blob: aaf459d1b6147b3cb4e059c101a6bc59401db804 [file] [log] [blame]
/* SPDX-License-Identifier: MIT */
/* origin: musl src/math/fma.c. Ported to generic Rust algorithm in 2025, TG. */
use crate::support::{
CastFrom, CastInto, DInt, Float, FpResult, HInt, Int, IntTy, MinInt, Round, Status,
};
/// Fused multiply-add that works when there is not a larger float size available. Computes
/// `(x * y) + z`.
#[inline]
pub fn fma_round<F>(x: F, y: F, z: F, _round: Round) -> FpResult<F>
where
F: Float,
F: CastFrom<F::SignedInt>,
F: CastFrom<i8>,
F::Int: HInt,
u32: CastInto<F::Int>,
{
let one = IntTy::<F>::ONE;
let zero = IntTy::<F>::ZERO;
// Normalize such that the top of the mantissa is zero and we have a guard bit.
let nx = Norm::from_float(x);
let ny = Norm::from_float(y);
let nz = Norm::from_float(z);
if nx.is_zero_nan_inf() || ny.is_zero_nan_inf() {
// Value will overflow, defer to non-fused operations.
return FpResult::ok(x * y + z);
}
if nz.is_zero_nan_inf() {
if nz.is_zero() {
// Empty add component means we only need to multiply.
return FpResult::ok(x * y);
}
// `z` is NaN or infinity, which sets the result.
return FpResult::ok(z);
}
// multiply: r = x * y
let zhi: F::Int;
let zlo: F::Int;
let (mut rlo, mut rhi) = nx.m.widen_mul(ny.m).lo_hi();
// Exponent result of multiplication
let mut e: i32 = nx.e + ny.e;
// Needed shift to align `z` to the multiplication result
let mut d: i32 = nz.e - e;
let sbits = F::BITS as i32;
// Scale `z`. Shift `z <<= kz`, `r >>= kr`, so `kz+kr == d`, set `e = e+kr` (== ez-kz)
if d > 0 {
// The magnitude of `z` is larger than `x * y`
if d < sbits {
// Maximum shift of one `F::BITS` means shifted `z` will fit into `2 * F::BITS`. Shift
// it into `(zhi, zlo)`. No exponent adjustment necessary.
zlo = nz.m << d;
zhi = nz.m >> (sbits - d);
} else {
// Shift larger than `sbits`, `z` only needs the top half `zhi`. Place it there (acts
// as a shift by `sbits`).
zlo = zero;
zhi = nz.m;
d -= sbits;
// `z`'s exponent is large enough that it now needs to be taken into account.
e = nz.e - sbits;
if d == 0 {
// Exactly `sbits`, nothing to do
} else if d < sbits {
// Remaining shift fits within `sbits`. Leave `z` in place, shift `x * y`
rlo = (rhi << (sbits - d)) | (rlo >> d);
// Set the sticky bit
rlo |= IntTy::<F>::from((rlo << (sbits - d)) != zero);
rhi = rhi >> d;
} else {
// `z`'s magnitude is enough that `x * y` is irrelevant. It was nonzero, so set
// the sticky bit.
rlo = one;
rhi = zero;
}
}
} else {
// `z`'s magnitude once shifted fits entirely within `zlo`
zhi = zero;
d = -d;
if d == 0 {
// No shift needed
zlo = nz.m;
} else if d < sbits {
// Shift s.t. `nz.m` fits into `zlo`
let sticky = IntTy::<F>::from((nz.m << (sbits - d)) != zero);
zlo = (nz.m >> d) | sticky;
} else {
// Would be entirely shifted out, only set the sticky bit
zlo = one;
}
}
/* addition */
let mut neg = nx.neg ^ ny.neg;
let samesign: bool = !neg ^ nz.neg;
let mut rhi_nonzero = true;
if samesign {
// r += z
rlo = rlo.wrapping_add(zlo);
rhi += zhi + IntTy::<F>::from(rlo < zlo);
} else {
// r -= z
let (res, borrow) = rlo.overflowing_sub(zlo);
rlo = res;
rhi = rhi.wrapping_sub(zhi.wrapping_add(IntTy::<F>::from(borrow)));
if (rhi >> (F::BITS - 1)) != zero {
rlo = rlo.signed().wrapping_neg().unsigned();
rhi = rhi.signed().wrapping_neg().unsigned() - IntTy::<F>::from(rlo != zero);
neg = !neg;
}
rhi_nonzero = rhi != zero;
}
/* Construct result */
// Shift result into `rhi`, left-aligned. Last bit is sticky
if rhi_nonzero {
// `d` > 0, need to shift both `rhi` and `rlo` into result
e += sbits;
d = rhi.leading_zeros() as i32 - 1;
rhi = (rhi << d) | (rlo >> (sbits - d));
// Update sticky
rhi |= IntTy::<F>::from((rlo << d) != zero);
} else if rlo != zero {
// `rhi` is zero, `rlo` is the entire result and needs to be shifted
d = rlo.leading_zeros() as i32 - 1;
if d < 0 {
// Shift and set sticky
rhi = (rlo >> 1) | (rlo & one);
} else {
rhi = rlo << d;
}
} else {
// exact +/- 0.0
return FpResult::ok(x * y + z);
}
e -= d;
// Use int->float conversion to populate the significand.
// i is in [1 << (BITS - 2), (1 << (BITS - 1)) - 1]
let mut i: F::SignedInt = rhi.signed();
if neg {
i = -i;
}
// `|r|` is in `[0x1p62,0x1p63]` for `f64`
let mut r: F = F::cast_from_lossy(i);
/* Account for subnormal and rounding */
// Unbiased exponent for the maximum value of `r`
let max_pow = F::BITS - 1 + F::EXP_BIAS;
let mut status = Status::OK;
if e < -(max_pow as i32 - 2) {
// Result is subnormal before rounding
if e == -(max_pow as i32 - 1) {
let mut c = F::from_parts(false, max_pow, zero);
if neg {
c = -c;
}
if r == c {
// Min normal after rounding,
status.set_underflow(true);
r = F::MIN_POSITIVE_NORMAL.copysign(r);
return FpResult::new(r, status);
}
if (rhi << (F::SIG_BITS + 1)) != zero {
// Account for truncated bits. One bit will be lost in the `scalbn` call, add
// another top bit to avoid double rounding if inexact.
let iu: F::Int = (rhi >> 1) | (rhi & one) | (one << (F::BITS - 2));
i = iu.signed();
if neg {
i = -i;
}
r = F::cast_from_lossy(i);
// Remove the top bit
r = F::cast_from(2i8) * r - c;
status.set_underflow(true);
}
} else {
// Only round once when scaled
d = F::EXP_BITS as i32 - 1;
let sticky = IntTy::<F>::from(rhi << (F::BITS as i32 - d) != zero);
i = (((rhi >> d) | sticky) << d).signed();
if neg {
i = -i;
}
r = F::cast_from_lossy(i);
}
}
// Use our exponent to scale the final value.
FpResult::new(super::scalbn(r, e), status)
}
/// Representation of `F` that has handled subnormals.
#[derive(Clone, Copy, Debug)]
struct Norm<F: Float> {
/// Normalized significand with one guard bit, unsigned.
m: F::Int,
/// Exponent of the mantissa such that `m * 2^e = x`. Accounts for the shift in the mantissa
/// and the guard bit; that is, 1.0 will normalize as `m = 1 << 53` and `e = -53`.
e: i32,
neg: bool,
}
impl<F: Float> Norm<F> {
/// Unbias the exponent and account for the mantissa's precision, including the guard bit.
const EXP_UNBIAS: u32 = F::EXP_BIAS + F::SIG_BITS + 1;
/// Values greater than this had a saturated exponent (infinity or NaN), OR were zero and we
/// adjusted the exponent such that it exceeds this threashold.
const ZERO_INF_NAN: u32 = F::EXP_SAT - Self::EXP_UNBIAS;
fn from_float(x: F) -> Self {
let mut ix = x.to_bits();
let mut e = x.ex() as i32;
let neg = x.is_sign_negative();
if e == 0 {
// Normalize subnormals by multiplication
let scale_i = F::BITS - 1;
let scale_f = F::from_parts(false, scale_i + F::EXP_BIAS, F::Int::ZERO);
let scaled = x * scale_f;
ix = scaled.to_bits();
e = scaled.ex() as i32;
e = if e == 0 {
// If the exponent is still zero, the input was zero. Artifically set this value
// such that the final `e` will exceed `ZERO_INF_NAN`.
1 << F::EXP_BITS
} else {
// Otherwise, account for the scaling we just did.
e - scale_i as i32
};
}
e -= Self::EXP_UNBIAS as i32;
// Absolute value, set the implicit bit, and shift to create a guard bit
ix &= F::SIG_MASK;
ix |= F::IMPLICIT_BIT;
ix <<= 1;
Self { m: ix, e, neg }
}
/// True if the value was zero, infinity, or NaN.
fn is_zero_nan_inf(self) -> bool {
self.e >= Self::ZERO_INF_NAN as i32
}
/// The only value we have
fn is_zero(self) -> bool {
// The only exponent that strictly exceeds this value is our sentinel value for zero.
self.e > Self::ZERO_INF_NAN as i32
}
}