| // Copyright 2012 The Rust Project Developers. See the COPYRIGHT |
| // file at the top-level directory of this distribution and at |
| // http://rust-lang.org/COPYRIGHT. |
| // |
| // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or |
| // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license |
| // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your |
| // option. This file may not be copied, modified, or distributed |
| // except according to those terms. |
| |
| //! Sorting methods |
| |
| use core::cmp::{Eq, Ord}; |
| use core::prelude::*; |
| use core::util; |
| use core::vec::len; |
| use core::vec; |
| |
| type Le<'self, T> = &'self fn(v1: &T, v2: &T) -> bool; |
| |
| /** |
| * Merge sort. Returns a new vector containing the sorted list. |
| * |
| * Has worst case O(n log n) performance, best case O(n), but |
| * is not space efficient. This is a stable sort. |
| */ |
| pub fn merge_sort<T:Copy>(v: &const [T], le: Le<T>) -> ~[T] { |
| type Slice = (uint, uint); |
| |
| unsafe {return merge_sort_(v, (0u, len(v)), le);} |
| |
| fn merge_sort_<T:Copy>(v: &const [T], slice: Slice, le: Le<T>) |
| -> ~[T] { |
| let begin = slice.first(); |
| let end = slice.second(); |
| |
| let v_len = end - begin; |
| if v_len == 0 { return ~[]; } |
| if v_len == 1 { return ~[v[begin]]; } |
| |
| let mid = v_len / 2 + begin; |
| let a = (begin, mid); |
| let b = (mid, end); |
| return merge(le, merge_sort_(v, a, le), merge_sort_(v, b, le)); |
| } |
| |
| fn merge<T:Copy>(le: Le<T>, a: &[T], b: &[T]) -> ~[T] { |
| let mut rs = vec::with_capacity(len(a) + len(b)); |
| let a_len = len(a); |
| let mut a_ix = 0; |
| let b_len = len(b); |
| let mut b_ix = 0; |
| while a_ix < a_len && b_ix < b_len { |
| if le(&a[a_ix], &b[b_ix]) { |
| rs.push(a[a_ix]); |
| a_ix += 1; |
| } else { rs.push(b[b_ix]); b_ix += 1; } |
| } |
| rs.push_all(vec::slice(a, a_ix, a_len)); |
| rs.push_all(vec::slice(b, b_ix, b_len)); |
| rs |
| } |
| } |
| |
| fn part<T>(arr: &mut [T], left: uint, |
| right: uint, pivot: uint, compare_func: Le<T>) -> uint { |
| arr[pivot] <-> arr[right]; |
| let mut storage_index: uint = left; |
| let mut i: uint = left; |
| while i < right { |
| // XXX: Unsafe because borrow check doesn't handle this right |
| unsafe { |
| let a: &T = cast::transmute(&mut arr[i]); |
| let b: &T = cast::transmute(&mut arr[right]); |
| if compare_func(a, b) { |
| arr[i] <-> arr[storage_index]; |
| storage_index += 1; |
| } |
| } |
| i += 1; |
| } |
| arr[storage_index] <-> arr[right]; |
| return storage_index; |
| } |
| |
| fn qsort<T>(arr: &mut [T], left: uint, |
| right: uint, compare_func: Le<T>) { |
| if right > left { |
| let pivot = (left + right) / 2u; |
| let new_pivot = part::<T>(arr, left, right, pivot, compare_func); |
| if new_pivot != 0u { |
| // Need to do this check before recursing due to overflow |
| qsort::<T>(arr, left, new_pivot - 1u, compare_func); |
| } |
| qsort::<T>(arr, new_pivot + 1u, right, compare_func); |
| } |
| } |
| |
| /** |
| * Quicksort. Sorts a mut vector in place. |
| * |
| * Has worst case O(n^2) performance, average case O(n log n). |
| * This is an unstable sort. |
| */ |
| pub fn quick_sort<T>(arr: &mut [T], compare_func: Le<T>) { |
| if len::<T>(arr) == 0u { return; } |
| qsort::<T>(arr, 0u, len::<T>(arr) - 1u, compare_func); |
| } |
| |
| fn qsort3<T:Copy + Ord + Eq>(arr: &mut [T], left: int, right: int) { |
| if right <= left { return; } |
| let v: T = arr[right]; |
| let mut i: int = left - 1; |
| let mut j: int = right; |
| let mut p: int = i; |
| let mut q: int = j; |
| loop { |
| i += 1; |
| while arr[i] < v { i += 1; } |
| j -= 1; |
| while v < arr[j] { |
| if j == left { break; } |
| j -= 1; |
| } |
| if i >= j { break; } |
| arr[i] <-> arr[j]; |
| if arr[i] == v { |
| p += 1; |
| arr[p] <-> arr[i]; |
| } |
| if v == arr[j] { |
| q -= 1; |
| arr[j] <-> arr[q]; |
| } |
| } |
| arr[i] <-> arr[right]; |
| j = i - 1; |
| i += 1; |
| let mut k: int = left; |
| while k < p { |
| arr[k] <-> arr[j]; |
| k += 1; |
| j -= 1; |
| if k == len::<T>(arr) as int { break; } |
| } |
| k = right - 1; |
| while k > q { |
| arr[i] <-> arr[k]; |
| k -= 1; |
| i += 1; |
| if k == 0 { break; } |
| } |
| qsort3::<T>(arr, left, j); |
| qsort3::<T>(arr, i, right); |
| } |
| |
| /** |
| * Fancy quicksort. Sorts a mut vector in place. |
| * |
| * Based on algorithm presented by ~[Sedgewick and Bentley] |
| * (http://www.cs.princeton.edu/~rs/talks/QuicksortIsOptimal.pdf). |
| * According to these slides this is the algorithm of choice for |
| * 'randomly ordered keys, abstract compare' & 'small number of key values'. |
| * |
| * This is an unstable sort. |
| */ |
| pub fn quick_sort3<T:Copy + Ord + Eq>(arr: &mut [T]) { |
| if arr.len() <= 1 { return; } |
| qsort3(arr, 0, (arr.len() - 1) as int); |
| } |
| |
| pub trait Sort { |
| fn qsort(self); |
| } |
| |
| impl<'self, T:Copy + Ord + Eq> Sort for &'self mut [T] { |
| fn qsort(self) { quick_sort3(self); } |
| } |
| |
| static MIN_MERGE: uint = 64; |
| static MIN_GALLOP: uint = 7; |
| static INITIAL_TMP_STORAGE: uint = 128; |
| |
| pub fn tim_sort<T:Copy + Ord>(array: &mut [T]) { |
| let size = array.len(); |
| if size < 2 { |
| return; |
| } |
| |
| if size < MIN_MERGE { |
| let init_run_len = count_run_ascending(array); |
| binarysort(array, init_run_len); |
| return; |
| } |
| |
| let mut ms = MergeState(); |
| let min_run = min_run_length(size); |
| |
| let mut idx = 0; |
| let mut remaining = size; |
| loop { |
| let arr = vec::mut_slice(array, idx, size); |
| let mut run_len: uint = count_run_ascending(arr); |
| |
| if run_len < min_run { |
| let force = if remaining <= min_run {remaining} else {min_run}; |
| let slice = vec::mut_slice(arr, 0, force); |
| binarysort(slice, run_len); |
| run_len = force; |
| } |
| |
| ms.push_run(idx, run_len); |
| ms.merge_collapse(array); |
| |
| idx += run_len; |
| remaining -= run_len; |
| if remaining == 0 { break; } |
| } |
| |
| ms.merge_force_collapse(array); |
| } |
| |
| fn binarysort<T:Copy + Ord>(array: &mut [T], start: uint) { |
| let size = array.len(); |
| let mut start = start; |
| assert!(start <= size); |
| |
| if start == 0 { start += 1; } |
| |
| while start < size { |
| let pivot = array[start]; |
| let mut left = 0; |
| let mut right = start; |
| assert!(left <= right); |
| |
| while left < right { |
| let mid = (left + right) >> 1; |
| if pivot < array[mid] { |
| right = mid; |
| } else { |
| left = mid+1; |
| } |
| } |
| assert!(left == right); |
| let mut n = start-left; |
| |
| copy_vec(array, left+1, array, left, n); |
| array[left] = pivot; |
| start += 1; |
| } |
| } |
| |
| // Reverse the order of elements in a slice, in place |
| fn reverse_slice<T>(v: &mut [T], start: uint, end:uint) { |
| let mut i = start; |
| while i < end / 2 { |
| util::swap(&mut v[i], &mut v[end - i - 1]); |
| i += 1; |
| } |
| } |
| |
| fn min_run_length(n: uint) -> uint { |
| let mut n = n; |
| let mut r = 0; // becomes 1 if any 1 bits are shifted off |
| |
| while n >= MIN_MERGE { |
| r |= n & 1; |
| n >>= 1; |
| } |
| return n + r; |
| } |
| |
| fn count_run_ascending<T:Copy + Ord>(array: &mut [T]) -> uint { |
| let size = array.len(); |
| assert!(size > 0); |
| if size == 1 { return 1; } |
| |
| let mut run = 2; |
| if array[1] < array[0] { |
| while run < size && array[run] < array[run-1] { |
| run += 1; |
| } |
| reverse_slice(array, 0, run); |
| } else { |
| while run < size && array[run] >= array[run-1] { |
| run += 1; |
| } |
| } |
| |
| return run; |
| } |
| |
| fn gallop_left<T:Copy + Ord>(key: &const T, |
| array: &const [T], |
| hint: uint) |
| -> uint { |
| let size = array.len(); |
| assert!(size != 0 && hint < size); |
| |
| let mut last_ofs = 0; |
| let mut ofs = 1; |
| |
| if *key > array[hint] { |
| // Gallop right until array[hint+last_ofs] < key <= array[hint+ofs] |
| let max_ofs = size - hint; |
| while ofs < max_ofs && *key > array[hint+ofs] { |
| last_ofs = ofs; |
| ofs = (ofs << 1) + 1; |
| if ofs < last_ofs { ofs = max_ofs; } // uint overflow guard |
| } |
| if ofs > max_ofs { ofs = max_ofs; } |
| |
| last_ofs += hint; |
| ofs += hint; |
| } else { |
| let max_ofs = hint + 1; |
| while ofs < max_ofs && *key <= array[hint-ofs] { |
| last_ofs = ofs; |
| ofs = (ofs << 1) + 1; |
| if ofs < last_ofs { ofs = max_ofs; } // uint overflow guard |
| } |
| |
| if ofs > max_ofs { ofs = max_ofs; } |
| |
| let tmp = last_ofs; |
| last_ofs = hint - ofs; |
| ofs = hint - tmp; |
| } |
| assert!((last_ofs < ofs || last_ofs+1 < ofs+1) && ofs <= size); |
| |
| last_ofs += 1; |
| while last_ofs < ofs { |
| let m = last_ofs + ((ofs - last_ofs) >> 1); |
| if *key > array[m] { |
| last_ofs = m+1; |
| } else { |
| ofs = m; |
| } |
| } |
| assert!(last_ofs == ofs); |
| return ofs; |
| } |
| |
| fn gallop_right<T:Copy + Ord>(key: &const T, |
| array: &const [T], |
| hint: uint) |
| -> uint { |
| let size = array.len(); |
| assert!(size != 0 && hint < size); |
| |
| let mut last_ofs = 0; |
| let mut ofs = 1; |
| |
| if *key >= array[hint] { |
| // Gallop right until array[hint+last_ofs] <= key < array[hint+ofs] |
| let max_ofs = size - hint; |
| while ofs < max_ofs && *key >= array[hint+ofs] { |
| last_ofs = ofs; |
| ofs = (ofs << 1) + 1; |
| if ofs < last_ofs { ofs = max_ofs; } |
| } |
| if ofs > max_ofs { ofs = max_ofs; } |
| |
| last_ofs += hint; |
| ofs += hint; |
| } else { |
| // Gallop left until array[hint-ofs] <= key < array[hint-last_ofs] |
| let max_ofs = hint + 1; |
| while ofs < max_ofs && *key < array[hint-ofs] { |
| last_ofs = ofs; |
| ofs = (ofs << 1) + 1; |
| if ofs < last_ofs { ofs = max_ofs; } |
| } |
| if ofs > max_ofs { ofs = max_ofs; } |
| |
| let tmp = last_ofs; |
| last_ofs = hint - ofs; |
| ofs = hint - tmp; |
| } |
| |
| assert!((last_ofs < ofs || last_ofs+1 < ofs+1) && ofs <= size); |
| |
| last_ofs += 1; |
| while last_ofs < ofs { |
| let m = last_ofs + ((ofs - last_ofs) >> 1); |
| |
| if *key >= array[m] { |
| last_ofs = m + 1; |
| } else { |
| ofs = m; |
| } |
| } |
| assert!(last_ofs == ofs); |
| return ofs; |
| } |
| |
| struct RunState { |
| base: uint, |
| len: uint, |
| } |
| |
| struct MergeState<T> { |
| min_gallop: uint, |
| runs: ~[RunState], |
| } |
| |
| // Fixme (#3853) Move into MergeState |
| fn MergeState<T>() -> MergeState<T> { |
| MergeState { |
| min_gallop: MIN_GALLOP, |
| runs: ~[], |
| } |
| } |
| |
| impl<T:Copy + Ord> MergeState<T> { |
| fn push_run(&mut self, run_base: uint, run_len: uint) { |
| let tmp = RunState{base: run_base, len: run_len}; |
| self.runs.push(tmp); |
| } |
| |
| fn merge_at(&mut self, n: uint, array: &mut [T]) { |
| let mut size = self.runs.len(); |
| assert!(size >= 2); |
| assert!(n == size-2 || n == size-3); |
| |
| let mut b1 = self.runs[n].base; |
| let mut l1 = self.runs[n].len; |
| let b2 = self.runs[n+1].base; |
| let l2 = self.runs[n+1].len; |
| |
| assert!(l1 > 0 && l2 > 0); |
| assert!(b1 + l1 == b2); |
| |
| self.runs[n].len = l1 + l2; |
| if n == size-3 { |
| self.runs[n+1].base = self.runs[n+2].base; |
| self.runs[n+1].len = self.runs[n+2].len; |
| } |
| |
| let slice = vec::mut_slice(array, b1, b1+l1); |
| let k = gallop_right(&const array[b2], slice, 0); |
| b1 += k; |
| l1 -= k; |
| if l1 != 0 { |
| let slice = vec::mut_slice(array, b2, b2+l2); |
| let l2 = gallop_left( |
| &const array[b1+l1-1],slice,l2-1); |
| if l2 > 0 { |
| if l1 <= l2 { |
| self.merge_lo(array, b1, l1, b2, l2); |
| } else { |
| self.merge_hi(array, b1, l1, b2, l2); |
| } |
| } |
| } |
| self.runs.pop(); |
| } |
| |
| fn merge_lo(&mut self, array: &mut [T], base1: uint, len1: uint, |
| base2: uint, len2: uint) { |
| assert!(len1 != 0 && len2 != 0 && base1+len1 == base2); |
| |
| let mut tmp = ~[]; |
| for uint::range(base1, base1+len1) |i| { |
| tmp.push(array[i]); |
| } |
| |
| let mut c1 = 0; |
| let mut c2 = base2; |
| let mut dest = base1; |
| let mut len1 = len1; |
| let mut len2 = len2; |
| |
| array[dest] <-> array[c2]; |
| dest += 1; c2 += 1; len2 -= 1; |
| |
| if len2 == 0 { |
| copy_vec(array, dest, tmp, 0, len1); |
| return; |
| } |
| if len1 == 1 { |
| copy_vec(array, dest, array, c2, len2); |
| array[dest+len2] <-> tmp[c1]; |
| return; |
| } |
| |
| let mut min_gallop = self.min_gallop; |
| loop { |
| let mut count1 = 0; |
| let mut count2 = 0; |
| let mut break_outer = false; |
| |
| loop { |
| assert!(len1 > 1 && len2 != 0); |
| if array[c2] < tmp[c1] { |
| array[dest] <-> array[c2]; |
| dest += 1; c2 += 1; len2 -= 1; |
| count2 += 1; count1 = 0; |
| if len2 == 0 { |
| break_outer = true; |
| } |
| } else { |
| array[dest] <-> tmp[c1]; |
| dest += 1; c1 += 1; len1 -= 1; |
| count1 += 1; count2 = 0; |
| if len1 == 1 { |
| break_outer = true; |
| } |
| } |
| if break_outer || ((count1 | count2) >= min_gallop) { |
| break; |
| } |
| } |
| if break_outer { break; } |
| |
| // Start to gallop |
| loop { |
| assert!(len1 > 1 && len2 != 0); |
| |
| let tmp_view = vec::const_slice(tmp, c1, c1+len1); |
| count1 = gallop_right(&const array[c2], tmp_view, 0); |
| if count1 != 0 { |
| copy_vec(array, dest, tmp, c1, count1); |
| dest += count1; c1 += count1; len1 -= count1; |
| if len1 <= 1 { break_outer = true; break; } |
| } |
| array[dest] <-> array[c2]; |
| dest += 1; c2 += 1; len2 -= 1; |
| if len2 == 0 { break_outer = true; break; } |
| |
| let tmp_view = vec::const_slice(array, c2, c2+len2); |
| count2 = gallop_left(&const tmp[c1], tmp_view, 0); |
| if count2 != 0 { |
| copy_vec(array, dest, array, c2, count2); |
| dest += count2; c2 += count2; len2 -= count2; |
| if len2 == 0 { break_outer = true; break; } |
| } |
| array[dest] <-> tmp[c1]; |
| dest += 1; c1 += 1; len1 -= 1; |
| if len1 == 1 { break_outer = true; break; } |
| min_gallop -= 1; |
| if !(count1 >= MIN_GALLOP || count2 >= MIN_GALLOP) { |
| break; |
| } |
| } |
| if break_outer { break; } |
| if min_gallop < 0 { min_gallop = 0; } |
| min_gallop += 2; // Penalize for leaving gallop |
| } |
| self.min_gallop = if min_gallop < 1 { 1 } else { min_gallop }; |
| |
| if len1 == 1 { |
| assert!(len2 > 0); |
| copy_vec(array, dest, array, c2, len2); |
| array[dest+len2] <-> tmp[c1]; |
| } else if len1 == 0 { |
| fail!(~"Comparison violates its contract!"); |
| } else { |
| assert!(len2 == 0); |
| assert!(len1 > 1); |
| copy_vec(array, dest, tmp, c1, len1); |
| } |
| } |
| |
| fn merge_hi(&mut self, array: &mut [T], base1: uint, len1: uint, |
| base2: uint, len2: uint) { |
| assert!(len1 != 1 && len2 != 0 && base1 + len1 == base2); |
| |
| let mut tmp = ~[]; |
| for uint::range(base2, base2+len2) |i| { |
| tmp.push(array[i]); |
| } |
| |
| let mut c1 = base1 + len1 - 1; |
| let mut c2 = len2 - 1; |
| let mut dest = base2 + len2 - 1; |
| let mut len1 = len1; |
| let mut len2 = len2; |
| |
| array[dest] <-> array[c1]; |
| dest -= 1; c1 -= 1; len1 -= 1; |
| |
| if len1 == 0 { |
| copy_vec(array, dest-(len2-1), tmp, 0, len2); |
| return; |
| } |
| if len2 == 1 { |
| dest -= len1; |
| c1 -= len1; |
| copy_vec(array, dest+1, array, c1+1, len1); |
| array[dest] <-> tmp[c2]; |
| return; |
| } |
| |
| let mut min_gallop = self.min_gallop; |
| loop { |
| let mut count1 = 0; |
| let mut count2 = 0; |
| let mut break_outer = false; |
| |
| loop { |
| assert!(len1 != 0 && len2 > 1); |
| if tmp[c2] < array[c1] { |
| array[dest] <-> array[c1]; |
| dest -= 1; c1 -= 1; len1 -= 1; |
| count1 += 1; count2 = 0; |
| if len1 == 0 { |
| break_outer = true; |
| } |
| } else { |
| array[dest] <-> tmp[c2]; |
| dest -= 1; c2 -= 1; len2 -= 1; |
| count2 += 1; count1 = 0; |
| if len2 == 1 { |
| break_outer = true; |
| } |
| } |
| if break_outer || ((count1 | count2) >= min_gallop) { |
| break; |
| } |
| } |
| if break_outer { break; } |
| |
| // Start to gallop |
| loop { |
| assert!(len2 > 1 && len1 != 0); |
| |
| let tmp_view = vec::mut_slice(array, base1, base1+len1); |
| count1 = len1 - gallop_right( |
| &const tmp[c2], tmp_view, len1-1); |
| |
| if count1 != 0 { |
| dest -= count1; c1 -= count1; len1 -= count1; |
| copy_vec(array, dest+1, array, c1+1, count1); |
| if len1 == 0 { break_outer = true; break; } |
| } |
| |
| array[dest] <-> tmp[c2]; |
| dest -= 1; c2 -= 1; len2 -= 1; |
| if len2 == 1 { break_outer = true; break; } |
| |
| let count2; |
| { |
| let tmp_view = vec::mut_slice(tmp, 0, len2); |
| count2 = len2 - gallop_left(&const array[c1], |
| tmp_view, |
| len2-1); |
| // Make tmp_view go out of scope to appease borrowck. |
| } |
| |
| if count2 != 0 { |
| dest -= count2; c2 -= count2; len2 -= count2; |
| copy_vec(array, dest+1, tmp, c2+1, count2); |
| if len2 <= 1 { break_outer = true; break; } |
| } |
| array[dest] <-> array[c1]; |
| dest -= 1; c1 -= 1; len1 -= 1; |
| if len1 == 0 { break_outer = true; break; } |
| min_gallop -= 1; |
| if !(count1 >= MIN_GALLOP || count2 >= MIN_GALLOP) { |
| break; |
| } |
| } |
| |
| if break_outer { break; } |
| if min_gallop < 0 { min_gallop = 0; } |
| min_gallop += 2; // Penalize for leaving gallop |
| } |
| self.min_gallop = if min_gallop < 1 { 1 } else { min_gallop }; |
| |
| if len2 == 1 { |
| assert!(len1 > 0); |
| dest -= len1; |
| c1 -= len1; |
| copy_vec(array, dest+1, array, c1+1, len1); |
| array[dest] <-> tmp[c2]; |
| } else if len2 == 0 { |
| fail!(~"Comparison violates its contract!"); |
| } else { |
| assert!(len1 == 0); |
| assert!(len2 != 0); |
| copy_vec(array, dest-(len2-1), tmp, 0, len2); |
| } |
| } |
| |
| fn merge_collapse(&mut self, array: &mut [T]) { |
| while self.runs.len() > 1 { |
| let mut n = self.runs.len()-2; |
| if n > 0 && |
| self.runs[n-1].len <= self.runs[n].len + self.runs[n+1].len |
| { |
| if self.runs[n-1].len < self.runs[n+1].len { n -= 1; } |
| } else if self.runs[n].len <= self.runs[n+1].len { |
| /* keep going */ |
| } else { |
| break; |
| } |
| self.merge_at(n, array); |
| } |
| } |
| |
| fn merge_force_collapse(&mut self, array: &mut [T]) { |
| while self.runs.len() > 1 { |
| let mut n = self.runs.len()-2; |
| if n > 0 { |
| if self.runs[n-1].len < self.runs[n+1].len { |
| n -= 1; |
| } |
| } |
| self.merge_at(n, array); |
| } |
| } |
| } |
| |
| #[inline(always)] |
| fn copy_vec<T:Copy>(dest: &mut [T], |
| s1: uint, |
| from: &const [T], |
| s2: uint, |
| len: uint) { |
| assert!(s1+len <= dest.len() && s2+len <= from.len()); |
| |
| let mut slice = ~[]; |
| for uint::range(s2, s2+len) |i| { |
| slice.push(from[i]); |
| } |
| |
| for slice.eachi |i, v| { |
| dest[s1+i] = *v; |
| } |
| } |
| |
| #[cfg(test)] |
| mod test_qsort3 { |
| use sort::*; |
| |
| use core::vec; |
| |
| pub fn check_sort(v1: &mut [int], v2: &mut [int]) { |
| let len = vec::len::<int>(v1); |
| quick_sort3::<int>(v1); |
| let mut i = 0; |
| while i < len { |
| // debug!(v2[i]); |
| assert!((v2[i] == v1[i])); |
| i += 1; |
| } |
| } |
| |
| #[test] |
| pub fn test() { |
| { |
| let mut v1 = ~[3, 7, 4, 5, 2, 9, 5, 8]; |
| let mut v2 = ~[2, 3, 4, 5, 5, 7, 8, 9]; |
| check_sort(v1, v2); |
| } |
| { |
| let mut v1 = ~[1, 1, 1]; |
| let mut v2 = ~[1, 1, 1]; |
| check_sort(v1, v2); |
| } |
| { |
| let mut v1: ~[int] = ~[]; |
| let mut v2: ~[int] = ~[]; |
| check_sort(v1, v2); |
| } |
| { let mut v1 = ~[9]; let mut v2 = ~[9]; check_sort(v1, v2); } |
| { |
| let mut v1 = ~[9, 3, 3, 3, 9]; |
| let mut v2 = ~[3, 3, 3, 9, 9]; |
| check_sort(v1, v2); |
| } |
| } |
| } |
| |
| #[cfg(test)] |
| mod test_qsort { |
| use sort::*; |
| |
| use core::int; |
| use core::vec; |
| |
| pub fn check_sort(v1: &mut [int], v2: &mut [int]) { |
| let len = vec::len::<int>(v1); |
| fn leual(a: &int, b: &int) -> bool { *a <= *b } |
| quick_sort::<int>(v1, leual); |
| let mut i = 0u; |
| while i < len { |
| // debug!(v2[i]); |
| assert!((v2[i] == v1[i])); |
| i += 1; |
| } |
| } |
| |
| #[test] |
| pub fn test() { |
| { |
| let mut v1 = ~[3, 7, 4, 5, 2, 9, 5, 8]; |
| let mut v2 = ~[2, 3, 4, 5, 5, 7, 8, 9]; |
| check_sort(v1, v2); |
| } |
| { |
| let mut v1 = ~[1, 1, 1]; |
| let mut v2 = ~[1, 1, 1]; |
| check_sort(v1, v2); |
| } |
| { |
| let mut v1: ~[int] = ~[]; |
| let mut v2: ~[int] = ~[]; |
| check_sort(v1, v2); |
| } |
| { let mut v1 = ~[9]; let mut v2 = ~[9]; check_sort(v1, v2); } |
| { |
| let mut v1 = ~[9, 3, 3, 3, 9]; |
| let mut v2 = ~[3, 3, 3, 9, 9]; |
| check_sort(v1, v2); |
| } |
| } |
| |
| // Regression test for #750 |
| #[test] |
| pub fn test_simple() { |
| let mut names = ~[2, 1, 3]; |
| |
| let expected = ~[1, 2, 3]; |
| |
| do quick_sort(names) |x, y| { int::le(*x, *y) }; |
| |
| let immut_names = names; |
| |
| let pairs = vec::zip_slice(expected, immut_names); |
| for vec::each(pairs) |p| { |
| let (a, b) = *p; |
| debug!("%d %d", a, b); |
| assert!((a == b)); |
| } |
| } |
| } |
| |
| #[cfg(test)] |
| mod tests { |
| use core::prelude::*; |
| |
| use sort::*; |
| |
| use core::vec; |
| |
| pub fn check_sort(v1: &[int], v2: &[int]) { |
| let len = vec::len::<int>(v1); |
| pub fn le(a: &int, b: &int) -> bool { *a <= *b } |
| let f = le; |
| let v3 = merge_sort::<int>(v1, f); |
| let mut i = 0u; |
| while i < len { |
| debug!(v3[i]); |
| assert!((v3[i] == v2[i])); |
| i += 1; |
| } |
| } |
| |
| #[test] |
| pub fn test() { |
| { |
| let v1 = ~[3, 7, 4, 5, 2, 9, 5, 8]; |
| let v2 = ~[2, 3, 4, 5, 5, 7, 8, 9]; |
| check_sort(v1, v2); |
| } |
| { let v1 = ~[1, 1, 1]; let v2 = ~[1, 1, 1]; check_sort(v1, v2); } |
| { let v1:~[int] = ~[]; let v2:~[int] = ~[]; check_sort(v1, v2); } |
| { let v1 = ~[9]; let v2 = ~[9]; check_sort(v1, v2); } |
| { |
| let v1 = ~[9, 3, 3, 3, 9]; |
| let v2 = ~[3, 3, 3, 9, 9]; |
| check_sort(v1, v2); |
| } |
| } |
| |
| #[test] |
| pub fn test_merge_sort_mutable() { |
| pub fn le(a: &int, b: &int) -> bool { *a <= *b } |
| let mut v1 = ~[3, 2, 1]; |
| let v2 = merge_sort(v1, le); |
| assert!(v2 == ~[1, 2, 3]); |
| } |
| |
| #[test] |
| pub fn test_merge_sort_stability() { |
| // tjc: funny that we have to use parens |
| fn ile(x: &(&'static str), y: &(&'static str)) -> bool |
| { |
| unsafe // to_lower is not pure... |
| { |
| let x = x.to_lower(); |
| let y = y.to_lower(); |
| x <= y |
| } |
| } |
| |
| let names1 = ~["joe bob", "Joe Bob", "Jack Brown", "JOE Bob", |
| "Sally Mae", "JOE BOB", "Alex Andy"]; |
| let names2 = ~["Alex Andy", "Jack Brown", "joe bob", "Joe Bob", |
| "JOE Bob", "JOE BOB", "Sally Mae"]; |
| let names3 = merge_sort(names1, ile); |
| assert!(names3 == names2); |
| } |
| } |
| |
| #[cfg(test)] |
| mod test_tim_sort { |
| use core::prelude::*; |
| |
| use sort::tim_sort; |
| |
| use core::rand::RngUtil; |
| use core::rand; |
| use core::vec; |
| |
| struct CVal { |
| val: float, |
| } |
| |
| impl Ord for CVal { |
| fn lt(&self, other: &CVal) -> bool { |
| unsafe { |
| let rng = rand::Rng(); |
| if rng.gen_float() > 0.995 { fail!(~"It's happening!!!"); } |
| } |
| (*self).val < other.val |
| } |
| fn le(&self, other: &CVal) -> bool { (*self).val <= other.val } |
| fn gt(&self, other: &CVal) -> bool { (*self).val > other.val } |
| fn ge(&self, other: &CVal) -> bool { (*self).val >= other.val } |
| } |
| |
| fn check_sort(v1: &mut [int], v2: &mut [int]) { |
| let len = vec::len::<int>(v1); |
| tim_sort::<int>(v1); |
| let mut i = 0u; |
| while i < len { |
| // debug!(v2[i]); |
| assert!((v2[i] == v1[i])); |
| i += 1u; |
| } |
| } |
| |
| #[test] |
| fn test() { |
| { |
| let mut v1 = ~[3, 7, 4, 5, 2, 9, 5, 8]; |
| let mut v2 = ~[2, 3, 4, 5, 5, 7, 8, 9]; |
| check_sort(v1, v2); |
| } |
| { |
| let mut v1 = ~[1, 1, 1]; |
| let mut v2 = ~[1, 1, 1]; |
| check_sort(v1, v2); |
| } |
| { |
| let mut v1: ~[int] = ~[]; |
| let mut v2: ~[int] = ~[]; |
| check_sort(v1, v2); |
| } |
| { let mut v1 = ~[9]; let mut v2 = ~[9]; check_sort(v1, v2); } |
| { |
| let mut v1 = ~[9, 3, 3, 3, 9]; |
| let mut v2 = ~[3, 3, 3, 9, 9]; |
| check_sort(v1, v2); |
| } |
| } |
| |
| #[test] |
| #[should_fail] |
| #[cfg(unix)] |
| fn crash_test() { |
| let rng = rand::Rng(); |
| let mut arr = do vec::from_fn(1000) |_i| { |
| let randVal = rng.gen_float(); |
| CVal { val: randVal } |
| }; |
| |
| tim_sort(arr); |
| fail!(~"Guarantee the fail"); |
| } |
| |
| struct DVal { val: uint } |
| |
| impl Ord for DVal { |
| fn lt(&self, _x: &DVal) -> bool { true } |
| fn le(&self, _x: &DVal) -> bool { true } |
| fn gt(&self, _x: &DVal) -> bool { true } |
| fn ge(&self, _x: &DVal) -> bool { true } |
| } |
| |
| #[test] |
| fn test_bad_Ord_impl() { |
| let rng = rand::Rng(); |
| let mut arr = do vec::from_fn(500) |_i| { |
| let randVal = rng.gen_uint(); |
| DVal { val: randVal } |
| }; |
| |
| tim_sort(arr); |
| } |
| } |
| |
| #[cfg(test)] |
| mod big_tests { |
| use core::prelude::*; |
| |
| use sort::*; |
| |
| use core::rand::RngUtil; |
| use core::rand; |
| use core::task; |
| use core::uint; |
| use core::vec; |
| |
| #[test] |
| fn test_unique() { |
| let low = 5; |
| let high = 10; |
| tabulate_unique(low, high); |
| } |
| |
| #[test] |
| fn test_managed() { |
| let low = 5; |
| let high = 10; |
| tabulate_managed(low, high); |
| } |
| |
| fn multiplyVec<T:Copy>(arr: &const [T], num: uint) -> ~[T] { |
| let size = arr.len(); |
| let res = do vec::from_fn(num) |i| { |
| arr[i % size] |
| }; |
| res |
| } |
| |
| fn makeRange(n: uint) -> ~[uint] { |
| let one = do vec::from_fn(n) |i| { i }; |
| let mut two = copy one; |
| vec::reverse(two); |
| vec::append(two, one) |
| } |
| |
| fn tabulate_unique(lo: uint, hi: uint) { |
| fn isSorted<T:Ord>(arr: &const [T]) { |
| for uint::range(0, arr.len()-1) |i| { |
| if arr[i] > arr[i+1] { |
| fail!(~"Array not sorted"); |
| } |
| } |
| } |
| |
| let rng = rand::Rng(); |
| |
| for uint::range(lo, hi) |i| { |
| let n = 1 << i; |
| let arr = do vec::from_fn(n) |_i| { |
| rng.gen_float() |
| }; |
| let mut arr = arr; |
| |
| tim_sort(arr); // *sort |
| isSorted(arr); |
| |
| vec::reverse(arr); |
| tim_sort(arr); // \sort |
| isSorted(arr); |
| |
| tim_sort(arr); // /sort |
| isSorted(arr); |
| |
| for 3.times { |
| let i1 = rng.gen_uint_range(0, n); |
| let i2 = rng.gen_uint_range(0, n); |
| arr[i1] <-> arr[i2]; |
| } |
| tim_sort(arr); // 3sort |
| isSorted(arr); |
| |
| if n >= 10 { |
| let size = arr.len(); |
| let mut idx = 1; |
| while idx <= 10 { |
| arr[size-idx] = rng.gen_float(); |
| idx += 1; |
| } |
| } |
| tim_sort(arr); // +sort |
| isSorted(arr); |
| |
| for (n/100).times { |
| let idx = rng.gen_uint_range(0, n); |
| arr[idx] = rng.gen_float(); |
| } |
| tim_sort(arr); |
| isSorted(arr); |
| |
| let mut arr = if n > 4 { |
| let part = vec::slice(arr, 0, 4); |
| multiplyVec(part, n) |
| } else { arr }; |
| tim_sort(arr); // ~sort |
| isSorted(arr); |
| |
| let mut arr = vec::from_elem(n, -0.5); |
| tim_sort(arr); // =sort |
| isSorted(arr); |
| |
| let half = n / 2; |
| let mut arr = makeRange(half).map(|i| *i as float); |
| tim_sort(arr); // !sort |
| isSorted(arr); |
| } |
| } |
| |
| fn tabulate_managed(lo: uint, hi: uint) { |
| fn isSorted<T:Ord>(arr: &const [@T]) { |
| for uint::range(0, arr.len()-1) |i| { |
| if arr[i] > arr[i+1] { |
| fail!(~"Array not sorted"); |
| } |
| } |
| } |
| |
| let rng = rand::Rng(); |
| |
| for uint::range(lo, hi) |i| { |
| let n = 1 << i; |
| let arr = do vec::from_fn(n) |_i| { |
| @rng.gen_float() |
| }; |
| let mut arr = arr; |
| |
| tim_sort(arr); // *sort |
| isSorted(arr); |
| |
| vec::reverse(arr); |
| tim_sort(arr); // \sort |
| isSorted(arr); |
| |
| tim_sort(arr); // /sort |
| isSorted(arr); |
| |
| for 3.times { |
| let i1 = rng.gen_uint_range(0, n); |
| let i2 = rng.gen_uint_range(0, n); |
| arr[i1] <-> arr[i2]; |
| } |
| tim_sort(arr); // 3sort |
| isSorted(arr); |
| |
| if n >= 10 { |
| let size = arr.len(); |
| let mut idx = 1; |
| while idx <= 10 { |
| arr[size-idx] = @rng.gen_float(); |
| idx += 1; |
| } |
| } |
| tim_sort(arr); // +sort |
| isSorted(arr); |
| |
| for (n/100).times { |
| let idx = rng.gen_uint_range(0, n); |
| arr[idx] = @rng.gen_float(); |
| } |
| tim_sort(arr); |
| isSorted(arr); |
| |
| let mut arr = if n > 4 { |
| let part = vec::slice(arr, 0, 4); |
| multiplyVec(part, n) |
| } else { arr }; |
| tim_sort(arr); // ~sort |
| isSorted(arr); |
| |
| let mut arr = vec::from_elem(n, @(-0.5)); |
| tim_sort(arr); // =sort |
| isSorted(arr); |
| |
| let half = n / 2; |
| let mut arr = makeRange(half).map(|i| @(*i as float)); |
| tim_sort(arr); // !sort |
| isSorted(arr); |
| } |
| } |
| |
| struct LVal<'self> { |
| val: uint, |
| key: &'self fn(@uint), |
| } |
| |
| #[unsafe_destructor] |
| impl<'self> Drop for LVal<'self> { |
| fn finalize(&self) { |
| let x = unsafe { task::local_data::local_data_get(self.key) }; |
| match x { |
| Some(@y) => { |
| unsafe { |
| task::local_data::local_data_set(self.key, @(y+1)); |
| } |
| } |
| _ => fail!(~"Expected key to work"), |
| } |
| } |
| } |
| |
| impl<'self> Ord for LVal<'self> { |
| fn lt<'a>(&self, other: &'a LVal<'self>) -> bool { |
| (*self).val < other.val |
| } |
| fn le<'a>(&self, other: &'a LVal<'self>) -> bool { |
| (*self).val <= other.val |
| } |
| fn gt<'a>(&self, other: &'a LVal<'self>) -> bool { |
| (*self).val > other.val |
| } |
| fn ge<'a>(&self, other: &'a LVal<'self>) -> bool { |
| (*self).val >= other.val |
| } |
| } |
| } |
| |
| // Local Variables: |
| // mode: rust; |
| // fill-column: 78; |
| // indent-tabs-mode: nil |
| // c-basic-offset: 4 |
| // buffer-file-coding-system: utf-8-unix |
| // End: |