| /* SPDX-License-Identifier: MIT */ |
| /* origin: musl src/math/sqrt.c. Ported to generic Rust algorithm in 2025, TG. */ |
| |
| //! Generic square root algorithm. |
| //! |
| //! This routine operates around `m_u2`, a U.2 (fixed point with two integral bits) mantissa |
| //! within the range [1, 4). A table lookup provides an initial estimate, then goldschmidt |
| //! iterations at various widths are used to approach the real values. |
| //! |
| //! For the iterations, `r` is a U0 number that approaches `1/sqrt(m_u2)`, and `s` is a U2 number |
| //! that approaches `sqrt(m_u2)`. Recall that m_u2 ∈ [1, 4). |
| //! |
| //! With Newton-Raphson iterations, this would be: |
| //! |
| //! - `w = r * r w ~ 1 / m` |
| //! - `u = 3 - m * w u ~ 3 - m * w = 3 - m / m = 2` |
| //! - `r = r * u / 2 r ~ r` |
| //! |
| //! (Note that the righthand column does not show anything analytically meaningful (i.e. r ~ r), |
| //! since the value of performing one iteration is in reducing the error representable by `~`). |
| //! |
| //! Instead of Newton-Raphson iterations, Goldschmidt iterations are used to calculate |
| //! `s = m * r`: |
| //! |
| //! - `s = m * r s ~ m / sqrt(m)` |
| //! - `u = 3 - s * r u ~ 3 - (m / sqrt(m)) * (1 / sqrt(m)) = 3 - m / m = 2` |
| //! - `r = r * u / 2 r ~ r` |
| //! - `s = s * u / 2 s ~ s` |
| //! |
| //! The above is precise because it uses the original value `m`. There is also a faster version |
| //! that performs fewer steps but does not use `m`: |
| //! |
| //! - `u = 3 - s * r u ~ 3 - 1` |
| //! - `r = r * u / 2 r ~ r` |
| //! - `s = s * u / 2 s ~ s` |
| //! |
| //! Rounding errors accumulate faster with the second version, so it is only used for subsequent |
| //! iterations within the same width integer. The first version is always used for the first |
| //! iteration at a new width in order to avoid this accumulation. |
| //! |
| //! Goldschmidt has the advantage over Newton-Raphson that `sqrt(x)` and `1/sqrt(x)` are |
| //! computed at the same time, i.e. there is no need to calculate `1/sqrt(x)` and invert it. |
| |
| use crate::support::{ |
| CastFrom, CastInto, DInt, Float, FpResult, HInt, Int, IntTy, MinInt, Round, Status, cold_path, |
| }; |
| |
| #[inline] |
| pub fn sqrt<F>(x: F) -> F |
| where |
| F: Float + SqrtHelper, |
| F::Int: HInt, |
| F::Int: From<u8>, |
| F::Int: From<F::ISet2>, |
| F::Int: CastInto<F::ISet1>, |
| F::Int: CastInto<F::ISet2>, |
| u32: CastInto<F::Int>, |
| { |
| sqrt_round(x, Round::Nearest).val |
| } |
| |
| #[inline] |
| pub fn sqrt_round<F>(x: F, _round: Round) -> FpResult<F> |
| where |
| F: Float + SqrtHelper, |
| F::Int: HInt, |
| F::Int: From<u8>, |
| F::Int: From<F::ISet2>, |
| F::Int: CastInto<F::ISet1>, |
| F::Int: CastInto<F::ISet2>, |
| u32: CastInto<F::Int>, |
| { |
| let zero = IntTy::<F>::ZERO; |
| let one = IntTy::<F>::ONE; |
| |
| let mut ix = x.to_bits(); |
| |
| // Top is the exponent and sign, which may or may not be shifted. If the float fits into a |
| // `u32`, we can get by without paying shifting costs. |
| let noshift = F::BITS <= u32::BITS; |
| let (mut top, special_case) = if noshift { |
| let exp_lsb = one << F::SIG_BITS; |
| let special_case = ix.wrapping_sub(exp_lsb) >= F::EXP_MASK - exp_lsb; |
| (Exp::NoShift(()), special_case) |
| } else { |
| let top = u32::cast_from(ix >> F::SIG_BITS); |
| let special_case = top.wrapping_sub(1) >= F::EXP_SAT - 1; |
| (Exp::Shifted(top), special_case) |
| }; |
| |
| // Handle NaN, zero, and out of domain (<= 0) |
| if special_case { |
| cold_path(); |
| |
| // +/-0 |
| if ix << 1 == zero { |
| return FpResult::ok(x); |
| } |
| |
| // Positive infinity |
| if ix == F::EXP_MASK { |
| return FpResult::ok(x); |
| } |
| |
| // NaN or negative |
| if ix > F::EXP_MASK { |
| return FpResult::new(F::NAN, Status::INVALID); |
| } |
| |
| // Normalize subnormals by multiplying by 1.0 << SIG_BITS (e.g. 0x1p52 for doubles). |
| let scaled = x * F::from_parts(false, F::SIG_BITS + F::EXP_BIAS, zero); |
| ix = scaled.to_bits(); |
| match top { |
| Exp::Shifted(ref mut v) => { |
| *v = scaled.ex(); |
| *v = (*v).wrapping_sub(F::SIG_BITS); |
| } |
| Exp::NoShift(()) => { |
| ix = ix.wrapping_sub((F::SIG_BITS << F::SIG_BITS).cast()); |
| } |
| } |
| } |
| |
| // Reduce arguments such that `x = 4^e * m`: |
| // |
| // - m_u2 ∈ [1, 4), a fixed point U2.BITS number |
| // - 2^e is the exponent part of the result |
| let (m_u2, exp) = match top { |
| Exp::Shifted(top) => { |
| // We now know `x` is positive, so `top` is just its (biased) exponent |
| let mut e = top; |
| // Construct a fixed point representation of the mantissa. |
| let mut m_u2 = (ix | F::IMPLICIT_BIT) << F::EXP_BITS; |
| let even = (e & 1) != 0; |
| if even { |
| m_u2 >>= 1; |
| } |
| e = (e.wrapping_add(F::EXP_SAT >> 1)) >> 1; |
| (m_u2, Exp::Shifted(e)) |
| } |
| Exp::NoShift(()) => { |
| let even = ix & (one << F::SIG_BITS) != zero; |
| |
| // Exponent part of the return value |
| let mut e_noshift = ix >> 1; |
| // ey &= (F::EXP_MASK << 2) >> 2; // clear the top exponent bit (result = 1.0) |
| e_noshift += (F::EXP_MASK ^ (F::SIGN_MASK >> 1)) >> 1; |
| e_noshift &= F::EXP_MASK; |
| |
| let m1 = (ix << F::EXP_BITS) | F::SIGN_MASK; |
| let m0 = (ix << (F::EXP_BITS - 1)) & !F::SIGN_MASK; |
| let m_u2 = if even { m0 } else { m1 }; |
| |
| (m_u2, Exp::NoShift(e_noshift)) |
| } |
| }; |
| |
| // Extract the top 6 bits of the significand with the lowest bit of the exponent. |
| let i = usize::cast_from(ix >> (F::SIG_BITS - 6)) & 0b1111111; |
| |
| // Start with an initial guess for `r = 1 / sqrt(m)` from the table, and shift `m` as an |
| // initial value for `s = sqrt(m)`. See the module documentation for details. |
| let r1_u0: F::ISet1 = F::ISet1::cast_from(RSQRT_TAB[i]) << (F::ISet1::BITS - 16); |
| let s1_u2: F::ISet1 = ((m_u2) >> (F::BITS - F::ISet1::BITS)).cast(); |
| |
| // Perform iterations, if any, at quarter width (used for `f128`). |
| let (r1_u0, _s1_u2) = goldschmidt::<F, F::ISet1>(r1_u0, s1_u2, F::SET1_ROUNDS, false); |
| |
| // Widen values and perform iterations at half width (used for `f64` and `f128`). |
| let r2_u0: F::ISet2 = F::ISet2::from(r1_u0) << (F::ISet2::BITS - F::ISet1::BITS); |
| let s2_u2: F::ISet2 = ((m_u2) >> (F::BITS - F::ISet2::BITS)).cast(); |
| let (r2_u0, _s2_u2) = goldschmidt::<F, F::ISet2>(r2_u0, s2_u2, F::SET2_ROUNDS, false); |
| |
| // Perform final iterations at full width (used for all float types). |
| let r_u0: F::Int = F::Int::from(r2_u0) << (F::BITS - F::ISet2::BITS); |
| let s_u2: F::Int = m_u2; |
| let (_r_u0, s_u2) = goldschmidt::<F, F::Int>(r_u0, s_u2, F::FINAL_ROUNDS, true); |
| |
| // Shift back to mantissa position. |
| let mut m = s_u2 >> (F::EXP_BITS - 2); |
| |
| // The musl source includes the following comment (with literals replaced): |
| // |
| // > s < sqrt(m) < s + 0x1.09p-SIG_BITS |
| // > compute nearest rounded result: the nearest result to SIG_BITS bits is either s or |
| // > s+0x1p-SIG_BITS, we can decide by comparing (2^SIG_BITS s + 0.5)^2 to 2^(2*SIG_BITS) m. |
| // |
| // Expanding this with , with `SIG_BITS = p` and adjusting based on the operations done to |
| // `d0` and `d1`: |
| // |
| // - `2^(2p)m ≟ ((2^p)m + 0.5)^2` |
| // - `2^(2p)m ≟ 2^(2p)m^2 + (2^p)m + 0.25` |
| // - `2^(2p)m - m^2 ≟ (2^(2p) - 1)m^2 + (2^p)m + 0.25` |
| // - `(1 - 2^(2p))m + m^2 ≟ (1 - 2^(2p))m^2 + (1 - 2^p)m + 0.25` (?) |
| // |
| // I do not follow how the rounding bit is extracted from this comparison with the below |
| // operations. In any case, the algorithm is well tested. |
| |
| // The value needed to shift `m_u2` by to create `m*2^(2p)`. `2p = 2 * F::SIG_BITS`, |
| // `F::BITS - 2` accounts for the offset that `m_u2` already has. |
| let shift = 2 * F::SIG_BITS - (F::BITS - 2); |
| |
| // `2^(2p)m - m^2` |
| let d0 = (m_u2 << shift).wrapping_sub(m.wrapping_mul(m)); |
| // `m - 2^(2p)m + m^2` |
| let d1 = m.wrapping_sub(d0); |
| m += d1 >> (F::BITS - 1); |
| m &= F::SIG_MASK; |
| |
| match exp { |
| Exp::Shifted(e) => m |= IntTy::<F>::cast_from(e) << F::SIG_BITS, |
| Exp::NoShift(e) => m |= e, |
| }; |
| |
| let mut y = F::from_bits(m); |
| |
| // FIXME(f16): the fenv math does not work for `f16` |
| if F::BITS > 16 { |
| // Handle rounding and inexact. `(m + 1)^2 == 2^shift m` is exact; for all other cases, add |
| // a tiny value to cause fenv effects. |
| let d2 = d1.wrapping_add(m).wrapping_add(one); |
| let mut tiny = if d2 == zero { |
| cold_path(); |
| zero |
| } else { |
| F::IMPLICIT_BIT |
| }; |
| |
| tiny |= (d1 ^ d2) & F::SIGN_MASK; |
| let t = F::from_bits(tiny); |
| y = y + t; |
| } |
| |
| FpResult::ok(y) |
| } |
| |
| /// Multiply at the wider integer size, returning the high half. |
| fn wmulh<I: HInt>(a: I, b: I) -> I { |
| a.widen_mul(b).hi() |
| } |
| |
| /// Perform `count` goldschmidt iterations, returning `(r_u0, s_u?)`. |
| /// |
| /// - `r_u0` is the reciprocal `r ~ 1 / sqrt(m)`, as U0. |
| /// - `s_u2` is the square root, `s ~ sqrt(m)`, as U2. |
| /// - `count` is the number of iterations to perform. |
| /// - `final_set` should be true if this is the last round (same-sized integer). If so, the |
| /// returned `s` will be U3, for later shifting. Otherwise, the returned `s` is U2. |
| /// |
| /// Note that performance relies on the optimizer being able to unroll these loops (reasonably |
| /// trivial, `count` is a constant when called). |
| #[inline] |
| fn goldschmidt<F, I>(mut r_u0: I, mut s_u2: I, count: u32, final_set: bool) -> (I, I) |
| where |
| F: SqrtHelper, |
| I: HInt + From<u8>, |
| { |
| let three_u2 = I::from(0b11u8) << (I::BITS - 2); |
| let mut u_u0 = r_u0; |
| |
| for i in 0..count { |
| // First iteration: `s = m*r` (`u_u0 = r_u0` set above) |
| // Subsequent iterations: `s=s*u/2` |
| s_u2 = wmulh(s_u2, u_u0); |
| |
| // Perform `s /= 2` if: |
| // |
| // 1. This is not the first iteration (the first iteration is `s = m*r`)... |
| // 2. ... and this is not the last set of iterations |
| // 3. ... or, if this is the last set, it is not the last iteration |
| // |
| // This step is not performed for the final iteration because the shift is combined with |
| // a later shift (moving `s` into the mantissa). |
| if i > 0 && (!final_set || i + 1 < count) { |
| s_u2 <<= 1; |
| } |
| |
| // u = 3 - s*r |
| let d_u2 = wmulh(s_u2, r_u0); |
| u_u0 = three_u2.wrapping_sub(d_u2); |
| |
| // r = r*u/2 |
| r_u0 = wmulh(r_u0, u_u0) << 1; |
| } |
| |
| (r_u0, s_u2) |
| } |
| |
| /// Representation of whether we shift the exponent into a `u32`, or modify it in place to save |
| /// the shift operations. |
| enum Exp<T> { |
| /// The exponent has been shifted to a `u32` and is LSB-aligned. |
| Shifted(u32), |
| /// The exponent is in its natural position in integer repr. |
| NoShift(T), |
| } |
| |
| /// Size-specific constants related to the square root routine. |
| pub trait SqrtHelper: Float { |
| /// Integer for the first set of rounds. If unused, set to the same type as the next set. |
| type ISet1: HInt + Into<Self::ISet2> + CastFrom<Self::Int> + From<u8>; |
| /// Integer for the second set of rounds. If unused, set to the same type as the next set. |
| type ISet2: HInt + From<Self::ISet1> + From<u8>; |
| |
| /// Number of rounds at `ISet1`. |
| const SET1_ROUNDS: u32 = 0; |
| /// Number of rounds at `ISet2`. |
| const SET2_ROUNDS: u32 = 0; |
| /// Number of rounds at `Self::Int`. |
| const FINAL_ROUNDS: u32; |
| } |
| |
| #[cfg(f16_enabled)] |
| impl SqrtHelper for f16 { |
| type ISet1 = u16; // unused |
| type ISet2 = u16; // unused |
| |
| const FINAL_ROUNDS: u32 = 2; |
| } |
| |
| impl SqrtHelper for f32 { |
| type ISet1 = u32; // unused |
| type ISet2 = u32; // unused |
| |
| const FINAL_ROUNDS: u32 = 3; |
| } |
| |
| impl SqrtHelper for f64 { |
| type ISet1 = u32; // unused |
| type ISet2 = u32; |
| |
| const SET2_ROUNDS: u32 = 2; |
| const FINAL_ROUNDS: u32 = 2; |
| } |
| |
| #[cfg(f128_enabled)] |
| impl SqrtHelper for f128 { |
| type ISet1 = u32; |
| type ISet2 = u64; |
| |
| const SET1_ROUNDS: u32 = 1; |
| const SET2_ROUNDS: u32 = 2; |
| const FINAL_ROUNDS: u32 = 2; |
| } |
| |
| /// A U0.16 representation of `1/sqrt(x)`. |
| /// |
| /// The index is a 7-bit number consisting of a single exponent bit and 6 bits of significand. |
| #[rustfmt::skip] |
| static RSQRT_TAB: [u16; 128] = [ |
| 0xb451, 0xb2f0, 0xb196, 0xb044, 0xaef9, 0xadb6, 0xac79, 0xab43, |
| 0xaa14, 0xa8eb, 0xa7c8, 0xa6aa, 0xa592, 0xa480, 0xa373, 0xa26b, |
| 0xa168, 0xa06a, 0x9f70, 0x9e7b, 0x9d8a, 0x9c9d, 0x9bb5, 0x9ad1, |
| 0x99f0, 0x9913, 0x983a, 0x9765, 0x9693, 0x95c4, 0x94f8, 0x9430, |
| 0x936b, 0x92a9, 0x91ea, 0x912e, 0x9075, 0x8fbe, 0x8f0a, 0x8e59, |
| 0x8daa, 0x8cfe, 0x8c54, 0x8bac, 0x8b07, 0x8a64, 0x89c4, 0x8925, |
| 0x8889, 0x87ee, 0x8756, 0x86c0, 0x862b, 0x8599, 0x8508, 0x8479, |
| 0x83ec, 0x8361, 0x82d8, 0x8250, 0x81c9, 0x8145, 0x80c2, 0x8040, |
| 0xff02, 0xfd0e, 0xfb25, 0xf947, 0xf773, 0xf5aa, 0xf3ea, 0xf234, |
| 0xf087, 0xeee3, 0xed47, 0xebb3, 0xea27, 0xe8a3, 0xe727, 0xe5b2, |
| 0xe443, 0xe2dc, 0xe17a, 0xe020, 0xdecb, 0xdd7d, 0xdc34, 0xdaf1, |
| 0xd9b3, 0xd87b, 0xd748, 0xd61a, 0xd4f1, 0xd3cd, 0xd2ad, 0xd192, |
| 0xd07b, 0xcf69, 0xce5b, 0xcd51, 0xcc4a, 0xcb48, 0xca4a, 0xc94f, |
| 0xc858, 0xc764, 0xc674, 0xc587, 0xc49d, 0xc3b7, 0xc2d4, 0xc1f4, |
| 0xc116, 0xc03c, 0xbf65, 0xbe90, 0xbdbe, 0xbcef, 0xbc23, 0xbb59, |
| 0xba91, 0xb9cc, 0xb90a, 0xb84a, 0xb78c, 0xb6d0, 0xb617, 0xb560, |
| ]; |
| |
| #[cfg(test)] |
| mod tests { |
| use super::*; |
| |
| /// Test behavior specified in IEEE 754 `squareRoot`. |
| fn spec_test<F>() |
| where |
| F: Float + SqrtHelper, |
| F::Int: HInt, |
| F::Int: From<u8>, |
| F::Int: From<F::ISet2>, |
| F::Int: CastInto<F::ISet1>, |
| F::Int: CastInto<F::ISet2>, |
| u32: CastInto<F::Int>, |
| { |
| // Values that should return a NaN and raise invalid |
| let nan = [F::NEG_INFINITY, F::NEG_ONE, F::NAN, F::MIN]; |
| |
| // Values that return unaltered |
| let roundtrip = [F::ZERO, F::NEG_ZERO, F::INFINITY]; |
| |
| for x in nan { |
| let FpResult { val, status } = sqrt_round(x, Round::Nearest); |
| assert!(val.is_nan()); |
| assert!(status == Status::INVALID); |
| } |
| |
| for x in roundtrip { |
| let FpResult { val, status } = sqrt_round(x, Round::Nearest); |
| assert_biteq!(val, x); |
| assert!(status == Status::OK); |
| } |
| } |
| |
| #[test] |
| #[cfg(f16_enabled)] |
| fn sanity_check_f16() { |
| assert_biteq!(sqrt(100.0f16), 10.0); |
| assert_biteq!(sqrt(4.0f16), 2.0); |
| } |
| |
| #[test] |
| #[cfg(f16_enabled)] |
| fn spec_tests_f16() { |
| spec_test::<f16>(); |
| } |
| |
| #[test] |
| #[cfg(f16_enabled)] |
| #[allow(clippy::approx_constant)] |
| fn conformance_tests_f16() { |
| let cases = [ |
| (f16::PI, 0x3f17_u16), |
| // 10_000.0, using a hex literal for MSRV hack (Rust < 1.67 checks literal widths as |
| // part of the AST, so the `cfg` is irrelevant here). |
| (f16::from_bits(0x70e2), 0x5640_u16), |
| (f16::from_bits(0x0000000f), 0x13bf_u16), |
| (f16::INFINITY, f16::INFINITY.to_bits()), |
| ]; |
| |
| for (input, output) in cases { |
| assert_biteq!( |
| sqrt(input), |
| f16::from_bits(output), |
| "input: {input:?} ({:#018x})", |
| input.to_bits() |
| ); |
| } |
| } |
| |
| #[test] |
| fn sanity_check_f32() { |
| assert_biteq!(sqrt(100.0f32), 10.0); |
| assert_biteq!(sqrt(4.0f32), 2.0); |
| } |
| |
| #[test] |
| fn spec_tests_f32() { |
| spec_test::<f32>(); |
| } |
| |
| #[test] |
| #[allow(clippy::approx_constant)] |
| fn conformance_tests_f32() { |
| let cases = [ |
| (f32::PI, 0x3fe2dfc5_u32), |
| (10000.0f32, 0x42c80000_u32), |
| (f32::from_bits(0x0000000f), 0x1b2f456f_u32), |
| (f32::INFINITY, f32::INFINITY.to_bits()), |
| ]; |
| |
| for (input, output) in cases { |
| assert_biteq!( |
| sqrt(input), |
| f32::from_bits(output), |
| "input: {input:?} ({:#018x})", |
| input.to_bits() |
| ); |
| } |
| } |
| |
| #[test] |
| fn sanity_check_f64() { |
| assert_biteq!(sqrt(100.0f64), 10.0); |
| assert_biteq!(sqrt(4.0f64), 2.0); |
| } |
| |
| #[test] |
| fn spec_tests_f64() { |
| spec_test::<f64>(); |
| } |
| |
| #[test] |
| #[allow(clippy::approx_constant)] |
| fn conformance_tests_f64() { |
| let cases = [ |
| (f64::PI, 0x3ffc5bf891b4ef6a_u64), |
| (10000.0, 0x4059000000000000_u64), |
| (f64::from_bits(0x0000000f), 0x1e7efbdeb14f4eda_u64), |
| (f64::INFINITY, f64::INFINITY.to_bits()), |
| ]; |
| |
| for (input, output) in cases { |
| assert_biteq!( |
| sqrt(input), |
| f64::from_bits(output), |
| "input: {input:?} ({:#018x})", |
| input.to_bits() |
| ); |
| } |
| } |
| |
| #[test] |
| #[cfg(f128_enabled)] |
| fn sanity_check_f128() { |
| assert_biteq!(sqrt(100.0f128), 10.0); |
| assert_biteq!(sqrt(4.0f128), 2.0); |
| } |
| |
| #[test] |
| #[cfg(f128_enabled)] |
| fn spec_tests_f128() { |
| spec_test::<f128>(); |
| } |
| |
| #[test] |
| #[cfg(f128_enabled)] |
| #[allow(clippy::approx_constant)] |
| fn conformance_tests_f128() { |
| let cases = [ |
| (f128::PI, 0x3fffc5bf891b4ef6aa79c3b0520d5db9_u128), |
| // 10_000.0, see `f16` for reasoning. |
| ( |
| f128::from_bits(0x400c3880000000000000000000000000), |
| 0x40059000000000000000000000000000_u128, |
| ), |
| ( |
| f128::from_bits(0x0000000f), |
| 0x1fc9efbdeb14f4ed9b17ae807907e1e9_u128, |
| ), |
| (f128::INFINITY, f128::INFINITY.to_bits()), |
| ]; |
| |
| for (input, output) in cases { |
| assert_biteq!( |
| sqrt(input), |
| f128::from_bits(output), |
| "input: {input:?} ({:#018x})", |
| input.to_bits() |
| ); |
| } |
| } |
| } |