c) {
Some(d) => d,
None => return Err(HexFloatParseError("expected hexadecimal digit")),
};
some_digits = true;
if (sig >> 124) == 0 {
sig <<= 4;
sig |= digit as u128;
} else {
// FIXME: it is technically possible for exp to overflow if parsing a string with >500M digits
exp += 4;
inexact |= digit != 0;
}
// Up until the fractional point, the value grows
// with more digits, but after it the exponent is
// compensated to match.
if seen_point {
exp -= 4;
}
}
}
}
// If we've set inexact, the exact value has more than 125
// significant bits, and lies somewhere between sig and sig + 1.
// Because we'll round off at least two of the trailing bits,
// setting the last bit gives correct rounding for inexact values.
sig |= inexact as u128;
if !some_digits {
return Err(HexFloatParseError("at least one digit is required"));
};
some_digits = false;
let negate_exp = matches!(b, [b'-', ..]);
if let &[b'-' | b'+', ref rest @ ..] = b {
b = rest;
}
let mut pexp: u32 = 0;
while let &[c, ref rest @ ..] = b {
b = rest;
let digit = match dec_digit(c) {
Some(d) => d,
None => return Err(HexFloatParseError("expected decimal digit")),
};
some_digits = true;
pexp = pexp.saturating_mul(10);
pexp += digit as u32;
}
if !some_digits {
return Err(HexFloatParseError(
"at least one exponent digit is required",
));
};
{
let e;
if negate_exp {
e = (exp as i64) - (pexp as i64);
} else {
e = (exp as i64) + (pexp as i64);
};
exp = if e < i32::MIN as i64 {
i32::MIN
} else if e > i32::MAX as i64 {
i32::MAX
} else {
e as i32
};
}
/* FIXME(msrv): once MSRV >= 1.66, replace the above workaround block with:
if negate_exp {
exp = exp.saturating_sub_unsigned(pexp);
} else {
exp = exp.saturating_add_unsigned(pexp);
};
*/
Ok(Parsed { sig, exp })
}
const fn dec_digit(c: u8) -> Option<u8> {
match c {
b'0'..=b'9' => Some(c - b'0'),
_ => None,
}
}
const fn hex_digit(c: u8) -> Option<u8> {
match c {
b'0'..=b'9' => Some(c - b'0'),
b'a'..=b'f' => Some(c - b'a' + 10),
b'A'..=b'F' => Some(c - b'A' + 10),
_ => None,
}
}
/* FIXME(msrv): vendor some things that are not const stable at our MSRV */
/// `u128::ilog2`
const fn u128_ilog2(v: u128) -> u32 {
assert!(v != 0);
u128::BITS - 1 - v.leading_zeros()
}
#[cfg(any(test, feature = "unstable-public-internals"))]
mod hex_fmt {
use core::fmt;
use crate::support::Float;
/// Format a floating point number as its IEEE hex (`%a`) representation.
pub struct Hexf<F>(pub F);
// Adapted from https://github.com/ericseppanen/hexfloat2/blob/a5c27932f0ff/src/format.rs
#[cfg(not(feature = "compiler-builtins"))]
pub(super) fn fmt_any_hex<F: Float>(x: &F, f: &mut fmt::Formatter<'_>) -> fmt::Result {
if x.is_sign_negative() {
write!(f, "-")?;
}
if x.is_nan() {
return write!(f, "NaN");
} else if x.is_infinite() {
return write!(f, "inf");
} else if *x == F::ZERO {
return write!(f, "0x0p+0");
}
let mut exponent = x.exp_unbiased();
let sig = x.to_bits() & F::SIG_MASK;
let bias = F::EXP_BIAS as i32;
// The mantissa MSB needs to be shifted up to the nearest nibble.
let mshift = (4 - (F::SIG_BITS % 4)) % 4;
let sig = sig << mshift;
// The width is rounded up to the nearest char (4 bits)
let mwidth = (F::SIG_BITS as usize + 3) / 4;
let leading = if exponent == -bias {
// subnormal number means we shift our output by 1 bit.
exponent += 1;
"0."
} else {
"1."
};
write!(f, "0x{leading}{sig:0mwidth$x}p{exponent:+}")
}
#[cfg(feature = "compiler-builtins")]
pub(super) fn fmt_any_hex<F: Float>(_x: &F, _f: &mut fmt::Formatter<'_>) -> fmt::Result {
unimplemented!()
}
impl<F: Float> fmt::LowerHex for Hexf<F> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
cfg_if! {
if #[cfg(feature = "compiler-builtins")] {
let _ = f;
unimplemented!()
} else {
fmt_any_hex(&self.0, f)
}
}
}
}
impl<F: Float> fmt::LowerHex for Hexf<(F, F)> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
cfg_if! {
if #[cfg(feature = "compiler-builtins")] {
let _ = f;
unimplemented!()
} else {
write!(f, "({:x}, {:x})", Hexf(self.0.0), Hexf(self.0.1))
}
}
}
}
impl<F: Float> fmt::LowerHex for Hexf<(F, i32)> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
cfg_if! {
if #[cfg(feature = "compiler-builtins")] {
let _ = f;
unimplemented!()
} else {
write!(f, "({:x}, {:x})", Hexf(self.0.0), Hexf(self.0.1))
}
}
}
}
impl fmt::LowerHex for Hexf<i32> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
cfg_if! {
if #[cfg(feature = "compiler-builtins")] {
let _ = f;
unimplemented!()
} else {
fmt::LowerHex::fmt(&self.0, f)
}
}
}
}
impl<T> fmt::Debug for Hexf<T>
where
Hexf<T>: fmt::LowerHex,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
cfg_if! {
if #[cfg(feature = "compiler-builtins")] {
let _ = f;
unimplemented!()
} else {
fmt::LowerHex::fmt(self, f)
}
}
}
}
impl<T> fmt::Display for Hexf<T>
where
Hexf<T>: fmt::LowerHex,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
cfg_if! {
if #[cfg(feature = "compiler-builtins")] {
let _ = f;
unimplemented!()
} else {
fmt::LowerHex::fmt(self, f)
}
}
}
}
}
#[cfg(any(test, feature = "unstable-public-internals"))]
pub use hex_fmt::*;
#[cfg(test)]
mod parse_tests {
extern crate std;
use std::{format, println};
use super::*;
#[cfg(f16_enabled)]
fn rounding_properties(s: &str) -> Result<(), HexFloatParseError> {
let (xd, s0) = parse_any(s, 16, 10, Round::Negative)?;
let (xu, s1) = parse_any(s, 16, 10, Round::Positive)?;
let (xz, s2) = parse_any(s, 16, 10, Round::Zero)?;
let (xn, s3) = parse_any(s, 16, 10, Round::Nearest)?;
// FIXME: A value between the least normal and largest subnormal
// could have underflow status depend on rounding mode.
if let Status::OK = s0 {
// an exact result is the same for all rounding modes
assert_eq!(s0, s1);
assert_eq!(s0, s2);
assert_eq!(s0, s3);
assert_eq!(xd, xu);
assert_eq!(xd, xz);
assert_eq!(xd, xn);
} else {
assert!([s0, s1, s2, s3].into_iter().all(Status::inexact));
let xd = f16::from_bits(xd as u16);
let xu = f16::from_bits(xu as u16);
let xz = f16::from_bits(xz as u16);
let xn = f16::from_bits(xn as u16);
assert_biteq!(xd.next_up(), xu, "s={s}, xd={xd:?}, xu={xu:?}");
let signs = [xd, xu, xz, xn].map(f16::is_sign_negative);
if signs == [true; 4] {
assert_biteq!(xz, xu);
} else {
assert_eq!(signs, [false; 4]);
assert_biteq!(xz, xd);
}
if xn.to_bits() != xd.to_bits() {
assert_biteq!(xn, xu);
}
}
Ok(())
}
#[test]
#[cfg(f16_enabled)]
fn test_rounding() {
let n = 1_i32 << 14;
for i in -n..n {
let u = i.rotate_right(11) as u32;
let s = format!("{}", Hexf(f32::from_bits(u)));
assert!(rounding_properties(&s).is_ok());
}
}
#[test]
fn test_parse_any() {
for k in -149..=127 {
let s = format!("0x1p{k}");
let x = hf32(&s);
let y = if k < 0 {
0.5f32.powi(-k)
} else {
2.0f32.powi(k)
};
assert_eq!(x, y);
}
let mut s = *b"0x.0000000p-121";
for e in 0..40 {
for k in 0..(1 << 15) {
let expected = f32::from_bits(k) * 2.0f32.powi(e);
let x = hf32(std::str::from_utf8(&s).unwrap());
assert_eq!(
x.to_bits(),
expected.to_bits(),
"\
e={e}\n\
k={k}\n\
x={x}\n\
expected={expected}\n\
s={}\n\
f32::from_bits(k)={}\n\
2.0f32.powi(e)={}\
",
std::str::from_utf8(&s).unwrap(),
f32::from_bits(k),
2.0f32.powi(e),
);
for i in (3..10).rev() {
if s[i] == b'f' {
s[i] = b'0';
} else if s[i] == b'9' {
s[i] = b'a';
break;
} else {
s[i] += 1;
break;
}
}
}
for i in (12..15).rev() {
if s[i] == b'0' {
s[i] = b'9';
} else {
s[i] -= 1;
break;
}
}
for i in (3..10).rev() {
s[i] = b'0';
}
}
}
// FIXME: this test is causing failures that are likely UB on various platforms
#[cfg(all(target_arch = "x86_64", target_os = "linux"))]
#[test]
#[cfg(f128_enabled)]
fn rounding() {
let pi = std::f128::consts::PI;
let s = format!("{}", Hexf(pi));
for k in 0..=111 {
let (bits, status) = parse_any(&s, 128 - k, 112 - k, Round::Nearest).unwrap();
let scale = (1u128 << (112 - k - 1)) as f128;
let expected = (pi * scale).round_ties_even() / scale;
assert_eq!(bits << k, expected.to_bits(), "k = {k}, s = {s}");
assert_eq!(expected != pi, status.inexact());
}
}
#[test]
fn rounding_extreme_underflow() {
for k in 1..1000 {
let s = format!("0x1p{}", -149 - k);
let Ok((bits, status)) = parse_any(&s, 32, 23, Round::Nearest) else {
unreachable!()
};
assert_eq!(bits, 0, "{s} should round to zero, got bits={bits}");
assert!(
status.underflow(),
"should indicate underflow when parsing {s}"
);
assert!(status.inexact(), "should indicate inexact when parsing {s}");
}
}
#[test]
fn long_tail() {
for k in 1..1000 {
let s = format!("0x1.{}p0", "0".repeat(k));
let Ok(bits) = parse_hex_exact(&s, 32, 23) else {
panic!("parsing {s} failed")
};
assert_eq!(f32::from_bits(bits as u32), 1.0);
let s = format!("0x1.{}1p0", "0".repeat(k));
let Ok((bits, status)) = parse_any(&s, 32, 23, Round::Nearest) else {
unreachable!()
};
if status.inexact() {
assert!(1.0 == f32::from_bits(bits as u32));
} else {
assert!(1.0 < f32::from_bits(bits as u32));
}
}
}
// HACK(msrv): 1.63 rejects unknown width float literals at an AST level, so use a macro to
// hide them from the AST.
#[cfg(f16_enabled)]
macro_rules! f16_tests {
() => {
#[test]
fn test_f16() {
let checks = [
("0x.1234p+16", (0x1234 as f16).to_bits()),
("0x1.234p+12", (0x1234 as f16).to_bits()),
("0x12.34p+8", (0x1234 as f16).to_bits()),
("0x123.4p+4", (0x1234 as f16).to_bits()),
("0x1234p+0", (0x1234 as f16).to_bits()),
("0x1234.p+0", (0x1234 as f16).to_bits()),
("0x1234.0p+0", (0x1234 as f16).to_bits()),
("0x1.ffcp+15", f16::MAX.to_bits()),
("0x1.0p+1", 2.0f16.to_bits()),
("0x1.0p+0", 1.0f16.to_bits()),
("0x1.ffp+8", 0x5ffc),
("+0x1.ffp+8", 0x5ffc),
("0x1p+0", 0x3c00),
("0x1.998p-4", 0x2e66),
("0x1.9p+6", 0x5640),
("0x0.0p0", 0.0f16.to_bits()),
("-0x0.0p0", (-0.0f16).to_bits()),
("0x1.0p0", 1.0f16.to_bits()),
("0x1.998p-4", (0.1f16).to_bits()),
("-0x1.998p-4", (-0.1f16).to_bits()),
("0x0.123p-12", 0x0123),
("0x1p-24", 0x0001),
("nan", f16::NAN.to_bits()),
("-nan", (-f16::NAN).to_bits()),
("inf", f16::INFINITY.to_bits()),
("-inf", f16::NEG_INFINITY.to_bits()),
];
for (s, exp) in checks {
println!("parsing {s}");
assert!(rounding_properties(s).is_ok());
let act = hf16(s).to_bits();
assert_eq!(
act, exp,
"parsing {s}: {act:#06x} != {exp:#06x}\nact: {act:#018b}\nexp: {exp:#018b}"
);
}
}
#[test]
fn test_macros_f16() {
assert_eq!(hf16!("0x1.ffp+8").to_bits(), 0x5ffc_u16);
}
};
}
#[cfg(f16_enabled)]
f16_tests!();
#[test]
fn test_f32() {
let checks = [
("0x.1234p+16", (0x1234 as f32).to_bits()),
("0x1.234p+12", (0x1234 as f32).to_bits()),
("0x12.34p+8", (0x1234 as f32).to_bits()),
("0x123.4p+4", (0x1234 as f32).to_bits()),
("0x1234p+0", (0x1234 as f32).to_bits()),
("0x1234.p+0", (0x1234 as f32).to_bits()),
("0x1234.0p+0", (0x1234 as f32).to_bits()),
("0x1.fffffep+127", f32::MAX.to_bits()),
("0x1.0p+1", 2.0f32.to_bits()),
("0x1.0p+0", 1.0f32.to_bits()),
("0x1.ffep+8", 0x43fff000),
("+0x1.ffep+8", 0x43fff000),
("0x1p+0", 0x3f800000),
("0x1.99999ap-4", 0x3dcccccd),
("0x1.9p+6", 0x42c80000),
("0x1.2d5ed2p+20", 0x4996af69),
("-0x1.348eb8p+10", 0xc49a475c),
("-0x1.33dcfep-33", 0xaf19ee7f),
("0x0.0p0", 0.0f32.to_bits()),
("-0x0.0p0", (-0.0f32).to_bits()),
("0x1.0p0", 1.0f32.to_bits()),
("0x1.99999ap-4", (0.1f32).to_bits()),
("-0x1.99999ap-4", (-0.1f32).to_bits()),
("0x1.111114p-127", 0x00444445),
("0x1.23456p-130", 0x00091a2b),
("0x1p-149", 0x00000001),
("nan", f32::NAN.to_bits()),
("-nan", (-f32::NAN).to_bits()),
("inf", f32::INFINITY.to_bits()),
("-inf", f32::NEG_INFINITY.to_bits()),
];
for (s, exp) in checks {
println!("parsing {s}");
let act = hf32(s).to_bits();
assert_eq!(
act, exp,
"parsing {s}: {act:#010x} != {exp:#010x}\nact: {act:#034b}\nexp: {exp:#034b}"
);
}
}
#[test]
fn test_f64() {
let checks = [
("0x.1234p+16", (0x1234 as f64).to_bits()),
("0x1.234p+12", (0x1234 as f64).to_bits()),
("0x12.34p+8", (0x1234 as f64).to_bits()),
("0x123.4p+4", (0x1234 as f64).to_bits()),
("0x1234p+0", (0x1234 as f64).to_bits()),
("0x1234.p+0", (0x1234 as f64).to_bits()),
("0x1234.0p+0", (0x1234 as f64).to_bits()),
("0x1.ffep+8", 0x407ffe0000000000),
("0x1p+0", 0x3ff0000000000000),
("0x1.999999999999ap-4", 0x3fb999999999999a),
("0x1.9p+6", 0x4059000000000000),
("0x1.2d5ed1fe1da7bp+20", 0x4132d5ed1fe1da7b),
("-0x1.348eb851eb852p+10", 0xc09348eb851eb852),
("-0x1.33dcfe54a3803p-33", 0xbde33dcfe54a3803),
("0x1.0p0", 1.0f64.to_bits()),
("0x0.0p0", 0.0f64.to_bits()),
("-0x0.0p0", (-0.0f64).to_bits()),
("0x1.999999999999ap-4", 0.1f64.to_bits()),
("0x1.999999999998ap-4", (0.1f64 - f64::EPSILON).to_bits()),
("-0x1.999999999999ap-4", (-0.1f64).to_bits()),
("-0x1.999999999998ap-4", (-0.1f64 + f64::EPSILON).to_bits()),
("0x0.8000000000001p-1022", 0x0008000000000001),
("0x0.123456789abcdp-1022", 0x000123456789abcd),
("0x0.0000000000002p-1022", 0x0000000000000002),
("nan", f64::NAN.to_bits()),
("-nan", (-f64::NAN).to_bits()),
("inf", f64::INFINITY.to_bits()),
("-inf", f64::NEG_INFINITY.to_bits()),
];
for (s, exp) in checks {
println!("parsing {s}");
let act = hf64(s).to_bits();
assert_eq!(
act, exp,
"parsing {s}: {act:#018x} != {exp:#018x}\nact: {act:#066b}\nexp: {exp:#066b}"
);
}
}
// HACK(msrv): 1.63 rejects unknown width float literals at an AST level, so use a macro to
// hide them from the AST.
#[cfg(f128_enabled)]
macro_rules! f128_tests {
() => {
#[test]
fn test_f128() {
let checks = [
("0x.1234p+16", (0x1234 as f128).to_bits()),
("0x1.234p+12", (0x1234 as f128).to_bits()),
("0x12.34p+8", (0x1234 as f128).to_bits()),
("0x123.4p+4", (0x1234 as f128).to_bits()),
("0x1234p+0", (0x1234 as f128).to_bits()),
("0x1234.p+0", (0x1234 as f128).to_bits()),
("0x1234.0p+0", (0x1234 as f128).to_bits()),
("0x1.ffffffffffffffffffffffffffffp+16383", f128::MAX.to_bits()),
("0x1.0p+1", 2.0f128.to_bits()),
("0x1.0p+0", 1.0f128.to_bits()),
("0x1.ffep+8", 0x4007ffe0000000000000000000000000),
("+0x1.ffep+8", 0x4007ffe0000000000000000000000000),
("0x1p+0", 0x3fff0000000000000000000000000000),
("0x1.999999999999999999999999999ap-4", 0x3ffb999999999999999999999999999a),
("0x1.9p+6", 0x40059000000000000000000000000000),
("0x0.0p0", 0.0f128.to_bits()),
("-0x0.0p0", (-0.0f128).to_bits()),
("0x1.0p0", 1.0f128.to_bits()),
("0x1.999999999999999999999999999ap-4", (0.1f128).to_bits()),
("-0x1.999999999999999999999999999ap-4", (-0.1f128).to_bits()),
("0x0.abcdef0123456789abcdef012345p-16382", 0x0000abcdef0123456789abcdef012345),
("0x1p-16494", 0x00000000000000000000000000000001),
("nan", f128::NAN.to_bits()),
("-nan", (-f128::NAN).to_bits()),
("inf", f128::INFINITY.to_bits()),
("-inf", f128::NEG_INFINITY.to_bits()),
];
for (s, exp) in checks {
println!("parsing {s}");
let act = hf128(s).to_bits();
assert_eq!(
act, exp,
"parsing {s}: {act:#034x} != {exp:#034x}\nact: {act:#0130b}\nexp: {exp:#0130b}"
);
}
}
#[test]
fn test_macros_f128() {
assert_eq!(hf128!("0x1.ffep+8").to_bits(), 0x4007ffe0000000000000000000000000_u128);
}
}
}
#[cfg(f128_enabled)]
f128_tests!();
#[test]
fn test_macros() {
#[cfg(f16_enabled)]
assert_eq!(hf16!("0x1.ffp+8").to_bits(), 0x5ffc_u16);
assert_eq!(hf32!("0x1.ffep+8").to_bits(), 0x43fff000_u32);
assert_eq!(hf64!("0x1.ffep+8").to_bits(), 0x407ffe0000000000_u64);
#[cfg(f128_enabled)]
assert_eq!(
hf128!("0x1.ffep+8").to_bits(),
0x4007ffe0000000000000000000000000_u128
);
}
}
#[cfg(test)]
// FIXME(ppc): something with `should_panic` tests cause a SIGILL with ppc64le
#[cfg(not(all(target_arch = "powerpc64", target_endian = "little")))]
mod tests_panicking {
extern crate std;
use super::*;
// HACK(msrv): 1.63 rejects unknown width float literals at an AST level, so use a macro to
// hide them from the AST.
#[cfg(f16_enabled)]
macro_rules! f16_tests {
() => {
#[test]
fn test_f16_almost_extra_precision() {
// Exact maximum precision allowed
hf16("0x1.ffcp+0");
}
#[test]
#[should_panic(expected = "the value is too precise")]
fn test_f16_extra_precision() {
// One bit more than the above.
hf16("0x1.ffdp+0");
}
#[test]
#[should_panic(expected = "the value is too huge")]
fn test_f16_overflow() {
// One bit more than the above.
hf16("0x1p+16");
}
#[test]
fn test_f16_tiniest() {
let x = hf16("0x1.p-24");
let y = hf16("0x0.001p-12");
let z = hf16("0x0.8p-23");
assert_eq!(x, y);
assert_eq!(x, z);
}
#[test]
#[should_panic(expected = "the value is too tiny")]
fn test_f16_too_tiny() {
hf16("0x1.p-25");
}
#[test]
#[should_panic(expected = "the value is too tiny")]
fn test_f16_also_too_tiny() {
hf16("0x0.8p-24");
}
#[test]
#[should_panic(expected = "the value is too tiny")]
fn test_f16_again_too_tiny() {
hf16("0x0.001p-13");
}
};
}
#[cfg(f16_enabled)]
f16_tests!();
#[test]
fn test_f32_almost_extra_precision() {
// Exact maximum precision allowed
hf32("0x1.abcdeep+0");
}
#[test]
#[should_panic]
fn test_f32_extra_precision2() {
// One bit more than the above.
hf32("0x1.ffffffp+127");
}
#[test]
#[should_panic(expected = "the value is too huge")]
fn test_f32_overflow() {
// One bit more than the above.
hf32("0x1p+128");
}
#[test]
#[should_panic(expected = "the value is too precise")]
fn test_f32_extra_precision() {
// One bit more than the above.
hf32("0x1.abcdefp+0");
}
#[test]
fn test_f32_tiniest() {
let x = hf32("0x1.p-149");
let y = hf32("0x0.0000000000000001p-85");
let z = hf32("0x0.8p-148");
assert_eq!(x, y);
assert_eq!(x, z);
}
#[test]
#[should_panic(expected = "the value is too tiny")]
fn test_f32_too_tiny() {
hf32("0x1.p-150");
}
#[test]
#[should_panic(expected = "the value is too tiny")]
fn test_f32_also_too_tiny() {
hf32("0x0.8p-149");
}
#[test]
#[should_panic(expected = "the value is too tiny")]
fn test_f32_again_too_tiny() {
hf32("0x0.0000000000000001p-86");
}
#[test]
fn test_f64_almost_extra_precision() {
// Exact maximum precision allowed
hf64("0x1.abcdabcdabcdfp+0");
}
#[test]
#[should_panic(expected = "the value is too precise")]
fn test_f64_extra_precision() {
// One bit more than the above.
hf64("0x1.abcdabcdabcdf8p+0");
}
// HACK(msrv): 1.63 rejects unknown width float literals at an AST level, so use a macro to
// hide them from the AST.
#[cfg(f128_enabled)]
macro_rules! f128_tests {
() => {
#[test]
fn test_f128_almost_extra_precision() {
// Exact maximum precision allowed
hf128("0x1.ffffffffffffffffffffffffffffp+16383");
}
#[test]
#[should_panic(expected = "the value is too precise")]
fn test_f128_extra_precision() {
// Just below the maximum finite.
hf128("0x1.fffffffffffffffffffffffffffe8p+16383");
}
#[test]
#[should_panic(expected = "the value is too huge")]
fn test_f128_extra_precision_overflow() {
// One bit more than the above. Should overflow.
hf128("0x1.ffffffffffffffffffffffffffff8p+16383");
}
#[test]
#[should_panic(expected = "the value is too huge")]
fn test_f128_overflow() {
// One bit more than the above.
hf128("0x1p+16384");
}
#[test]
fn test_f128_tiniest() {
let x = hf128("0x1.p-16494");
let y = hf128("0x0.0000000000000001p-16430");
let z = hf128("0x0.8p-16493");
assert_eq!(x, y);
assert_eq!(x, z);
}
#[test]
#[should_panic(expected = "the value is too tiny")]
fn test_f128_too_tiny() {
hf128("0x1.p-16495");
}
#[test]
#[should_panic(expected = "the value is too tiny")]
fn test_f128_again_too_tiny() {
hf128("0x0.0000000000000001p-16431");
}
#[test]
#[should_panic(expected = "the value is too tiny")]
fn test_f128_also_too_tiny() {
hf128("0x0.8p-16494");
}
};
}
#[cfg(f128_enabled)]
f128_tests!();
}
#[cfg(test)]
mod print_tests {
extern crate std;
use std::string::ToString;
use super::*;
use crate::support::Float;
#[test]
#[cfg(f16_enabled)]
fn test_f16() {
use std::format;
// Exhaustively check that `f16` roundtrips.
for x in 0..=u16::MAX {
let f = f16::from_bits(x);
let s = format!("{}", Hexf(f));
let from_s = hf16(&s);
if f.is_nan() && from_s.is_nan() {
continue;
}
assert_eq!(
f.to_bits(),
from_s.to_bits(),
"{f:?} formatted as {s} but parsed as {from_s:?}"
);
}
}
#[test]
#[cfg(f16_enabled)]
fn test_f16_to_f32() {
use std::format;
// Exhaustively check that these are equivalent for all `f16`:
// - `f16 -> f32`
// - `f16 -> str -> f32`
// - `f16 -> f32 -> str -> f32`
// - `f16 -> f32 -> str -> f16 -> f32`
for x in 0..=u16::MAX {
let f16 = f16::from_bits(x);
let s16 = format!("{}", Hexf(f16));
let f32 = f16 as f32;
let s32 = format!("{}", Hexf(f32));
let a = hf32(&s16);
let b = hf32(&s32);
let c = hf16(&s32);
if f32.is_nan() && a.is_nan() && b.is_nan() && c.is_nan() {
continue;
}
assert_eq!(
f32.to_bits(),
a.to_bits(),
"{f16:?} : f16 formatted as {s16} which parsed as {a:?} : f16"
);
assert_eq!(
f32.to_bits(),
b.to_bits(),
"{f32:?} : f32 formatted as {s32} which parsed as {b:?} : f32"
);
assert_eq!(
f32.to_bits(),
(c as f32).to_bits(),
"{f32:?} : f32 formatted as {s32} which parsed as {c:?} : f16"
);
}
}
#[test]
fn spot_checks() {
assert_eq!(Hexf(f32::MAX).to_string(), "0x1.fffffep+127");
assert_eq!(Hexf(f64::MAX).to_string(), "0x1.fffffffffffffp+1023");
assert_eq!(Hexf(f32::MIN).to_string(), "-0x1.fffffep+127");
assert_eq!(Hexf(f64::MIN).to_string(), "-0x1.fffffffffffffp+1023");
assert_eq!(Hexf(f32::ZERO).to_string(), "0x0p+0");
assert_eq!(Hexf(f64::ZERO).to_string(), "0x0p+0");
assert_eq!(Hexf(f32::NEG_ZERO).to_string(), "-0x0p+0");
assert_eq!(Hexf(f64::NEG_ZERO).to_string(), "-0x0p+0");
assert_eq!(Hexf(f32::NAN).to_string(), "NaN");
assert_eq!(Hexf(f64::NAN).to_string(), "NaN");
assert_eq!(Hexf(f32::INFINITY).to_string(), "inf");
assert_eq!(Hexf(f64::INFINITY).to_string(), "inf");
assert_eq!(Hexf(f32::NEG_INFINITY).to_string(), "-inf");
assert_eq!(Hexf(f64::NEG_INFINITY).to_string(), "-inf");
#[cfg(f16_enabled)]
{
assert_eq!(Hexf(f16::MAX).to_string(), "0x1.ffcp+15");
assert_eq!(Hexf(f16::MIN).to_string(), "-0x1.ffcp+15");
assert_eq!(Hexf(f16::ZERO).to_string(), "0x0p+0");
assert_eq!(Hexf(f16::NEG_ZERO).to_string(), "-0x0p+0");
assert_eq!(Hexf(f16::NAN).to_string(), "NaN");
assert_eq!(Hexf(f16::INFINITY).to_string(), "inf");
assert_eq!(Hexf(f16::NEG_INFINITY).to_string(), "-inf");
}
#[cfg(f128_enabled)]
{
assert_eq!(
Hexf(f128::MAX).to_string(),
"0x1.ffffffffffffffffffffffffffffp+16383"
);
assert_eq!(
Hexf(f128::MIN).to_string(),
"-0x1.ffffffffffffffffffffffffffffp+16383"
);
assert_eq!(Hexf(f128::ZERO).to_string(), "0x0p+0");
assert_eq!(Hexf(f128::NEG_ZERO).to_string(), "-0x0p+0");
assert_eq!(Hexf(f128::NAN).to_string(), "NaN");
assert_eq!(Hexf(f128::INFINITY).to_string(), "inf");
assert_eq!(Hexf(f128::NEG_INFINITY).to_string(), "-inf");
}
}
}