blob: de40453289979387640da8fd21fe9f097b1c56fd [file] [log] [blame]
use rustc_data_structures::fx::FxHashSet;
use rustc_infer::traits::query::type_op::DropckOutlives;
use rustc_middle::traits::query::{DropckConstraint, DropckOutlivesResult};
use rustc_middle::ty::{self, EarlyBinder, ParamEnvAnd, Ty, TyCtxt};
use rustc_span::Span;
use tracing::{debug, instrument};
use crate::solve::NextSolverError;
use crate::traits::query::NoSolution;
use crate::traits::query::normalize::QueryNormalizeExt;
use crate::traits::{FromSolverError, Normalized, ObligationCause, ObligationCtxt};
/// This returns true if the type `ty` is "trivial" for
/// dropck-outlives -- that is, if it doesn't require any types to
/// outlive. This is similar but not *quite* the same as the
/// `needs_drop` test in the compiler already -- that is, for every
/// type T for which this function return true, needs-drop would
/// return `false`. But the reverse does not hold: in particular,
/// `needs_drop` returns false for `PhantomData`, but it is not
/// trivial for dropck-outlives.
///
/// Note also that `needs_drop` requires a "global" type (i.e., one
/// with erased regions), but this function does not.
///
// FIXME(@lcnr): remove this module and move this function somewhere else.
pub fn trivial_dropck_outlives<'tcx>(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>) -> bool {
match ty.kind() {
// None of these types have a destructor and hence they do not
// require anything in particular to outlive the dtor's
// execution.
ty::Infer(ty::FreshIntTy(_))
| ty::Infer(ty::FreshFloatTy(_))
| ty::Bool
| ty::Int(_)
| ty::Uint(_)
| ty::Float(_)
| ty::Never
| ty::FnDef(..)
| ty::FnPtr(..)
| ty::Char
| ty::CoroutineWitness(..)
| ty::RawPtr(_, _)
| ty::Ref(..)
| ty::Str
| ty::Foreign(..)
| ty::Error(_) => true,
// `T is PAT` and `[T]` have same properties as T.
ty::Pat(ty, _) | ty::Slice(ty) => trivial_dropck_outlives(tcx, *ty),
ty::Array(ty, size) => {
// Empty array never has a dtor. See issue #110288.
match size.try_to_target_usize(tcx) {
Some(0) => true,
_ => trivial_dropck_outlives(tcx, *ty),
}
}
// (T1..Tn) and closures have same properties as T1..Tn --
// check if *all* of them are trivial.
ty::Tuple(tys) => tys.iter().all(|t| trivial_dropck_outlives(tcx, t)),
ty::Closure(_, args) => trivial_dropck_outlives(tcx, args.as_closure().tupled_upvars_ty()),
ty::CoroutineClosure(_, args) => {
trivial_dropck_outlives(tcx, args.as_coroutine_closure().tupled_upvars_ty())
}
ty::Adt(def, _) => {
if def.is_manually_drop() {
// `ManuallyDrop` never has a dtor.
true
} else {
// Other types might. Moreover, PhantomData doesn't
// have a dtor, but it is considered to own its
// content, so it is non-trivial. Unions can have `impl Drop`,
// and hence are non-trivial as well.
false
}
}
// The following *might* require a destructor: needs deeper inspection.
ty::Dynamic(..)
| ty::Alias(..)
| ty::Param(_)
| ty::Placeholder(..)
| ty::Infer(_)
| ty::Bound(..)
| ty::Coroutine(..)
| ty::UnsafeBinder(_) => false,
}
}
pub fn compute_dropck_outlives_inner<'tcx>(
ocx: &ObligationCtxt<'_, 'tcx>,
goal: ParamEnvAnd<'tcx, DropckOutlives<'tcx>>,
span: Span,
) -> Result<DropckOutlivesResult<'tcx>, NoSolution> {
match compute_dropck_outlives_with_errors(ocx, goal, span) {
Ok(r) => Ok(r),
Err(_) => Err(NoSolution),
}
}
pub fn compute_dropck_outlives_with_errors<'tcx, E>(
ocx: &ObligationCtxt<'_, 'tcx, E>,
goal: ParamEnvAnd<'tcx, DropckOutlives<'tcx>>,
span: Span,
) -> Result<DropckOutlivesResult<'tcx>, Vec<E>>
where
E: FromSolverError<'tcx, NextSolverError<'tcx>>,
{
let tcx = ocx.infcx.tcx;
let ParamEnvAnd { param_env, value: DropckOutlives { dropped_ty } } = goal;
let mut result = DropckOutlivesResult { kinds: vec![], overflows: vec![] };
// A stack of types left to process. Each round, we pop
// something from the stack and invoke
// `dtorck_constraint_for_ty_inner`. This may produce new types that
// have to be pushed on the stack. This continues until we have explored
// all the reachable types from the type `dropped_ty`.
//
// Example: Imagine that we have the following code:
//
// ```rust
// struct A {
// value: B,
// children: Vec<A>,
// }
//
// struct B {
// value: u32
// }
//
// fn f() {
// let a: A = ...;
// ..
// } // here, `a` is dropped
// ```
//
// at the point where `a` is dropped, we need to figure out
// which types inside of `a` contain region data that may be
// accessed by any destructors in `a`. We begin by pushing `A`
// onto the stack, as that is the type of `a`. We will then
// invoke `dtorck_constraint_for_ty_inner` which will expand `A`
// into the types of its fields `(B, Vec<A>)`. These will get
// pushed onto the stack. Eventually, expanding `Vec<A>` will
// lead to us trying to push `A` a second time -- to prevent
// infinite recursion, we notice that `A` was already pushed
// once and stop.
let mut ty_stack = vec![(dropped_ty, 0)];
// Set used to detect infinite recursion.
let mut ty_set = FxHashSet::default();
let cause = ObligationCause::dummy_with_span(span);
let mut constraints = DropckConstraint::empty();
while let Some((ty, depth)) = ty_stack.pop() {
debug!(
"{} kinds, {} overflows, {} ty_stack",
result.kinds.len(),
result.overflows.len(),
ty_stack.len()
);
dtorck_constraint_for_ty_inner(
tcx,
ocx.infcx.typing_env(param_env),
span,
depth,
ty,
&mut constraints,
);
// "outlives" represent types/regions that may be touched
// by a destructor.
result.kinds.append(&mut constraints.outlives);
result.overflows.append(&mut constraints.overflows);
// If we have even one overflow, we should stop trying to evaluate further --
// chances are, the subsequent overflows for this evaluation won't provide useful
// information and will just decrease the speed at which we can emit these errors
// (since we'll be printing for just that much longer for the often enormous types
// that result here).
if !result.overflows.is_empty() {
break;
}
// dtorck types are "types that will get dropped but which
// do not themselves define a destructor", more or less. We have
// to push them onto the stack to be expanded.
for ty in constraints.dtorck_types.drain(..) {
let ty = if let Ok(Normalized { value: ty, obligations }) =
ocx.infcx.at(&cause, param_env).query_normalize(ty)
{
ocx.register_obligations(obligations);
debug!("dropck_outlives: ty from dtorck_types = {:?}", ty);
ty
} else {
// Flush errors b/c `deeply_normalize` doesn't expect pending
// obligations, and we may have pending obligations from the
// branch above (from other types).
let errors = ocx.select_all_or_error();
if !errors.is_empty() {
return Err(errors);
}
// When query normalization fails, we don't get back an interesting
// reason that we could use to report an error in borrowck. In order to turn
// this into a reportable error, we deeply normalize again. We don't expect
// this to succeed, so delay a bug if it does.
match ocx.deeply_normalize(&cause, param_env, ty) {
Ok(_) => {
tcx.dcx().span_delayed_bug(
span,
format!(
"query normalize succeeded of {ty}, \
but deep normalize failed",
),
);
ty
}
Err(errors) => return Err(errors),
}
};
match ty.kind() {
// All parameters live for the duration of the
// function.
ty::Param(..) => {}
// A projection that we couldn't resolve - it
// might have a destructor.
ty::Alias(..) => {
result.kinds.push(ty.into());
}
_ => {
if ty_set.insert(ty) {
ty_stack.push((ty, depth + 1));
}
}
}
}
}
debug!("dropck_outlives: result = {:#?}", result);
Ok(result)
}
/// Returns a set of constraints that needs to be satisfied in
/// order for `ty` to be valid for destruction.
#[instrument(level = "debug", skip(tcx, typing_env, span, constraints))]
pub fn dtorck_constraint_for_ty_inner<'tcx>(
tcx: TyCtxt<'tcx>,
typing_env: ty::TypingEnv<'tcx>,
span: Span,
depth: usize,
ty: Ty<'tcx>,
constraints: &mut DropckConstraint<'tcx>,
) {
if !tcx.recursion_limit().value_within_limit(depth) {
constraints.overflows.push(ty);
return;
}
if trivial_dropck_outlives(tcx, ty) {
return;
}
match ty.kind() {
ty::Bool
| ty::Char
| ty::Int(_)
| ty::Uint(_)
| ty::Float(_)
| ty::Str
| ty::Never
| ty::Foreign(..)
| ty::RawPtr(..)
| ty::Ref(..)
| ty::FnDef(..)
| ty::FnPtr(..)
| ty::CoroutineWitness(..) => {
// these types never have a destructor
}
ty::Pat(ety, _) | ty::Array(ety, _) | ty::Slice(ety) => {
// single-element containers, behave like their element
rustc_data_structures::stack::ensure_sufficient_stack(|| {
dtorck_constraint_for_ty_inner(tcx, typing_env, span, depth + 1, *ety, constraints)
});
}
ty::Tuple(tys) => rustc_data_structures::stack::ensure_sufficient_stack(|| {
for ty in tys.iter() {
dtorck_constraint_for_ty_inner(tcx, typing_env, span, depth + 1, ty, constraints);
}
}),
ty::Closure(_, args) => rustc_data_structures::stack::ensure_sufficient_stack(|| {
for ty in args.as_closure().upvar_tys() {
dtorck_constraint_for_ty_inner(tcx, typing_env, span, depth + 1, ty, constraints);
}
}),
ty::CoroutineClosure(_, args) => {
rustc_data_structures::stack::ensure_sufficient_stack(|| {
for ty in args.as_coroutine_closure().upvar_tys() {
dtorck_constraint_for_ty_inner(
tcx,
typing_env,
span,
depth + 1,
ty,
constraints,
);
}
})
}
ty::Coroutine(def_id, args) => {
// rust-lang/rust#49918: Locals can be stored across await points in the coroutine,
// called interior/witness types. Since we do not compute these witnesses until after
// building MIR, we consider all coroutines to unconditionally require a drop during
// MIR building. However, considering the coroutine to unconditionally require a drop
// here may unnecessarily require its upvars' regions to be live when they don't need
// to be, leading to borrowck errors: <https://github.com/rust-lang/rust/issues/116242>.
//
// Here, we implement a more precise approximation for the coroutine's dtorck constraint
// by considering whether any of the interior types needs drop. Note that this is still
// an approximation because the coroutine interior has its regions erased, so we must add
// *all* of the upvars to live types set if we find that *any* interior type needs drop.
// This is because any of the regions captured in the upvars may be stored in the interior,
// which then has its regions replaced by a binder (conceptually erasing the regions),
// so there's no way to enforce that the precise region in the interior type is live
// since we've lost that information by this point.
//
// Note also that this check requires that the coroutine's upvars are use-live, since
// a region from a type that does not have a destructor that was captured in an upvar
// may flow into an interior type with a destructor. This is stronger than requiring
// the upvars are drop-live.
//
// For example, if we capture two upvar references `&'1 (), &'2 ()` and have some type
// in the interior, `for<'r> { NeedsDrop<'r> }`, we have no way to tell whether the
// region `'r` came from the `'1` or `'2` region, so we require both are live. This
// could even be unnecessary if `'r` was actually a `'static` region or some region
// local to the coroutine! That's why it's an approximation.
let args = args.as_coroutine();
// Note that we don't care about whether the resume type has any drops since this is
// redundant; there is no storage for the resume type, so if it is actually stored
// in the interior, we'll already detect the need for a drop by checking the interior.
let typing_env = tcx.erase_regions(typing_env);
let needs_drop = tcx.mir_coroutine_witnesses(def_id).is_some_and(|witness| {
witness.field_tys.iter().any(|field| field.ty.needs_drop(tcx, typing_env))
});
if needs_drop {
// Pushing types directly to `constraints.outlives` is equivalent
// to requiring them to be use-live, since if we were instead to
// recurse on them like we do below, we only end up collecting the
// types that are relevant for drop-liveness.
constraints.outlives.extend(args.upvar_tys().iter().map(ty::GenericArg::from));
constraints.outlives.push(args.resume_ty().into());
} else {
// Even if a witness type doesn't need a drop, we still require that
// the upvars are drop-live. This is only needed if we aren't already
// counting *all* of the upvars as use-live above, since use-liveness
// is a *stronger requirement* than drop-liveness. Recursing here
// unconditionally would just be collecting duplicated types for no
// reason.
for ty in args.upvar_tys() {
dtorck_constraint_for_ty_inner(
tcx,
typing_env,
span,
depth + 1,
ty,
constraints,
);
}
}
}
ty::Adt(def, args) => {
let DropckConstraint { dtorck_types, outlives, overflows } =
tcx.at(span).adt_dtorck_constraint(def.did());
// FIXME: we can try to recursively `dtorck_constraint_on_ty`
// there, but that needs some way to handle cycles.
constraints
.dtorck_types
.extend(dtorck_types.iter().map(|t| EarlyBinder::bind(*t).instantiate(tcx, args)));
constraints
.outlives
.extend(outlives.iter().map(|t| EarlyBinder::bind(*t).instantiate(tcx, args)));
constraints
.overflows
.extend(overflows.iter().map(|t| EarlyBinder::bind(*t).instantiate(tcx, args)));
}
// Objects must be alive in order for their destructor
// to be called.
ty::Dynamic(..) => {
constraints.outlives.push(ty.into());
}
// Types that can't be resolved. Pass them forward.
ty::Alias(..) | ty::Param(..) => {
constraints.dtorck_types.push(ty);
}
// Can't instantiate binder here.
ty::UnsafeBinder(_) => {
constraints.dtorck_types.push(ty);
}
ty::Placeholder(..) | ty::Bound(..) | ty::Infer(..) | ty::Error(_) => {
// By the time this code runs, all type variables ought to
// be fully resolved.
tcx.dcx().span_delayed_bug(span, format!("Unresolved type in dropck: {:?}.", ty));
}
}
}