blob: d2591139d6edc6ec8e6c6418afe82b326f8125d4 [file] [log] [blame]
use std::collections::hash_map::Entry;
use rustc_codegen_ssa::mir::debuginfo::{DebugScope, FunctionDebugContext};
use rustc_codegen_ssa::traits::*;
use rustc_data_structures::fx::FxHashMap;
use rustc_index::bit_set::DenseBitSet;
use rustc_middle::mir::{Body, SourceScope};
use rustc_middle::ty::layout::{FnAbiOf, HasTypingEnv};
use rustc_middle::ty::{self, Instance};
use rustc_session::config::DebugInfo;
use rustc_span::{BytePos, DUMMY_SP, hygiene};
use super::metadata::file_metadata;
use super::utils::DIB;
use crate::common::CodegenCx;
use crate::llvm;
use crate::llvm::debuginfo::{DILocation, DIScope};
/// Produces DIScope DIEs for each MIR Scope which has variables defined in it.
// FIXME(eddyb) almost all of this should be in `rustc_codegen_ssa::mir::debuginfo`.
pub(crate) fn compute_mir_scopes<'ll, 'tcx>(
cx: &CodegenCx<'ll, 'tcx>,
instance: Instance<'tcx>,
mir: &Body<'tcx>,
debug_context: &mut FunctionDebugContext<'tcx, &'ll DIScope, &'ll DILocation>,
) {
// Find all scopes with variables defined in them.
let variables = if cx.sess().opts.debuginfo == DebugInfo::Full {
let mut vars = DenseBitSet::new_empty(mir.source_scopes.len());
// FIXME(eddyb) take into account that arguments always have debuginfo,
// irrespective of their name (assuming full debuginfo is enabled).
// NOTE(eddyb) actually, on second thought, those are always in the
// function scope, which always exists.
for var_debug_info in &mir.var_debug_info {
vars.insert(var_debug_info.source_info.scope);
}
Some(vars)
} else {
// Nothing to emit, of course.
None
};
let mut instantiated = DenseBitSet::new_empty(mir.source_scopes.len());
let mut discriminators = FxHashMap::default();
// Instantiate all scopes.
for scope in mir.source_scopes.indices() {
make_mir_scope(
cx,
instance,
mir,
&variables,
debug_context,
&mut instantiated,
&mut discriminators,
scope,
);
}
assert!(instantiated.count() == mir.source_scopes.len());
}
fn make_mir_scope<'ll, 'tcx>(
cx: &CodegenCx<'ll, 'tcx>,
instance: Instance<'tcx>,
mir: &Body<'tcx>,
variables: &Option<DenseBitSet<SourceScope>>,
debug_context: &mut FunctionDebugContext<'tcx, &'ll DIScope, &'ll DILocation>,
instantiated: &mut DenseBitSet<SourceScope>,
discriminators: &mut FxHashMap<BytePos, u32>,
scope: SourceScope,
) {
if instantiated.contains(scope) {
return;
}
let scope_data = &mir.source_scopes[scope];
let parent_scope = if let Some(parent) = scope_data.parent_scope {
make_mir_scope(
cx,
instance,
mir,
variables,
debug_context,
instantiated,
discriminators,
parent,
);
debug_context.scopes[parent]
} else {
// The root is the function itself.
let file = cx.sess().source_map().lookup_source_file(mir.span.lo());
debug_context.scopes[scope] = DebugScope {
file_start_pos: file.start_pos,
file_end_pos: file.end_position(),
..debug_context.scopes[scope]
};
instantiated.insert(scope);
return;
};
if let Some(vars) = variables
&& !vars.contains(scope)
&& scope_data.inlined.is_none()
{
// Do not create a DIScope if there are no variables defined in this
// MIR `SourceScope`, and it's not `inlined`, to avoid debuginfo bloat.
debug_context.scopes[scope] = parent_scope;
instantiated.insert(scope);
return;
}
let loc = cx.lookup_debug_loc(scope_data.span.lo());
let file_metadata = file_metadata(cx, &loc.file);
let dbg_scope = match scope_data.inlined {
Some((callee, _)) => {
// FIXME(eddyb) this would be `self.monomorphize(&callee)`
// if this is moved to `rustc_codegen_ssa::mir::debuginfo`.
let callee = cx.tcx.instantiate_and_normalize_erasing_regions(
instance.args,
cx.typing_env(),
ty::EarlyBinder::bind(callee),
);
debug_context.inlined_function_scopes.entry(callee).or_insert_with(|| {
let callee_fn_abi = cx.fn_abi_of_instance(callee, ty::List::empty());
cx.dbg_scope_fn(callee, callee_fn_abi, None)
})
}
None => unsafe {
llvm::LLVMDIBuilderCreateLexicalBlock(
DIB(cx),
parent_scope.dbg_scope,
file_metadata,
loc.line,
loc.col,
)
},
};
let inlined_at = scope_data.inlined.map(|(_, callsite_span)| {
let callsite_span = hygiene::walk_chain_collapsed(callsite_span, mir.span);
let callsite_scope = parent_scope.adjust_dbg_scope_for_span(cx, callsite_span);
let loc = cx.dbg_loc(callsite_scope, parent_scope.inlined_at, callsite_span);
// NB: In order to produce proper debug info for variables (particularly
// arguments) in multiply-inlined functions, LLVM expects to see a single
// DILocalVariable with multiple different DILocations in the IR. While
// the source information for each DILocation would be identical, their
// inlinedAt attributes will be unique to the particular callsite.
//
// We generate DILocations here based on the callsite's location in the
// source code. A single location in the source code usually can't
// produce multiple distinct calls so this mostly works, until
// macros get involved. A macro can generate multiple calls
// at the same span, which breaks the assumption that we're going to
// produce a unique DILocation for every scope we process here. We
// have to explicitly add discriminators if we see inlines into the
// same source code location.
//
// Note further that we can't key this hashtable on the span itself,
// because these spans could have distinct SyntaxContexts. We have
// to key on exactly what we're giving to LLVM.
match discriminators.entry(callsite_span.lo()) {
Entry::Occupied(mut o) => {
*o.get_mut() += 1;
// NB: We have to emit *something* here or we'll fail LLVM IR verification
// in at least some circumstances (see issue #135322) so if the required
// discriminant cannot be encoded fall back to the dummy location.
unsafe { llvm::LLVMRustDILocationCloneWithBaseDiscriminator(loc, *o.get()) }
.unwrap_or_else(|| {
cx.dbg_loc(callsite_scope, parent_scope.inlined_at, DUMMY_SP)
})
}
Entry::Vacant(v) => {
v.insert(0);
loc
}
}
});
debug_context.scopes[scope] = DebugScope {
dbg_scope,
inlined_at: inlined_at.or(parent_scope.inlined_at),
file_start_pos: loc.file.start_pos,
file_end_pos: loc.file.end_position(),
};
instantiated.insert(scope);
}