blob: 335942d5bcc54ee6e9d8f4071cd6d33d60bd87fc [file] [log] [blame]
use std::collections::VecDeque;
use rustc_data_structures::fx::{FxHashSet, FxIndexMap};
use rustc_hir::LangItem;
use rustc_hir::def_id::DefId;
use rustc_infer::infer::InferCtxt;
use rustc_infer::traits::PolyTraitObligation;
pub use rustc_infer::traits::util::*;
use rustc_middle::bug;
use rustc_middle::ty::fast_reject::DeepRejectCtxt;
use rustc_middle::ty::{
self, PolyTraitPredicate, PredicatePolarity, SizedTraitKind, TraitPredicate, TraitRef, Ty,
TyCtxt, TypeFoldable, TypeFolder, TypeSuperFoldable, TypeVisitableExt,
};
pub use rustc_next_trait_solver::placeholder::BoundVarReplacer;
use rustc_span::Span;
use smallvec::{SmallVec, smallvec};
use tracing::debug;
/// Return the trait and projection predicates that come from eagerly expanding the
/// trait aliases in the list of clauses. For each trait predicate, record a stack
/// of spans that trace from the user-written trait alias bound. For projection predicates,
/// just record the span of the projection itself.
///
/// For trait aliases, we don't deduplicte the predicates, since we currently do not
/// consider duplicated traits as a single trait for the purposes of our "one trait principal"
/// restriction; however, for projections we do deduplicate them.
///
/// ```rust,ignore (fails)
/// trait Bar {}
/// trait Foo = Bar + Bar;
///
/// let dyn_incompatible: dyn Foo; // bad, two `Bar` principals.
/// ```
pub fn expand_trait_aliases<'tcx>(
tcx: TyCtxt<'tcx>,
clauses: impl IntoIterator<Item = (ty::Clause<'tcx>, Span)>,
) -> (
Vec<(ty::PolyTraitPredicate<'tcx>, SmallVec<[Span; 1]>)>,
Vec<(ty::PolyProjectionPredicate<'tcx>, Span)>,
) {
let mut trait_preds = vec![];
let mut projection_preds = vec![];
let mut seen_projection_preds = FxHashSet::default();
let mut queue: VecDeque<_> = clauses.into_iter().map(|(p, s)| (p, smallvec![s])).collect();
while let Some((clause, spans)) = queue.pop_front() {
match clause.kind().skip_binder() {
ty::ClauseKind::Trait(trait_pred) => {
if tcx.is_trait_alias(trait_pred.def_id()) {
queue.extend(
tcx.explicit_super_predicates_of(trait_pred.def_id())
.iter_identity_copied()
.map(|(super_clause, span)| {
let mut spans = spans.clone();
spans.push(span);
(
super_clause.instantiate_supertrait(
tcx,
clause.kind().rebind(trait_pred.trait_ref),
),
spans,
)
}),
);
} else {
trait_preds.push((clause.kind().rebind(trait_pred), spans));
}
}
ty::ClauseKind::Projection(projection_pred) => {
let projection_pred = clause.kind().rebind(projection_pred);
if !seen_projection_preds.insert(tcx.anonymize_bound_vars(projection_pred)) {
continue;
}
projection_preds.push((projection_pred, *spans.last().unwrap()));
}
ty::ClauseKind::RegionOutlives(..)
| ty::ClauseKind::TypeOutlives(..)
| ty::ClauseKind::ConstArgHasType(_, _)
| ty::ClauseKind::WellFormed(_)
| ty::ClauseKind::ConstEvaluatable(_)
| ty::ClauseKind::UnstableFeature(_)
| ty::ClauseKind::HostEffect(..) => {}
}
}
(trait_preds, projection_preds)
}
///////////////////////////////////////////////////////////////////////////
// Other
///////////////////////////////////////////////////////////////////////////
/// Casts a trait reference into a reference to one of its super
/// traits; returns `None` if `target_trait_def_id` is not a
/// supertrait.
pub fn upcast_choices<'tcx>(
tcx: TyCtxt<'tcx>,
source_trait_ref: ty::PolyTraitRef<'tcx>,
target_trait_def_id: DefId,
) -> Vec<ty::PolyTraitRef<'tcx>> {
if source_trait_ref.def_id() == target_trait_def_id {
return vec![source_trait_ref]; // Shortcut the most common case.
}
supertraits(tcx, source_trait_ref).filter(|r| r.def_id() == target_trait_def_id).collect()
}
pub(crate) fn closure_trait_ref_and_return_type<'tcx>(
tcx: TyCtxt<'tcx>,
fn_trait_def_id: DefId,
self_ty: Ty<'tcx>,
sig: ty::PolyFnSig<'tcx>,
tuple_arguments: TupleArgumentsFlag,
) -> ty::Binder<'tcx, (ty::TraitRef<'tcx>, Ty<'tcx>)> {
assert!(!self_ty.has_escaping_bound_vars());
let arguments_tuple = match tuple_arguments {
TupleArgumentsFlag::No => sig.skip_binder().inputs()[0],
TupleArgumentsFlag::Yes => Ty::new_tup(tcx, sig.skip_binder().inputs()),
};
let trait_ref = ty::TraitRef::new(tcx, fn_trait_def_id, [self_ty, arguments_tuple]);
sig.map_bound(|sig| (trait_ref, sig.output()))
}
pub(crate) fn coroutine_trait_ref_and_outputs<'tcx>(
tcx: TyCtxt<'tcx>,
fn_trait_def_id: DefId,
self_ty: Ty<'tcx>,
sig: ty::GenSig<TyCtxt<'tcx>>,
) -> (ty::TraitRef<'tcx>, Ty<'tcx>, Ty<'tcx>) {
assert!(!self_ty.has_escaping_bound_vars());
let trait_ref = ty::TraitRef::new(tcx, fn_trait_def_id, [self_ty, sig.resume_ty]);
(trait_ref, sig.yield_ty, sig.return_ty)
}
pub(crate) fn future_trait_ref_and_outputs<'tcx>(
tcx: TyCtxt<'tcx>,
fn_trait_def_id: DefId,
self_ty: Ty<'tcx>,
sig: ty::GenSig<TyCtxt<'tcx>>,
) -> (ty::TraitRef<'tcx>, Ty<'tcx>) {
assert!(!self_ty.has_escaping_bound_vars());
let trait_ref = ty::TraitRef::new(tcx, fn_trait_def_id, [self_ty]);
(trait_ref, sig.return_ty)
}
pub(crate) fn iterator_trait_ref_and_outputs<'tcx>(
tcx: TyCtxt<'tcx>,
iterator_def_id: DefId,
self_ty: Ty<'tcx>,
sig: ty::GenSig<TyCtxt<'tcx>>,
) -> (ty::TraitRef<'tcx>, Ty<'tcx>) {
assert!(!self_ty.has_escaping_bound_vars());
let trait_ref = ty::TraitRef::new(tcx, iterator_def_id, [self_ty]);
(trait_ref, sig.yield_ty)
}
pub(crate) fn async_iterator_trait_ref_and_outputs<'tcx>(
tcx: TyCtxt<'tcx>,
async_iterator_def_id: DefId,
self_ty: Ty<'tcx>,
sig: ty::GenSig<TyCtxt<'tcx>>,
) -> (ty::TraitRef<'tcx>, Ty<'tcx>) {
assert!(!self_ty.has_escaping_bound_vars());
let trait_ref = ty::TraitRef::new(tcx, async_iterator_def_id, [self_ty]);
(trait_ref, sig.yield_ty)
}
pub fn impl_item_is_final(tcx: TyCtxt<'_>, assoc_item: &ty::AssocItem) -> bool {
assoc_item.defaultness(tcx).is_final()
&& tcx.defaultness(assoc_item.container_id(tcx)).is_final()
}
pub(crate) enum TupleArgumentsFlag {
Yes,
No,
}
/// Executes `f` on `value` after replacing all escaping bound variables with placeholders
/// and then replaces these placeholders with the original bound variables in the result.
///
/// In most places, bound variables should be replaced right when entering a binder, making
/// this function unnecessary. However, normalization currently does not do that, so we have
/// to do this lazily.
///
/// You should not add any additional uses of this function, at least not without first
/// discussing it with t-types.
///
/// FIXME(@lcnr): We may even consider experimenting with eagerly replacing bound vars during
/// normalization as well, at which point this function will be unnecessary and can be removed.
pub fn with_replaced_escaping_bound_vars<
'a,
'tcx,
T: TypeFoldable<TyCtxt<'tcx>>,
R: TypeFoldable<TyCtxt<'tcx>>,
>(
infcx: &'a InferCtxt<'tcx>,
universe_indices: &'a mut Vec<Option<ty::UniverseIndex>>,
value: T,
f: impl FnOnce(T) -> R,
) -> R {
if value.has_escaping_bound_vars() {
let (value, mapped_regions, mapped_types, mapped_consts) =
BoundVarReplacer::replace_bound_vars(infcx, universe_indices, value);
let result = f(value);
PlaceholderReplacer::replace_placeholders(
infcx,
mapped_regions,
mapped_types,
mapped_consts,
universe_indices,
result,
)
} else {
f(value)
}
}
/// The inverse of [`BoundVarReplacer`]: replaces placeholders with the bound vars from which they came.
pub struct PlaceholderReplacer<'a, 'tcx> {
infcx: &'a InferCtxt<'tcx>,
mapped_regions: FxIndexMap<ty::PlaceholderRegion, ty::BoundRegion>,
mapped_types: FxIndexMap<ty::PlaceholderType, ty::BoundTy>,
mapped_consts: FxIndexMap<ty::PlaceholderConst, ty::BoundConst>,
universe_indices: &'a [Option<ty::UniverseIndex>],
current_index: ty::DebruijnIndex,
}
impl<'a, 'tcx> PlaceholderReplacer<'a, 'tcx> {
pub fn replace_placeholders<T: TypeFoldable<TyCtxt<'tcx>>>(
infcx: &'a InferCtxt<'tcx>,
mapped_regions: FxIndexMap<ty::PlaceholderRegion, ty::BoundRegion>,
mapped_types: FxIndexMap<ty::PlaceholderType, ty::BoundTy>,
mapped_consts: FxIndexMap<ty::PlaceholderConst, ty::BoundConst>,
universe_indices: &'a [Option<ty::UniverseIndex>],
value: T,
) -> T {
let mut replacer = PlaceholderReplacer {
infcx,
mapped_regions,
mapped_types,
mapped_consts,
universe_indices,
current_index: ty::INNERMOST,
};
value.fold_with(&mut replacer)
}
}
impl<'tcx> TypeFolder<TyCtxt<'tcx>> for PlaceholderReplacer<'_, 'tcx> {
fn cx(&self) -> TyCtxt<'tcx> {
self.infcx.tcx
}
fn fold_binder<T: TypeFoldable<TyCtxt<'tcx>>>(
&mut self,
t: ty::Binder<'tcx, T>,
) -> ty::Binder<'tcx, T> {
if !t.has_placeholders() && !t.has_infer() {
return t;
}
self.current_index.shift_in(1);
let t = t.super_fold_with(self);
self.current_index.shift_out(1);
t
}
fn fold_region(&mut self, r0: ty::Region<'tcx>) -> ty::Region<'tcx> {
let r1 = match r0.kind() {
ty::ReVar(vid) => self
.infcx
.inner
.borrow_mut()
.unwrap_region_constraints()
.opportunistic_resolve_var(self.infcx.tcx, vid),
_ => r0,
};
let r2 = match r1.kind() {
ty::RePlaceholder(p) => {
let replace_var = self.mapped_regions.get(&p);
match replace_var {
Some(replace_var) => {
let index = self
.universe_indices
.iter()
.position(|u| matches!(u, Some(pu) if *pu == p.universe))
.unwrap_or_else(|| bug!("Unexpected placeholder universe."));
let db = ty::DebruijnIndex::from_usize(
self.universe_indices.len() - index + self.current_index.as_usize() - 1,
);
ty::Region::new_bound(self.cx(), db, *replace_var)
}
None => r1,
}
}
_ => r1,
};
debug!(?r0, ?r1, ?r2, "fold_region");
r2
}
fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> {
let ty = self.infcx.shallow_resolve(ty);
match *ty.kind() {
ty::Placeholder(p) => {
let replace_var = self.mapped_types.get(&p);
match replace_var {
Some(replace_var) => {
let index = self
.universe_indices
.iter()
.position(|u| matches!(u, Some(pu) if *pu == p.universe))
.unwrap_or_else(|| bug!("Unexpected placeholder universe."));
let db = ty::DebruijnIndex::from_usize(
self.universe_indices.len() - index + self.current_index.as_usize() - 1,
);
Ty::new_bound(self.infcx.tcx, db, *replace_var)
}
None => {
if ty.has_infer() {
ty.super_fold_with(self)
} else {
ty
}
}
}
}
_ if ty.has_placeholders() || ty.has_infer() => ty.super_fold_with(self),
_ => ty,
}
}
fn fold_const(&mut self, ct: ty::Const<'tcx>) -> ty::Const<'tcx> {
let ct = self.infcx.shallow_resolve_const(ct);
if let ty::ConstKind::Placeholder(p) = ct.kind() {
let replace_var = self.mapped_consts.get(&p);
match replace_var {
Some(replace_var) => {
let index = self
.universe_indices
.iter()
.position(|u| matches!(u, Some(pu) if *pu == p.universe))
.unwrap_or_else(|| bug!("Unexpected placeholder universe."));
let db = ty::DebruijnIndex::from_usize(
self.universe_indices.len() - index + self.current_index.as_usize() - 1,
);
ty::Const::new_bound(self.infcx.tcx, db, *replace_var)
}
None => {
if ct.has_infer() {
ct.super_fold_with(self)
} else {
ct
}
}
}
} else {
ct.super_fold_with(self)
}
}
}
pub fn sizedness_fast_path<'tcx>(
tcx: TyCtxt<'tcx>,
predicate: ty::Predicate<'tcx>,
param_env: ty::ParamEnv<'tcx>,
) -> bool {
// Proving `Sized`/`MetaSized`, very often on "obviously sized" types like
// `&T`, accounts for about 60% percentage of the predicates we have to prove. No need to
// canonicalize and all that for such cases.
if let ty::PredicateKind::Clause(ty::ClauseKind::Trait(trait_pred)) =
predicate.kind().skip_binder()
&& trait_pred.polarity == ty::PredicatePolarity::Positive
{
let sizedness = match tcx.as_lang_item(trait_pred.def_id()) {
Some(LangItem::Sized) => SizedTraitKind::Sized,
Some(LangItem::MetaSized) => SizedTraitKind::MetaSized,
_ => return false,
};
// FIXME(sized_hierarchy): this temporarily reverts the `sized_hierarchy` feature
// while a proper fix for `tests/ui/sized-hierarchy/incomplete-inference-issue-143992.rs`
// is pending a proper fix
if !tcx.features().sized_hierarchy() && matches!(sizedness, SizedTraitKind::MetaSized) {
return true;
}
if trait_pred.self_ty().has_trivial_sizedness(tcx, sizedness) {
debug!("fast path -- trivial sizedness");
return true;
}
if matches!(trait_pred.self_ty().kind(), ty::Param(_) | ty::Placeholder(_)) {
for clause in param_env.caller_bounds() {
if let ty::ClauseKind::Trait(clause_pred) = clause.kind().skip_binder()
&& clause_pred.polarity == ty::PredicatePolarity::Positive
&& clause_pred.self_ty() == trait_pred.self_ty()
&& (clause_pred.def_id() == trait_pred.def_id()
|| (sizedness == SizedTraitKind::MetaSized
&& tcx.is_lang_item(clause_pred.def_id(), LangItem::Sized)))
{
return true;
}
}
}
}
false
}
/// To improve performance, sizedness traits are not elaborated and so special-casing is required
/// in the trait solver to find a `Sized` candidate for a `MetaSized` obligation. Returns the
/// predicate to used in the candidate for such a `obligation`, given a `candidate`.
pub(crate) fn lazily_elaborate_sizedness_candidate<'tcx>(
infcx: &InferCtxt<'tcx>,
obligation: &PolyTraitObligation<'tcx>,
candidate: PolyTraitPredicate<'tcx>,
) -> PolyTraitPredicate<'tcx> {
if !infcx.tcx.is_lang_item(obligation.predicate.def_id(), LangItem::MetaSized)
|| !infcx.tcx.is_lang_item(candidate.def_id(), LangItem::Sized)
{
return candidate;
}
if obligation.predicate.polarity() != PredicatePolarity::Positive
|| candidate.polarity() != PredicatePolarity::Positive
{
return candidate;
}
let drcx = DeepRejectCtxt::relate_rigid_rigid(infcx.tcx);
if !drcx.args_may_unify(
obligation.predicate.skip_binder().trait_ref.args,
candidate.skip_binder().trait_ref.args,
) {
return candidate;
}
candidate.map_bound(|c| TraitPredicate {
trait_ref: TraitRef::new_from_args(
infcx.tcx,
obligation.predicate.def_id(),
c.trait_ref.args,
),
polarity: c.polarity,
})
}