| /* SPDX-License-Identifier: MIT */ |
| /* origin: musl src/math/fma.c. Ported to generic Rust algorithm in 2025, TG. */ |
| |
| use crate::support::{ |
| CastFrom, CastInto, DInt, Float, FpResult, HInt, Int, IntTy, MinInt, Round, Status, |
| }; |
| |
| /// Fused multiply-add that works when there is not a larger float size available. Computes |
| /// `(x * y) + z`. |
| #[inline] |
| pub fn fma_round<F>(x: F, y: F, z: F, _round: Round) -> FpResult<F> |
| where |
| F: Float, |
| F: CastFrom<F::SignedInt>, |
| F: CastFrom<i8>, |
| F::Int: HInt, |
| u32: CastInto<F::Int>, |
| { |
| let one = IntTy::<F>::ONE; |
| let zero = IntTy::<F>::ZERO; |
| |
| // Normalize such that the top of the mantissa is zero and we have a guard bit. |
| let nx = Norm::from_float(x); |
| let ny = Norm::from_float(y); |
| let nz = Norm::from_float(z); |
| |
| if nx.is_zero_nan_inf() || ny.is_zero_nan_inf() { |
| // Value will overflow, defer to non-fused operations. |
| return FpResult::ok(x * y + z); |
| } |
| |
| if nz.is_zero_nan_inf() { |
| if nz.is_zero() { |
| // Empty add component means we only need to multiply. |
| return FpResult::ok(x * y); |
| } |
| // `z` is NaN or infinity, which sets the result. |
| return FpResult::ok(z); |
| } |
| |
| // multiply: r = x * y |
| let zhi: F::Int; |
| let zlo: F::Int; |
| let (mut rlo, mut rhi) = nx.m.widen_mul(ny.m).lo_hi(); |
| |
| // Exponent result of multiplication |
| let mut e: i32 = nx.e + ny.e; |
| // Needed shift to align `z` to the multiplication result |
| let mut d: i32 = nz.e - e; |
| let sbits = F::BITS as i32; |
| |
| // Scale `z`. Shift `z <<= kz`, `r >>= kr`, so `kz+kr == d`, set `e = e+kr` (== ez-kz) |
| if d > 0 { |
| // The magnitude of `z` is larger than `x * y` |
| if d < sbits { |
| // Maximum shift of one `F::BITS` means shifted `z` will fit into `2 * F::BITS`. Shift |
| // it into `(zhi, zlo)`. No exponent adjustment necessary. |
| zlo = nz.m << d; |
| zhi = nz.m >> (sbits - d); |
| } else { |
| // Shift larger than `sbits`, `z` only needs the top half `zhi`. Place it there (acts |
| // as a shift by `sbits`). |
| zlo = zero; |
| zhi = nz.m; |
| d -= sbits; |
| |
| // `z`'s exponent is large enough that it now needs to be taken into account. |
| e = nz.e - sbits; |
| |
| if d == 0 { |
| // Exactly `sbits`, nothing to do |
| } else if d < sbits { |
| // Remaining shift fits within `sbits`. Leave `z` in place, shift `x * y` |
| rlo = (rhi << (sbits - d)) | (rlo >> d); |
| // Set the sticky bit |
| rlo |= IntTy::<F>::from((rlo << (sbits - d)) != zero); |
| rhi = rhi >> d; |
| } else { |
| // `z`'s magnitude is enough that `x * y` is irrelevant. It was nonzero, so set |
| // the sticky bit. |
| rlo = one; |
| rhi = zero; |
| } |
| } |
| } else { |
| // `z`'s magnitude once shifted fits entirely within `zlo` |
| zhi = zero; |
| d = -d; |
| if d == 0 { |
| // No shift needed |
| zlo = nz.m; |
| } else if d < sbits { |
| // Shift s.t. `nz.m` fits into `zlo` |
| let sticky = IntTy::<F>::from((nz.m << (sbits - d)) != zero); |
| zlo = (nz.m >> d) | sticky; |
| } else { |
| // Would be entirely shifted out, only set the sticky bit |
| zlo = one; |
| } |
| } |
| |
| /* addition */ |
| |
| let mut neg = nx.neg ^ ny.neg; |
| let samesign: bool = !neg ^ nz.neg; |
| let mut rhi_nonzero = true; |
| |
| if samesign { |
| // r += z |
| rlo = rlo.wrapping_add(zlo); |
| rhi += zhi + IntTy::<F>::from(rlo < zlo); |
| } else { |
| // r -= z |
| let (res, borrow) = rlo.overflowing_sub(zlo); |
| rlo = res; |
| rhi = rhi.wrapping_sub(zhi.wrapping_add(IntTy::<F>::from(borrow))); |
| if (rhi >> (F::BITS - 1)) != zero { |
| rlo = rlo.signed().wrapping_neg().unsigned(); |
| rhi = rhi.signed().wrapping_neg().unsigned() - IntTy::<F>::from(rlo != zero); |
| neg = !neg; |
| } |
| rhi_nonzero = rhi != zero; |
| } |
| |
| /* Construct result */ |
| |
| // Shift result into `rhi`, left-aligned. Last bit is sticky |
| if rhi_nonzero { |
| // `d` > 0, need to shift both `rhi` and `rlo` into result |
| e += sbits; |
| d = rhi.leading_zeros() as i32 - 1; |
| rhi = (rhi << d) | (rlo >> (sbits - d)); |
| // Update sticky |
| rhi |= IntTy::<F>::from((rlo << d) != zero); |
| } else if rlo != zero { |
| // `rhi` is zero, `rlo` is the entire result and needs to be shifted |
| d = rlo.leading_zeros() as i32 - 1; |
| if d < 0 { |
| // Shift and set sticky |
| rhi = (rlo >> 1) | (rlo & one); |
| } else { |
| rhi = rlo << d; |
| } |
| } else { |
| // exact +/- 0.0 |
| return FpResult::ok(x * y + z); |
| } |
| |
| e -= d; |
| |
| // Use int->float conversion to populate the significand. |
| // i is in [1 << (BITS - 2), (1 << (BITS - 1)) - 1] |
| let mut i: F::SignedInt = rhi.signed(); |
| |
| if neg { |
| i = -i; |
| } |
| |
| // `|r|` is in `[0x1p62,0x1p63]` for `f64` |
| let mut r: F = F::cast_from_lossy(i); |
| |
| /* Account for subnormal and rounding */ |
| |
| // Unbiased exponent for the maximum value of `r` |
| let max_pow = F::BITS - 1 + F::EXP_BIAS; |
| |
| let mut status = Status::OK; |
| |
| if e < -(max_pow as i32 - 2) { |
| // Result is subnormal before rounding |
| if e == -(max_pow as i32 - 1) { |
| let mut c = F::from_parts(false, max_pow, zero); |
| if neg { |
| c = -c; |
| } |
| |
| if r == c { |
| // Min normal after rounding, |
| status.set_underflow(true); |
| r = F::MIN_POSITIVE_NORMAL.copysign(r); |
| return FpResult::new(r, status); |
| } |
| |
| if (rhi << (F::SIG_BITS + 1)) != zero { |
| // Account for truncated bits. One bit will be lost in the `scalbn` call, add |
| // another top bit to avoid double rounding if inexact. |
| let iu: F::Int = (rhi >> 1) | (rhi & one) | (one << (F::BITS - 2)); |
| i = iu.signed(); |
| |
| if neg { |
| i = -i; |
| } |
| |
| r = F::cast_from_lossy(i); |
| |
| // Remove the top bit |
| r = F::cast_from(2i8) * r - c; |
| status.set_underflow(true); |
| } |
| } else { |
| // Only round once when scaled |
| d = F::EXP_BITS as i32 - 1; |
| let sticky = IntTy::<F>::from(rhi << (F::BITS as i32 - d) != zero); |
| i = (((rhi >> d) | sticky) << d).signed(); |
| |
| if neg { |
| i = -i; |
| } |
| |
| r = F::cast_from_lossy(i); |
| } |
| } |
| |
| // Use our exponent to scale the final value. |
| FpResult::new(super::scalbn(r, e), status) |
| } |
| |
| /// Representation of `F` that has handled subnormals. |
| #[derive(Clone, Copy, Debug)] |
| struct Norm<F: Float> { |
| /// Normalized significand with one guard bit, unsigned. |
| m: F::Int, |
| /// Exponent of the mantissa such that `m * 2^e = x`. Accounts for the shift in the mantissa |
| /// and the guard bit; that is, 1.0 will normalize as `m = 1 << 53` and `e = -53`. |
| e: i32, |
| neg: bool, |
| } |
| |
| impl<F: Float> Norm<F> { |
| /// Unbias the exponent and account for the mantissa's precision, including the guard bit. |
| const EXP_UNBIAS: u32 = F::EXP_BIAS + F::SIG_BITS + 1; |
| |
| /// Values greater than this had a saturated exponent (infinity or NaN), OR were zero and we |
| /// adjusted the exponent such that it exceeds this threashold. |
| const ZERO_INF_NAN: u32 = F::EXP_SAT - Self::EXP_UNBIAS; |
| |
| fn from_float(x: F) -> Self { |
| let mut ix = x.to_bits(); |
| let mut e = x.ex() as i32; |
| let neg = x.is_sign_negative(); |
| if e == 0 { |
| // Normalize subnormals by multiplication |
| let scale_i = F::BITS - 1; |
| let scale_f = F::from_parts(false, scale_i + F::EXP_BIAS, F::Int::ZERO); |
| let scaled = x * scale_f; |
| ix = scaled.to_bits(); |
| e = scaled.ex() as i32; |
| e = if e == 0 { |
| // If the exponent is still zero, the input was zero. Artifically set this value |
| // such that the final `e` will exceed `ZERO_INF_NAN`. |
| 1 << F::EXP_BITS |
| } else { |
| // Otherwise, account for the scaling we just did. |
| e - scale_i as i32 |
| }; |
| } |
| |
| e -= Self::EXP_UNBIAS as i32; |
| |
| // Absolute value, set the implicit bit, and shift to create a guard bit |
| ix &= F::SIG_MASK; |
| ix |= F::IMPLICIT_BIT; |
| ix <<= 1; |
| |
| Self { m: ix, e, neg } |
| } |
| |
| /// True if the value was zero, infinity, or NaN. |
| fn is_zero_nan_inf(self) -> bool { |
| self.e >= Self::ZERO_INF_NAN as i32 |
| } |
| |
| /// The only value we have |
| fn is_zero(self) -> bool { |
| // The only exponent that strictly exceeds this value is our sentinel value for zero. |
| self.e > Self::ZERO_INF_NAN as i32 |
| } |
| } |