blob: 62795c8a3a6867559ce576b705eea8e87c22a529 [file] [log] [blame]
//! Candidate assembly.
//!
//! The selection process begins by examining all in-scope impls,
//! caller obligations, and so forth and assembling a list of
//! candidates. See the [rustc dev guide] for more details.
//!
//! [rustc dev guide]:https://rustc-dev-guide.rust-lang.org/traits/resolution.html#candidate-assembly
use std::ops::ControlFlow;
use hir::LangItem;
use hir::def_id::DefId;
use rustc_data_structures::fx::{FxHashSet, FxIndexSet};
use rustc_hir::{self as hir, CoroutineDesugaring, CoroutineKind};
use rustc_infer::traits::{Obligation, PolyTraitObligation, SelectionError};
use rustc_middle::ty::fast_reject::DeepRejectCtxt;
use rustc_middle::ty::{self, SizedTraitKind, Ty, TypeVisitableExt, TypingMode, elaborate};
use rustc_middle::{bug, span_bug};
use tracing::{debug, instrument, trace};
use super::SelectionCandidate::*;
use super::{SelectionCandidateSet, SelectionContext, TraitObligationStack};
use crate::traits::util;
impl<'cx, 'tcx> SelectionContext<'cx, 'tcx> {
#[instrument(skip(self, stack), level = "debug")]
pub(super) fn assemble_candidates<'o>(
&mut self,
stack: &TraitObligationStack<'o, 'tcx>,
) -> Result<SelectionCandidateSet<'tcx>, SelectionError<'tcx>> {
let TraitObligationStack { obligation, .. } = *stack;
let obligation = &Obligation {
param_env: obligation.param_env,
cause: obligation.cause.clone(),
recursion_depth: obligation.recursion_depth,
predicate: self.infcx.resolve_vars_if_possible(obligation.predicate),
};
if obligation.predicate.skip_binder().self_ty().is_ty_var() {
debug!(ty = ?obligation.predicate.skip_binder().self_ty(), "ambiguous inference var or opaque type");
// Self is a type variable (e.g., `_: AsRef<str>`).
//
// This is somewhat problematic, as the current scheme can't really
// handle it turning to be a projection. This does end up as truly
// ambiguous in most cases anyway.
//
// Take the fast path out - this also improves
// performance by preventing assemble_candidates_from_impls from
// matching every impl for this trait.
return Ok(SelectionCandidateSet { vec: vec![], ambiguous: true });
}
let mut candidates = SelectionCandidateSet { vec: Vec::new(), ambiguous: false };
// Negative trait predicates have different rules than positive trait predicates.
if obligation.polarity() == ty::PredicatePolarity::Negative {
self.assemble_candidates_for_trait_alias(obligation, &mut candidates);
self.assemble_candidates_from_impls(obligation, &mut candidates);
self.assemble_candidates_from_caller_bounds(stack, &mut candidates)?;
} else {
self.assemble_candidates_for_trait_alias(obligation, &mut candidates);
// Other bounds. Consider both in-scope bounds from fn decl
// and applicable impls. There is a certain set of precedence rules here.
let def_id = obligation.predicate.def_id();
let tcx = self.tcx();
let lang_item = tcx.as_lang_item(def_id);
match lang_item {
Some(LangItem::Copy | LangItem::Clone) => {
debug!(obligation_self_ty = ?obligation.predicate.skip_binder().self_ty());
// User-defined copy impls are permitted, but only for
// structs and enums.
self.assemble_candidates_from_impls(obligation, &mut candidates);
// For other types, we'll use the builtin rules.
self.assemble_builtin_copy_clone_candidate(
obligation.predicate.self_ty().skip_binder(),
&mut candidates,
);
}
Some(LangItem::DiscriminantKind) => {
// `DiscriminantKind` is automatically implemented for every type.
candidates.vec.push(BuiltinCandidate);
}
Some(LangItem::PointeeTrait) => {
// `Pointee` is automatically implemented for every type.
candidates.vec.push(BuiltinCandidate);
}
Some(LangItem::Sized) => {
self.assemble_builtin_sized_candidate(
obligation.predicate.self_ty().skip_binder(),
&mut candidates,
SizedTraitKind::Sized,
);
}
Some(LangItem::MetaSized) => {
self.assemble_builtin_sized_candidate(
obligation.predicate.self_ty().skip_binder(),
&mut candidates,
SizedTraitKind::MetaSized,
);
}
Some(LangItem::PointeeSized) => {
bug!("`PointeeSized` is removed during lowering");
}
Some(LangItem::Unsize) => {
self.assemble_candidates_for_unsizing(obligation, &mut candidates);
}
Some(LangItem::Destruct) => {
self.assemble_const_destruct_candidates(obligation, &mut candidates);
}
Some(LangItem::TransmuteTrait) => {
// User-defined transmutability impls are permitted.
self.assemble_candidates_from_impls(obligation, &mut candidates);
self.assemble_candidates_for_transmutability(obligation, &mut candidates);
}
Some(LangItem::Tuple) => {
self.assemble_candidate_for_tuple(obligation, &mut candidates);
}
Some(LangItem::FnPtrTrait) => {
self.assemble_candidates_for_fn_ptr_trait(obligation, &mut candidates);
}
Some(LangItem::BikeshedGuaranteedNoDrop) => {
self.assemble_candidates_for_bikeshed_guaranteed_no_drop_trait(
obligation,
&mut candidates,
);
}
_ => {
// We re-match here for traits that can have both builtin impls and user written impls.
// After the builtin impls we need to also add user written impls, which we do not want to
// do in general because just checking if there are any is expensive.
match lang_item {
Some(LangItem::Coroutine) => {
self.assemble_coroutine_candidates(obligation, &mut candidates);
}
Some(LangItem::Future) => {
self.assemble_future_candidates(obligation, &mut candidates);
}
Some(LangItem::Iterator) => {
self.assemble_iterator_candidates(obligation, &mut candidates);
}
Some(LangItem::FusedIterator) => {
self.assemble_fused_iterator_candidates(obligation, &mut candidates);
}
Some(LangItem::AsyncIterator) => {
self.assemble_async_iterator_candidates(obligation, &mut candidates);
}
Some(LangItem::AsyncFnKindHelper) => {
self.assemble_async_fn_kind_helper_candidates(
obligation,
&mut candidates,
);
}
Some(LangItem::AsyncFn | LangItem::AsyncFnMut | LangItem::AsyncFnOnce) => {
self.assemble_async_closure_candidates(obligation, &mut candidates);
}
Some(LangItem::Fn | LangItem::FnMut | LangItem::FnOnce) => {
self.assemble_closure_candidates(obligation, &mut candidates);
self.assemble_fn_pointer_candidates(obligation, &mut candidates);
}
_ => {}
}
self.assemble_candidates_from_impls(obligation, &mut candidates);
self.assemble_candidates_from_object_ty(obligation, &mut candidates);
}
}
self.assemble_candidates_from_projected_tys(obligation, &mut candidates);
self.assemble_candidates_from_caller_bounds(stack, &mut candidates)?;
self.assemble_candidates_from_auto_impls(obligation, &mut candidates);
}
debug!("candidate list size: {}", candidates.vec.len());
Ok(candidates)
}
#[instrument(level = "debug", skip(self, candidates))]
fn assemble_candidates_from_projected_tys(
&mut self,
obligation: &PolyTraitObligation<'tcx>,
candidates: &mut SelectionCandidateSet<'tcx>,
) {
// Before we go into the whole placeholder thing, just
// quickly check if the self-type is a projection at all.
match obligation.predicate.skip_binder().trait_ref.self_ty().kind() {
// Excluding IATs and type aliases here as they don't have meaningful item bounds.
ty::Alias(ty::Projection | ty::Opaque, _) => {}
ty::Infer(ty::TyVar(_)) => {
span_bug!(
obligation.cause.span,
"Self=_ should have been handled by assemble_candidates"
);
}
_ => return,
}
self.infcx.probe(|_| {
let poly_trait_predicate = self.infcx.resolve_vars_if_possible(obligation.predicate);
let placeholder_trait_predicate =
self.infcx.enter_forall_and_leak_universe(poly_trait_predicate);
// The bounds returned by `item_bounds` may contain duplicates after
// normalization, so try to deduplicate when possible to avoid
// unnecessary ambiguity.
let mut distinct_normalized_bounds = FxHashSet::default();
let _ = self.for_each_item_bound::<!>(
placeholder_trait_predicate.self_ty(),
|selcx, bound, idx| {
let Some(bound) = bound.as_trait_clause() else {
return ControlFlow::Continue(());
};
if bound.polarity() != placeholder_trait_predicate.polarity {
return ControlFlow::Continue(());
}
selcx.infcx.probe(|_| {
let bound = util::lazily_elaborate_sizedness_candidate(
selcx.infcx,
obligation,
bound,
);
// We checked the polarity already
match selcx.match_normalize_trait_ref(
obligation,
placeholder_trait_predicate.trait_ref,
bound.map_bound(|pred| pred.trait_ref),
) {
Ok(None) => {
candidates.vec.push(ProjectionCandidate(idx));
}
Ok(Some(normalized_trait))
if distinct_normalized_bounds.insert(normalized_trait) =>
{
candidates.vec.push(ProjectionCandidate(idx));
}
_ => {}
}
});
ControlFlow::Continue(())
},
// On ambiguity.
|| candidates.ambiguous = true,
);
});
}
/// Given an obligation like `<SomeTrait for T>`, searches the obligations that the caller
/// supplied to find out whether it is listed among them.
///
/// Never affects the inference environment.
#[instrument(level = "debug", skip(self, stack, candidates))]
fn assemble_candidates_from_caller_bounds<'o>(
&mut self,
stack: &TraitObligationStack<'o, 'tcx>,
candidates: &mut SelectionCandidateSet<'tcx>,
) -> Result<(), SelectionError<'tcx>> {
debug!(?stack.obligation);
let bounds = stack
.obligation
.param_env
.caller_bounds()
.iter()
.filter_map(|p| p.as_trait_clause())
// Micro-optimization: filter out predicates with different polarities.
.filter(|p| p.polarity() == stack.obligation.predicate.polarity());
let drcx = DeepRejectCtxt::relate_rigid_rigid(self.tcx());
let obligation_args = stack.obligation.predicate.skip_binder().trait_ref.args;
// Keep only those bounds which may apply, and propagate overflow if it occurs.
for bound in bounds {
let bound =
util::lazily_elaborate_sizedness_candidate(self.infcx, stack.obligation, bound);
// Micro-optimization: filter out predicates relating to different traits.
if bound.def_id() != stack.obligation.predicate.def_id() {
continue;
}
let bound_trait_ref = bound.map_bound(|t| t.trait_ref);
if !drcx.args_may_unify(obligation_args, bound_trait_ref.skip_binder().args) {
continue;
}
let wc = self.where_clause_may_apply(stack, bound_trait_ref)?;
if wc.may_apply() {
candidates.vec.push(ParamCandidate(bound));
}
}
Ok(())
}
fn assemble_coroutine_candidates(
&mut self,
obligation: &PolyTraitObligation<'tcx>,
candidates: &mut SelectionCandidateSet<'tcx>,
) {
// Okay to skip binder because the args on coroutine types never
// touch bound regions, they just capture the in-scope
// type/region parameters.
let self_ty = obligation.self_ty().skip_binder();
match self_ty.kind() {
// `async`/`gen` constructs get lowered to a special kind of coroutine that
// should *not* `impl Coroutine`.
ty::Coroutine(did, ..) if self.tcx().is_general_coroutine(*did) => {
debug!(?self_ty, ?obligation, "assemble_coroutine_candidates",);
candidates.vec.push(CoroutineCandidate);
}
ty::Infer(ty::TyVar(_)) => {
debug!("assemble_coroutine_candidates: ambiguous self-type");
candidates.ambiguous = true;
}
_ => {}
}
}
fn assemble_future_candidates(
&mut self,
obligation: &PolyTraitObligation<'tcx>,
candidates: &mut SelectionCandidateSet<'tcx>,
) {
let self_ty = obligation.self_ty().skip_binder();
if let ty::Coroutine(did, ..) = self_ty.kind() {
// async constructs get lowered to a special kind of coroutine that
// should directly `impl Future`.
if self.tcx().coroutine_is_async(*did) {
debug!(?self_ty, ?obligation, "assemble_future_candidates",);
candidates.vec.push(FutureCandidate);
}
}
}
fn assemble_iterator_candidates(
&mut self,
obligation: &PolyTraitObligation<'tcx>,
candidates: &mut SelectionCandidateSet<'tcx>,
) {
let self_ty = obligation.self_ty().skip_binder();
// gen constructs get lowered to a special kind of coroutine that
// should directly `impl Iterator`.
if let ty::Coroutine(did, ..) = self_ty.kind()
&& self.tcx().coroutine_is_gen(*did)
{
debug!(?self_ty, ?obligation, "assemble_iterator_candidates",);
candidates.vec.push(IteratorCandidate);
}
}
fn assemble_fused_iterator_candidates(
&mut self,
obligation: &PolyTraitObligation<'tcx>,
candidates: &mut SelectionCandidateSet<'tcx>,
) {
if self.coroutine_is_gen(obligation.self_ty().skip_binder()) {
candidates.vec.push(BuiltinCandidate);
}
}
fn assemble_async_iterator_candidates(
&mut self,
obligation: &PolyTraitObligation<'tcx>,
candidates: &mut SelectionCandidateSet<'tcx>,
) {
let self_ty = obligation.self_ty().skip_binder();
if let ty::Coroutine(did, args) = *self_ty.kind() {
// gen constructs get lowered to a special kind of coroutine that
// should directly `impl AsyncIterator`.
if self.tcx().coroutine_is_async_gen(did) {
debug!(?self_ty, ?obligation, "assemble_iterator_candidates",);
// Can only confirm this candidate if we have constrained
// the `Yield` type to at least `Poll<Option<?0>>`..
let ty::Adt(_poll_def, args) = *args.as_coroutine().yield_ty().kind() else {
candidates.ambiguous = true;
return;
};
let ty::Adt(_option_def, _) = *args.type_at(0).kind() else {
candidates.ambiguous = true;
return;
};
candidates.vec.push(AsyncIteratorCandidate);
}
}
}
/// Checks for the artificial impl that the compiler will create for an obligation like `X :
/// FnMut<..>` where `X` is a closure type.
///
/// Note: the type parameters on a closure candidate are modeled as *output* type
/// parameters and hence do not affect whether this trait is a match or not. They will be
/// unified during the confirmation step.
fn assemble_closure_candidates(
&mut self,
obligation: &PolyTraitObligation<'tcx>,
candidates: &mut SelectionCandidateSet<'tcx>,
) {
let kind = self.tcx().fn_trait_kind_from_def_id(obligation.predicate.def_id()).unwrap();
// Okay to skip binder because the args on closure types never
// touch bound regions, they just capture the in-scope
// type/region parameters
let self_ty = obligation.self_ty().skip_binder();
match *self_ty.kind() {
ty::Closure(def_id, _) => {
let is_const = self.tcx().is_const_fn(def_id);
debug!(?kind, ?obligation, "assemble_unboxed_candidates");
match self.infcx.closure_kind(self_ty) {
Some(closure_kind) => {
debug!(?closure_kind, "assemble_unboxed_candidates");
if closure_kind.extends(kind) {
candidates.vec.push(ClosureCandidate { is_const });
}
}
None => {
if kind == ty::ClosureKind::FnOnce {
candidates.vec.push(ClosureCandidate { is_const });
} else {
candidates.ambiguous = true;
}
}
}
}
ty::CoroutineClosure(def_id, args) => {
let args = args.as_coroutine_closure();
let is_const = self.tcx().is_const_fn(def_id);
if let Some(closure_kind) = self.infcx.closure_kind(self_ty)
// Ambiguity if upvars haven't been constrained yet
&& !args.tupled_upvars_ty().is_ty_var()
{
// A coroutine-closure implements `FnOnce` *always*, since it may
// always be called once. It additionally implements `Fn`/`FnMut`
// only if it has no upvars referencing the closure-env lifetime,
// and if the closure kind permits it.
if closure_kind.extends(kind) && !args.has_self_borrows() {
candidates.vec.push(ClosureCandidate { is_const });
} else if kind == ty::ClosureKind::FnOnce {
candidates.vec.push(ClosureCandidate { is_const });
}
} else if kind == ty::ClosureKind::FnOnce {
candidates.vec.push(ClosureCandidate { is_const });
} else {
// This stays ambiguous until kind+upvars are determined.
candidates.ambiguous = true;
}
}
ty::Infer(ty::TyVar(_)) => {
debug!("assemble_unboxed_closure_candidates: ambiguous self-type");
candidates.ambiguous = true;
}
_ => {}
}
}
#[instrument(level = "debug", skip(self, candidates))]
fn assemble_async_closure_candidates(
&mut self,
obligation: &PolyTraitObligation<'tcx>,
candidates: &mut SelectionCandidateSet<'tcx>,
) {
let goal_kind =
self.tcx().async_fn_trait_kind_from_def_id(obligation.predicate.def_id()).unwrap();
debug!("self_ty = {:?}", obligation.self_ty().skip_binder().kind());
match *obligation.self_ty().skip_binder().kind() {
ty::CoroutineClosure(def_id, args) => {
if let Some(closure_kind) =
args.as_coroutine_closure().kind_ty().to_opt_closure_kind()
&& !closure_kind.extends(goal_kind)
{
return;
}
// Make sure this is actually an async closure.
let Some(coroutine_kind) =
self.tcx().coroutine_kind(self.tcx().coroutine_for_closure(def_id))
else {
bug!("coroutine with no kind");
};
debug!(?coroutine_kind);
match coroutine_kind {
CoroutineKind::Desugared(CoroutineDesugaring::Async, _) => {
candidates.vec.push(AsyncClosureCandidate);
}
_ => (),
}
}
// Closures and fn pointers implement `AsyncFn*` if their return types
// implement `Future`, which is checked later.
ty::Closure(_, args) => {
if let Some(closure_kind) = args.as_closure().kind_ty().to_opt_closure_kind()
&& !closure_kind.extends(goal_kind)
{
return;
}
candidates.vec.push(AsyncClosureCandidate);
}
// Provide an impl, but only for suitable `fn` pointers.
ty::FnPtr(sig_tys, hdr) => {
if sig_tys.with(hdr).is_fn_trait_compatible() {
candidates.vec.push(AsyncClosureCandidate);
}
}
// Provide an impl for suitable functions, rejecting `#[target_feature]` functions (RFC 2396).
ty::FnDef(def_id, _) => {
let tcx = self.tcx();
if tcx.fn_sig(def_id).skip_binder().is_fn_trait_compatible()
&& tcx.codegen_fn_attrs(def_id).target_features.is_empty()
{
candidates.vec.push(AsyncClosureCandidate);
}
}
_ => {}
}
}
fn assemble_async_fn_kind_helper_candidates(
&mut self,
obligation: &PolyTraitObligation<'tcx>,
candidates: &mut SelectionCandidateSet<'tcx>,
) {
let self_ty = obligation.self_ty().skip_binder();
let target_kind_ty = obligation.predicate.skip_binder().trait_ref.args.type_at(1);
// `to_opt_closure_kind` is kind of ICEy when it sees non-int types.
if !(self_ty.is_integral() || self_ty.is_ty_var()) {
return;
}
if !(target_kind_ty.is_integral() || self_ty.is_ty_var()) {
return;
}
// Check that the self kind extends the goal kind. If it does,
// then there's nothing else to check.
if let Some(closure_kind) = self_ty.to_opt_closure_kind()
&& let Some(goal_kind) = target_kind_ty.to_opt_closure_kind()
&& closure_kind.extends(goal_kind)
{
candidates.vec.push(AsyncFnKindHelperCandidate);
}
}
/// Implements one of the `Fn()` family for a fn pointer.
fn assemble_fn_pointer_candidates(
&mut self,
obligation: &PolyTraitObligation<'tcx>,
candidates: &mut SelectionCandidateSet<'tcx>,
) {
// Keep this function in sync with extract_tupled_inputs_and_output_from_callable
// until the old solver (and thus this function) is removed.
// Okay to skip binder because what we are inspecting doesn't involve bound regions.
let self_ty = obligation.self_ty().skip_binder();
match *self_ty.kind() {
ty::Infer(ty::TyVar(_)) => {
debug!("assemble_fn_pointer_candidates: ambiguous self-type");
candidates.ambiguous = true; // Could wind up being a fn() type.
}
// Provide an impl, but only for suitable `fn` pointers.
ty::FnPtr(sig_tys, hdr) => {
if sig_tys.with(hdr).is_fn_trait_compatible() {
candidates.vec.push(FnPointerCandidate);
}
}
// Provide an impl for suitable functions, rejecting `#[target_feature]` functions (RFC 2396).
ty::FnDef(def_id, _) => {
let tcx = self.tcx();
if tcx.fn_sig(def_id).skip_binder().is_fn_trait_compatible()
&& tcx.codegen_fn_attrs(def_id).target_features.is_empty()
{
candidates.vec.push(FnPointerCandidate);
}
}
_ => {}
}
}
/// Searches for impls that might apply to `obligation`.
#[instrument(level = "debug", skip(self, candidates))]
fn assemble_candidates_from_impls(
&mut self,
obligation: &PolyTraitObligation<'tcx>,
candidates: &mut SelectionCandidateSet<'tcx>,
) {
let drcx = DeepRejectCtxt::relate_rigid_infer(self.tcx());
let obligation_args = obligation.predicate.skip_binder().trait_ref.args;
self.tcx().for_each_relevant_impl(
obligation.predicate.def_id(),
obligation.predicate.skip_binder().trait_ref.self_ty(),
|impl_def_id| {
// Before we create the generic parameters and everything, first
// consider a "quick reject". This avoids creating more types
// and so forth that we need to.
let impl_trait_header = self.tcx().impl_trait_header(impl_def_id).unwrap();
if !drcx
.args_may_unify(obligation_args, impl_trait_header.trait_ref.skip_binder().args)
{
return;
}
// For every `default impl`, there's always a non-default `impl`
// that will *also* apply. There's no reason to register a candidate
// for this impl, since it is *not* proof that the trait goal holds.
if self.tcx().defaultness(impl_def_id).is_default() {
return;
}
if self.reject_fn_ptr_impls(
impl_def_id,
obligation,
impl_trait_header.trait_ref.skip_binder().self_ty(),
) {
return;
}
self.infcx.probe(|_| {
if let Ok(_args) = self.match_impl(impl_def_id, impl_trait_header, obligation) {
candidates.vec.push(ImplCandidate(impl_def_id));
}
});
},
);
}
/// The various `impl<T: FnPtr> Trait for T` in libcore are more like builtin impls for all function items
/// and function pointers and less like blanket impls. Rejecting them when they can't possibly apply (because
/// the obligation's self-type does not implement `FnPtr`) avoids reporting that the self type does not implement
/// `FnPtr`, when we wanted to report that it doesn't implement `Trait`.
#[instrument(level = "trace", skip(self), ret)]
fn reject_fn_ptr_impls(
&mut self,
impl_def_id: DefId,
obligation: &PolyTraitObligation<'tcx>,
impl_self_ty: Ty<'tcx>,
) -> bool {
// Let `impl<T: FnPtr> Trait for Vec<T>` go through the normal rejection path.
if !matches!(impl_self_ty.kind(), ty::Param(..)) {
return false;
}
let Some(fn_ptr_trait) = self.tcx().lang_items().fn_ptr_trait() else {
return false;
};
for &(predicate, _) in self.tcx().predicates_of(impl_def_id).predicates {
let ty::ClauseKind::Trait(pred) = predicate.kind().skip_binder() else { continue };
if fn_ptr_trait != pred.trait_ref.def_id {
continue;
}
trace!(?pred);
// Not the bound we're looking for
if pred.self_ty() != impl_self_ty {
continue;
}
let self_ty = obligation.self_ty().skip_binder();
match self_ty.kind() {
// Fast path to avoid evaluating an obligation that trivially holds.
// There may be more bounds, but these are checked by the regular path.
ty::FnPtr(..) => return false,
// These may potentially implement `FnPtr`
ty::Placeholder(..)
| ty::Dynamic(_, _, _)
| ty::Alias(_, _)
| ty::Infer(_)
| ty::Param(..)
| ty::Bound(_, _) => {}
// These can't possibly implement `FnPtr` as they are concrete types
// and not `FnPtr`
ty::Bool
| ty::Char
| ty::Int(_)
| ty::Uint(_)
| ty::Float(_)
| ty::Adt(_, _)
| ty::Foreign(_)
| ty::Str
| ty::Array(_, _)
| ty::Pat(_, _)
| ty::Slice(_)
| ty::RawPtr(_, _)
| ty::Ref(_, _, _)
| ty::Closure(..)
| ty::CoroutineClosure(..)
| ty::Coroutine(_, _)
| ty::CoroutineWitness(..)
| ty::UnsafeBinder(_)
| ty::Never
| ty::Tuple(_)
| ty::Error(_) => return true,
// FIXME: Function definitions could actually implement `FnPtr` by
// casting the ZST function def to a function pointer.
ty::FnDef(_, _) => return true,
}
// Generic params can implement `FnPtr` if the predicate
// holds within its own environment.
let obligation = Obligation::new(
self.tcx(),
obligation.cause.clone(),
obligation.param_env,
self.tcx().mk_predicate(obligation.predicate.map_bound(|mut pred| {
pred.trait_ref =
ty::TraitRef::new(self.tcx(), fn_ptr_trait, [pred.trait_ref.self_ty()]);
ty::PredicateKind::Clause(ty::ClauseKind::Trait(pred))
})),
);
if let Ok(r) = self.evaluate_root_obligation(&obligation) {
if !r.may_apply() {
return true;
}
}
}
false
}
fn assemble_candidates_from_auto_impls(
&mut self,
obligation: &PolyTraitObligation<'tcx>,
candidates: &mut SelectionCandidateSet<'tcx>,
) {
// Okay to skip binder here because the tests we do below do not involve bound regions.
let self_ty = obligation.self_ty().skip_binder();
debug!(?self_ty, "assemble_candidates_from_auto_impls");
let def_id = obligation.predicate.def_id();
let mut check_impls = || {
// Only consider auto impls if there are no manual impls for the root of `self_ty`.
//
// For example, we only consider auto candidates for `&i32: Auto` if no explicit impl
// for `&SomeType: Auto` exists. Due to E0321 the only crate where impls
// for `&SomeType: Auto` can be defined is the crate where `Auto` has been defined.
//
// Generally, we have to guarantee that for all `SimplifiedType`s the only crate
// which may define impls for that type is either the crate defining the type
// or the trait. This should be guaranteed by the orphan check.
let mut has_impl = false;
self.tcx().for_each_relevant_impl(def_id, self_ty, |_| has_impl = true);
if !has_impl {
candidates.vec.push(AutoImplCandidate)
}
};
if self.tcx().trait_is_auto(def_id) {
match *self_ty.kind() {
ty::Dynamic(..) => {
// For object types, we don't know what the closed
// over types are. This means we conservatively
// say nothing; a candidate may be added by
// `assemble_candidates_from_object_ty`.
}
ty::Foreign(..) => {
// Since the contents of foreign types is unknown,
// we don't add any `..` impl. Default traits could
// still be provided by a manual implementation for
// this trait and type.
// Backward compatibility for default auto traits.
// Test: ui/traits/default_auto_traits/extern-types.rs
if self.tcx().is_default_trait(def_id) {
check_impls()
}
}
ty::Param(..)
| ty::Alias(ty::Projection | ty::Inherent | ty::Free, ..)
| ty::Placeholder(..)
| ty::Bound(..) => {
// In these cases, we don't know what the actual
// type is. Therefore, we cannot break it down
// into its constituent types. So we don't
// consider the `..` impl but instead just add no
// candidates: this means that typeck will only
// succeed if there is another reason to believe
// that this obligation holds. That could be a
// where-clause or, in the case of an object type,
// it could be that the object type lists the
// trait (e.g., `Foo+Send : Send`). See
// `ui/typeck/typeck-default-trait-impl-send-param.rs`
// for an example of a test case that exercises
// this path.
}
ty::Infer(ty::TyVar(_) | ty::IntVar(_) | ty::FloatVar(_)) => {
// The auto impl might apply; we don't know.
candidates.ambiguous = true;
}
ty::Coroutine(coroutine_def_id, _) => {
if self.tcx().is_lang_item(def_id, LangItem::Unpin) {
match self.tcx().coroutine_movability(coroutine_def_id) {
hir::Movability::Static => {
// Immovable coroutines are never `Unpin`, so
// suppress the normal auto-impl candidate for it.
}
hir::Movability::Movable => {
// Movable coroutines are always `Unpin`, so add an
// unconditional builtin candidate with no sub-obligations.
candidates.vec.push(BuiltinCandidate);
}
}
} else {
if self.should_stall_coroutine(coroutine_def_id) {
candidates.ambiguous = true;
} else {
// Coroutines implement all other auto traits normally.
candidates.vec.push(AutoImplCandidate);
}
}
}
ty::Infer(ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) => {
bug!(
"asked to assemble auto trait candidates of unexpected type: {:?}",
self_ty
);
}
ty::Alias(ty::Opaque, alias) => {
if candidates.vec.iter().any(|c| matches!(c, ProjectionCandidate(_))) {
// We do not generate an auto impl candidate for `impl Trait`s which already
// reference our auto trait.
//
// For example during candidate assembly for `impl Send: Send`, we don't have
// to look at the constituent types for this opaque types to figure out that this
// trivially holds.
//
// Note that this is only sound as projection candidates of opaque types
// are always applicable for auto traits.
} else if let TypingMode::Coherence = self.infcx.typing_mode() {
// We do not emit auto trait candidates for opaque types in coherence.
// Doing so can result in weird dependency cycles.
candidates.ambiguous = true;
} else if self.infcx.can_define_opaque_ty(alias.def_id) {
// We do not emit auto trait candidates for opaque types in their defining scope, as
// we need to know the hidden type first, which we can't reliably know within the defining
// scope.
candidates.ambiguous = true;
} else {
candidates.vec.push(AutoImplCandidate)
}
}
ty::CoroutineWitness(..) => {
candidates.vec.push(AutoImplCandidate);
}
ty::Bool
| ty::Char
| ty::Int(_)
| ty::Uint(_)
| ty::Float(_)
| ty::Str
| ty::Array(_, _)
| ty::Pat(_, _)
| ty::Slice(_)
| ty::Adt(..)
| ty::RawPtr(_, _)
| ty::Ref(..)
| ty::FnDef(..)
| ty::FnPtr(..)
| ty::Closure(..)
| ty::CoroutineClosure(..)
| ty::Never
| ty::Tuple(_)
| ty::UnsafeBinder(_) => {
// Only consider auto impls of unsafe traits when there are
// no unsafe fields.
if self.tcx().trait_def(def_id).safety.is_unsafe()
&& self_ty.has_unsafe_fields()
{
return;
}
check_impls();
}
ty::Error(_) => {
candidates.vec.push(AutoImplCandidate);
}
}
}
}
/// Searches for impls that might apply to `obligation`.
fn assemble_candidates_from_object_ty(
&mut self,
obligation: &PolyTraitObligation<'tcx>,
candidates: &mut SelectionCandidateSet<'tcx>,
) {
debug!(
self_ty = ?obligation.self_ty().skip_binder(),
"assemble_candidates_from_object_ty",
);
if !self.tcx().trait_def(obligation.predicate.def_id()).implement_via_object {
return;
}
self.infcx.probe(|_snapshot| {
let poly_trait_predicate = self.infcx.resolve_vars_if_possible(obligation.predicate);
self.infcx.enter_forall(poly_trait_predicate, |placeholder_trait_predicate| {
let self_ty = placeholder_trait_predicate.self_ty();
let principal_trait_ref = match self_ty.kind() {
ty::Dynamic(data, ..) => {
if data.auto_traits().any(|did| did == obligation.predicate.def_id()) {
debug!(
"assemble_candidates_from_object_ty: matched builtin bound, \
pushing candidate"
);
candidates.vec.push(BuiltinObjectCandidate);
return;
}
if let Some(principal) = data.principal() {
principal.with_self_ty(self.tcx(), self_ty)
} else {
// Only auto trait bounds exist.
return;
}
}
ty::Infer(ty::TyVar(_)) => {
debug!("assemble_candidates_from_object_ty: ambiguous");
candidates.ambiguous = true; // could wind up being an object type
return;
}
_ => return,
};
debug!(?principal_trait_ref, "assemble_candidates_from_object_ty");
// Count only those upcast versions that match the trait-ref
// we are looking for. Specifically, do not only check for the
// correct trait, but also the correct type parameters.
// For example, we may be trying to upcast `Foo` to `Bar<i32>`,
// but `Foo` is declared as `trait Foo: Bar<u32>`.
let candidate_supertraits = util::supertraits(self.tcx(), principal_trait_ref)
.enumerate()
.filter(|&(_, upcast_trait_ref)| {
self.infcx.probe(|_| {
self.match_normalize_trait_ref(
obligation,
placeholder_trait_predicate.trait_ref,
upcast_trait_ref,
)
.is_ok()
})
})
.map(|(idx, _)| ObjectCandidate(idx));
candidates.vec.extend(candidate_supertraits);
})
})
}
/// Searches for unsizing that might apply to `obligation`.
fn assemble_candidates_for_unsizing(
&mut self,
obligation: &PolyTraitObligation<'tcx>,
candidates: &mut SelectionCandidateSet<'tcx>,
) {
// We currently never consider higher-ranked obligations e.g.
// `for<'a> &'a T: Unsize<Trait+'a>` to be implemented. This is not
// because they are a priori invalid, and we could potentially add support
// for them later, it's just that there isn't really a strong need for it.
// A `T: Unsize<U>` obligation is always used as part of a `T: CoerceUnsize<U>`
// impl, and those are generally applied to concrete types.
//
// That said, one might try to write a fn with a where clause like
// for<'a> Foo<'a, T>: Unsize<Foo<'a, Trait>>
// where the `'a` is kind of orthogonal to the relevant part of the `Unsize`.
// Still, you'd be more likely to write that where clause as
// T: Trait
// so it seems ok if we (conservatively) fail to accept that `Unsize`
// obligation above. Should be possible to extend this in the future.
let Some(trait_pred) = obligation.predicate.no_bound_vars() else {
// Don't add any candidates if there are bound regions.
return;
};
let source = trait_pred.self_ty();
let target = trait_pred.trait_ref.args.type_at(1);
debug!(?source, ?target, "assemble_candidates_for_unsizing");
match (source.kind(), target.kind()) {
// Trait+Kx+'a -> Trait+Ky+'b (upcasts).
(&ty::Dynamic(a_data, a_region, ty::Dyn), &ty::Dynamic(b_data, b_region, ty::Dyn)) => {
// Upcast coercions permit several things:
//
// 1. Dropping auto traits, e.g., `Foo + Send` to `Foo`
// 2. Tightening the region bound, e.g., `Foo + 'a` to `Foo + 'b` if `'a: 'b`
// 3. Tightening trait to its super traits, eg. `Foo` to `Bar` if `Foo: Bar`
//
// Note that neither of the first two of these changes requires any
// change at runtime. The third needs to change pointer metadata at runtime.
//
// We always perform upcasting coercions when we can because of reason
// #2 (region bounds).
let principal_def_id_a = a_data.principal_def_id();
let principal_def_id_b = b_data.principal_def_id();
if principal_def_id_a == principal_def_id_b || principal_def_id_b.is_none() {
// We may upcast to auto traits that are either explicitly listed in
// the object type's bounds, or implied by the principal trait ref's
// supertraits.
let a_auto_traits: FxIndexSet<DefId> = a_data
.auto_traits()
.chain(principal_def_id_a.into_iter().flat_map(|principal_def_id| {
elaborate::supertrait_def_ids(self.tcx(), principal_def_id)
.filter(|def_id| self.tcx().trait_is_auto(*def_id))
}))
.collect();
let auto_traits_compatible = b_data
.auto_traits()
// All of a's auto traits need to be in b's auto traits.
.all(|b| a_auto_traits.contains(&b));
if auto_traits_compatible {
candidates.vec.push(BuiltinUnsizeCandidate);
}
} else if principal_def_id_a.is_some() && principal_def_id_b.is_some() {
// not casual unsizing, now check whether this is trait upcasting coercion.
let principal_a = a_data.principal().unwrap();
let target_trait_did = principal_def_id_b.unwrap();
let source_trait_ref = principal_a.with_self_ty(self.tcx(), source);
for (idx, upcast_trait_ref) in
util::supertraits(self.tcx(), source_trait_ref).enumerate()
{
self.infcx.probe(|_| {
if upcast_trait_ref.def_id() == target_trait_did
&& let Ok(nested) = self.match_upcast_principal(
obligation,
upcast_trait_ref,
a_data,
b_data,
a_region,
b_region,
)
{
if nested.is_none() {
candidates.ambiguous = true;
}
candidates.vec.push(TraitUpcastingUnsizeCandidate(idx));
}
})
}
}
}
// `T` -> `Trait`
(_, &ty::Dynamic(_, _, ty::Dyn)) => {
candidates.vec.push(BuiltinUnsizeCandidate);
}
// Ambiguous handling is below `T` -> `Trait`, because inference
// variables can still implement `Unsize<Trait>` and nested
// obligations will have the final say (likely deferred).
(&ty::Infer(ty::TyVar(_)), _) | (_, &ty::Infer(ty::TyVar(_))) => {
debug!("assemble_candidates_for_unsizing: ambiguous");
candidates.ambiguous = true;
}
// `[T; n]` -> `[T]`
(&ty::Array(..), &ty::Slice(_)) => {
candidates.vec.push(BuiltinUnsizeCandidate);
}
// `Struct<T>` -> `Struct<U>`
(&ty::Adt(def_id_a, _), &ty::Adt(def_id_b, _)) if def_id_a.is_struct() => {
if def_id_a == def_id_b {
candidates.vec.push(BuiltinUnsizeCandidate);
}
}
_ => {}
};
}
#[instrument(level = "debug", skip(self, obligation, candidates))]
fn assemble_candidates_for_transmutability(
&mut self,
obligation: &PolyTraitObligation<'tcx>,
candidates: &mut SelectionCandidateSet<'tcx>,
) {
if obligation.predicate.has_non_region_param() {
return;
}
if obligation.has_non_region_infer() {
candidates.ambiguous = true;
return;
}
candidates.vec.push(TransmutabilityCandidate);
}
#[instrument(level = "debug", skip(self, obligation, candidates))]
fn assemble_candidates_for_trait_alias(
&mut self,
obligation: &PolyTraitObligation<'tcx>,
candidates: &mut SelectionCandidateSet<'tcx>,
) {
// Okay to skip binder here because the tests we do below do not involve bound regions.
let self_ty = obligation.self_ty().skip_binder();
debug!(?self_ty);
let def_id = obligation.predicate.def_id();
if self.tcx().is_trait_alias(def_id) {
candidates.vec.push(TraitAliasCandidate);
}
}
/// Assembles `Copy` and `Clone` candidates for built-in types with no libcore-defined
/// `Copy` or `Clone` impls.
#[instrument(level = "debug", skip(self, candidates))]
fn assemble_builtin_copy_clone_candidate(
&mut self,
self_ty: Ty<'tcx>,
candidates: &mut SelectionCandidateSet<'tcx>,
) {
match *self_ty.kind() {
// These impls are built-in because we cannot express sufficiently
// generic impls in libcore.
ty::FnDef(..) | ty::FnPtr(..) | ty::Error(_) | ty::Tuple(..) | ty::Pat(..) => {
candidates.vec.push(BuiltinCandidate);
}
// Implementations provided in libcore.
ty::Uint(_)
| ty::Int(_)
| ty::Infer(ty::IntVar(_) | ty::FloatVar(_))
| ty::Bool
| ty::Float(_)
| ty::Char
| ty::RawPtr(..)
| ty::Never
| ty::Ref(_, _, hir::Mutability::Not)
| ty::Array(..) => {}
// FIXME(unsafe_binder): Should we conditionally
// (i.e. universally) implement copy/clone?
ty::UnsafeBinder(_) => {}
// Not `Sized`, which is a supertrait of `Copy`/`Clone`.
ty::Dynamic(..) | ty::Str | ty::Slice(..) | ty::Foreign(..) => {}
// Not `Copy` or `Clone` by design.
ty::Ref(_, _, hir::Mutability::Mut) => {}
ty::Coroutine(coroutine_def_id, args) => {
if self.should_stall_coroutine(coroutine_def_id) {
candidates.ambiguous = true;
return;
}
match self.tcx().coroutine_movability(coroutine_def_id) {
hir::Movability::Static => {}
hir::Movability::Movable => {
if self.tcx().features().coroutine_clone() {
let resolved_upvars =
self.infcx.shallow_resolve(args.as_coroutine().tupled_upvars_ty());
if resolved_upvars.is_ty_var() {
// Not yet resolved.
candidates.ambiguous = true;
} else {
candidates.vec.push(BuiltinCandidate);
}
}
}
}
}
ty::Closure(_, args) => {
let resolved_upvars =
self.infcx.shallow_resolve(args.as_closure().tupled_upvars_ty());
if resolved_upvars.is_ty_var() {
// Not yet resolved.
candidates.ambiguous = true;
} else {
candidates.vec.push(BuiltinCandidate);
}
}
ty::CoroutineClosure(_, args) => {
let resolved_upvars =
self.infcx.shallow_resolve(args.as_coroutine_closure().tupled_upvars_ty());
if resolved_upvars.is_ty_var() {
// Not yet resolved.
candidates.ambiguous = true;
} else {
candidates.vec.push(BuiltinCandidate);
}
}
ty::CoroutineWitness(..) => {
candidates.vec.push(SizedCandidate);
}
// Fallback to whatever user-defined impls or param-env clauses exist in this case.
ty::Adt(..) | ty::Alias(..) | ty::Param(..) | ty::Placeholder(..) => {}
ty::Infer(ty::TyVar(_)) => {
candidates.ambiguous = true;
}
// Only appears when assembling higher-ranked `for<T> T: Clone`.
ty::Bound(..) => {}
ty::Infer(ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) => {
bug!("asked to assemble builtin bounds of unexpected type: {:?}", self_ty);
}
}
}
/// Assembles the `Sized` and `MetaSized` traits which are built-in to the language itself.
#[instrument(level = "debug", skip(self, candidates))]
fn assemble_builtin_sized_candidate(
&mut self,
self_ty: Ty<'tcx>,
candidates: &mut SelectionCandidateSet<'tcx>,
sizedness: SizedTraitKind,
) {
match *self_ty.kind() {
// Always sized.
ty::Infer(ty::IntVar(_) | ty::FloatVar(_))
| ty::Uint(_)
| ty::Int(_)
| ty::Bool
| ty::Float(_)
| ty::FnDef(..)
| ty::FnPtr(..)
| ty::RawPtr(..)
| ty::Char
| ty::Ref(..)
| ty::Array(..)
| ty::Closure(..)
| ty::CoroutineClosure(..)
| ty::Never
| ty::Error(_) => {
candidates.vec.push(SizedCandidate);
}
ty::Coroutine(coroutine_def_id, _) => {
if self.should_stall_coroutine(coroutine_def_id) {
candidates.ambiguous = true;
} else {
candidates.vec.push(SizedCandidate);
}
}
ty::CoroutineWitness(..) => {
candidates.vec.push(SizedCandidate);
}
// Conditionally `Sized`.
ty::Tuple(..) | ty::Pat(..) | ty::Adt(..) | ty::UnsafeBinder(_) => {
candidates.vec.push(SizedCandidate);
}
// `MetaSized` but not `Sized`.
ty::Str | ty::Slice(_) | ty::Dynamic(..) => match sizedness {
SizedTraitKind::Sized => {}
SizedTraitKind::MetaSized => {
candidates.vec.push(SizedCandidate);
}
},
// Not `MetaSized` or `Sized`.
ty::Foreign(..) => {}
ty::Alias(..) | ty::Param(_) | ty::Placeholder(..) => {}
ty::Infer(ty::TyVar(_)) => {
candidates.ambiguous = true;
}
// Only appears when assembling higher-ranked `for<T> T: Sized`.
ty::Bound(..) => {}
ty::Infer(ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) => {
bug!("asked to assemble builtin bounds of unexpected type: {:?}", self_ty);
}
}
}
fn assemble_const_destruct_candidates(
&mut self,
_obligation: &PolyTraitObligation<'tcx>,
candidates: &mut SelectionCandidateSet<'tcx>,
) {
candidates.vec.push(BuiltinCandidate);
}
fn assemble_candidate_for_tuple(
&mut self,
obligation: &PolyTraitObligation<'tcx>,
candidates: &mut SelectionCandidateSet<'tcx>,
) {
let self_ty = self.infcx.shallow_resolve(obligation.self_ty().skip_binder());
match self_ty.kind() {
ty::Tuple(_) => {
candidates.vec.push(BuiltinCandidate);
}
ty::Infer(ty::TyVar(_)) => {
candidates.ambiguous = true;
}
ty::Bool
| ty::Char
| ty::Int(_)
| ty::Uint(_)
| ty::Float(_)
| ty::Adt(_, _)
| ty::Foreign(_)
| ty::Str
| ty::Array(_, _)
| ty::Slice(_)
| ty::RawPtr(_, _)
| ty::Ref(_, _, _)
| ty::FnDef(_, _)
| ty::Pat(_, _)
| ty::FnPtr(..)
| ty::UnsafeBinder(_)
| ty::Dynamic(_, _, _)
| ty::Closure(..)
| ty::CoroutineClosure(..)
| ty::Coroutine(_, _)
| ty::CoroutineWitness(..)
| ty::Never
| ty::Alias(..)
| ty::Param(_)
| ty::Bound(_, _)
| ty::Error(_)
| ty::Infer(_)
| ty::Placeholder(_) => {}
}
}
fn assemble_candidates_for_fn_ptr_trait(
&mut self,
obligation: &PolyTraitObligation<'tcx>,
candidates: &mut SelectionCandidateSet<'tcx>,
) {
let self_ty = self.infcx.resolve_vars_if_possible(obligation.self_ty());
match self_ty.skip_binder().kind() {
ty::FnPtr(..) => candidates.vec.push(BuiltinCandidate),
ty::Bool
| ty::Char
| ty::Int(_)
| ty::Uint(_)
| ty::Float(_)
| ty::Adt(..)
| ty::Foreign(..)
| ty::Str
| ty::Array(..)
| ty::Pat(..)
| ty::Slice(_)
| ty::RawPtr(_, _)
| ty::Ref(..)
| ty::FnDef(..)
| ty::Placeholder(..)
| ty::Dynamic(..)
| ty::Closure(..)
| ty::CoroutineClosure(..)
| ty::Coroutine(..)
| ty::CoroutineWitness(..)
| ty::UnsafeBinder(_)
| ty::Never
| ty::Tuple(..)
| ty::Alias(..)
| ty::Param(..)
| ty::Bound(..)
| ty::Error(_)
| ty::Infer(
ty::InferTy::IntVar(_)
| ty::InferTy::FloatVar(_)
| ty::InferTy::FreshIntTy(_)
| ty::InferTy::FreshFloatTy(_),
) => {}
ty::Infer(ty::InferTy::TyVar(_) | ty::InferTy::FreshTy(_)) => {
candidates.ambiguous = true;
}
}
}
fn assemble_candidates_for_bikeshed_guaranteed_no_drop_trait(
&mut self,
obligation: &PolyTraitObligation<'tcx>,
candidates: &mut SelectionCandidateSet<'tcx>,
) {
match obligation.predicate.self_ty().skip_binder().kind() {
ty::Ref(..)
| ty::Adt(..)
| ty::Tuple(_)
| ty::Array(..)
| ty::FnDef(..)
| ty::FnPtr(..)
| ty::Error(_)
| ty::Uint(_)
| ty::Int(_)
| ty::Infer(ty::IntVar(_) | ty::FloatVar(_))
| ty::Bool
| ty::Float(_)
| ty::Char
| ty::RawPtr(..)
| ty::Never
| ty::Pat(..)
| ty::Dynamic(..)
| ty::Str
| ty::Slice(_)
| ty::Foreign(..)
| ty::Alias(..)
| ty::Param(_)
| ty::Placeholder(..)
| ty::Closure(..)
| ty::CoroutineClosure(..)
| ty::Coroutine(..)
| ty::UnsafeBinder(_)
| ty::CoroutineWitness(..)
| ty::Bound(..) => {
candidates.vec.push(BikeshedGuaranteedNoDropCandidate);
}
ty::Infer(ty::TyVar(_) | ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) => {
candidates.ambiguous = true;
}
}
}
}