| //! # Token Streams |
| //! |
| //! `TokenStream`s represent syntactic objects before they are converted into ASTs. |
| //! A `TokenStream` is, roughly speaking, a sequence of [`TokenTree`]s, |
| //! which are themselves a single [`Token`] or a `Delimited` subsequence of tokens. |
| //! |
| //! ## Ownership |
| //! |
| //! `TokenStream`s are persistent data structures constructed as ropes with reference |
| //! counted-children. In general, this means that calling an operation on a `TokenStream` |
| //! (such as `slice`) produces an entirely new `TokenStream` from the borrowed reference to |
| //! the original. This essentially coerces `TokenStream`s into "views" of their subparts, |
| //! and a borrowed `TokenStream` is sufficient to build an owned `TokenStream` without taking |
| //! ownership of the original. |
| |
| use crate::ast::StmtKind; |
| use crate::ast_traits::{HasAttrs, HasSpan, HasTokens}; |
| use crate::token::{self, Delimiter, Nonterminal, Token, TokenKind}; |
| use crate::AttrVec; |
| |
| use rustc_data_structures::stable_hasher::{HashStable, StableHasher}; |
| use rustc_data_structures::sync::{self, Lrc}; |
| use rustc_macros::HashStable_Generic; |
| use rustc_serialize::{Decodable, Decoder, Encodable, Encoder}; |
| use rustc_span::{Span, DUMMY_SP}; |
| use smallvec::{smallvec, SmallVec}; |
| |
| use std::{fmt, iter}; |
| |
| /// When the main Rust parser encounters a syntax-extension invocation, it |
| /// parses the arguments to the invocation as a token tree. This is a very |
| /// loose structure, such that all sorts of different AST fragments can |
| /// be passed to syntax extensions using a uniform type. |
| /// |
| /// If the syntax extension is an MBE macro, it will attempt to match its |
| /// LHS token tree against the provided token tree, and if it finds a |
| /// match, will transcribe the RHS token tree, splicing in any captured |
| /// `macro_parser::matched_nonterminals` into the `SubstNt`s it finds. |
| /// |
| /// The RHS of an MBE macro is the only place `SubstNt`s are substituted. |
| /// Nothing special happens to misnamed or misplaced `SubstNt`s. |
| #[derive(Debug, Clone, PartialEq, Encodable, Decodable, HashStable_Generic)] |
| pub enum TokenTree { |
| /// A single token. |
| Token(Token), |
| /// A delimited sequence of token trees. |
| Delimited(DelimSpan, Delimiter, TokenStream), |
| } |
| |
| // Ensure all fields of `TokenTree` is `Send` and `Sync`. |
| #[cfg(parallel_compiler)] |
| fn _dummy() |
| where |
| Token: Send + Sync, |
| DelimSpan: Send + Sync, |
| Delimiter: Send + Sync, |
| TokenStream: Send + Sync, |
| { |
| } |
| |
| impl TokenTree { |
| /// Checks if this `TokenTree` is equal to the other, regardless of span information. |
| pub fn eq_unspanned(&self, other: &TokenTree) -> bool { |
| match (self, other) { |
| (TokenTree::Token(token), TokenTree::Token(token2)) => token.kind == token2.kind, |
| (TokenTree::Delimited(_, delim, tts), TokenTree::Delimited(_, delim2, tts2)) => { |
| delim == delim2 && tts.eq_unspanned(&tts2) |
| } |
| _ => false, |
| } |
| } |
| |
| /// Retrieves the `TokenTree`'s span. |
| pub fn span(&self) -> Span { |
| match self { |
| TokenTree::Token(token) => token.span, |
| TokenTree::Delimited(sp, ..) => sp.entire(), |
| } |
| } |
| |
| /// Modify the `TokenTree`'s span in-place. |
| pub fn set_span(&mut self, span: Span) { |
| match self { |
| TokenTree::Token(token) => token.span = span, |
| TokenTree::Delimited(dspan, ..) => *dspan = DelimSpan::from_single(span), |
| } |
| } |
| |
| pub fn token(kind: TokenKind, span: Span) -> TokenTree { |
| TokenTree::Token(Token::new(kind, span)) |
| } |
| |
| pub fn uninterpolate(self) -> TokenTree { |
| match self { |
| TokenTree::Token(token) => TokenTree::Token(token.uninterpolate().into_owned()), |
| tt => tt, |
| } |
| } |
| } |
| |
| impl<CTX> HashStable<CTX> for TokenStream |
| where |
| CTX: crate::HashStableContext, |
| { |
| fn hash_stable(&self, hcx: &mut CTX, hasher: &mut StableHasher) { |
| for sub_tt in self.trees() { |
| sub_tt.hash_stable(hcx, hasher); |
| } |
| } |
| } |
| |
| pub trait CreateTokenStream: sync::Send + sync::Sync { |
| fn create_token_stream(&self) -> AttrAnnotatedTokenStream; |
| } |
| |
| impl CreateTokenStream for AttrAnnotatedTokenStream { |
| fn create_token_stream(&self) -> AttrAnnotatedTokenStream { |
| self.clone() |
| } |
| } |
| |
| /// A lazy version of [`TokenStream`], which defers creation |
| /// of an actual `TokenStream` until it is needed. |
| /// `Box` is here only to reduce the structure size. |
| #[derive(Clone)] |
| pub struct LazyTokenStream(Lrc<Box<dyn CreateTokenStream>>); |
| |
| impl LazyTokenStream { |
| pub fn new(inner: impl CreateTokenStream + 'static) -> LazyTokenStream { |
| LazyTokenStream(Lrc::new(Box::new(inner))) |
| } |
| |
| pub fn create_token_stream(&self) -> AttrAnnotatedTokenStream { |
| self.0.create_token_stream() |
| } |
| } |
| |
| impl fmt::Debug for LazyTokenStream { |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| write!(f, "LazyTokenStream({:?})", self.create_token_stream()) |
| } |
| } |
| |
| impl<S: Encoder> Encodable<S> for LazyTokenStream { |
| fn encode(&self, s: &mut S) { |
| // Used by AST json printing. |
| Encodable::encode(&self.create_token_stream(), s); |
| } |
| } |
| |
| impl<D: Decoder> Decodable<D> for LazyTokenStream { |
| fn decode(_d: &mut D) -> Self { |
| panic!("Attempted to decode LazyTokenStream"); |
| } |
| } |
| |
| impl<CTX> HashStable<CTX> for LazyTokenStream { |
| fn hash_stable(&self, _hcx: &mut CTX, _hasher: &mut StableHasher) { |
| panic!("Attempted to compute stable hash for LazyTokenStream"); |
| } |
| } |
| |
| /// A `AttrAnnotatedTokenStream` is similar to a `TokenStream`, but with extra |
| /// information about the tokens for attribute targets. This is used |
| /// during expansion to perform early cfg-expansion, and to process attributes |
| /// during proc-macro invocations. |
| #[derive(Clone, Debug, Default, Encodable, Decodable)] |
| pub struct AttrAnnotatedTokenStream(pub Lrc<Vec<(AttrAnnotatedTokenTree, Spacing)>>); |
| |
| /// Like `TokenTree`, but for `AttrAnnotatedTokenStream` |
| #[derive(Clone, Debug, Encodable, Decodable)] |
| pub enum AttrAnnotatedTokenTree { |
| Token(Token), |
| Delimited(DelimSpan, Delimiter, AttrAnnotatedTokenStream), |
| /// Stores the attributes for an attribute target, |
| /// along with the tokens for that attribute target. |
| /// See `AttributesData` for more information |
| Attributes(AttributesData), |
| } |
| |
| impl AttrAnnotatedTokenStream { |
| pub fn new(tokens: Vec<(AttrAnnotatedTokenTree, Spacing)>) -> AttrAnnotatedTokenStream { |
| AttrAnnotatedTokenStream(Lrc::new(tokens)) |
| } |
| |
| /// Converts this `AttrAnnotatedTokenStream` to a plain `TokenStream |
| /// During conversion, `AttrAnnotatedTokenTree::Attributes` get 'flattened' |
| /// back to a `TokenStream` of the form `outer_attr attr_target`. |
| /// If there are inner attributes, they are inserted into the proper |
| /// place in the attribute target tokens. |
| pub fn to_tokenstream(&self) -> TokenStream { |
| let trees: Vec<_> = self |
| .0 |
| .iter() |
| .flat_map(|tree| match &tree.0 { |
| AttrAnnotatedTokenTree::Token(inner) => { |
| smallvec![(TokenTree::Token(inner.clone()), tree.1)].into_iter() |
| } |
| AttrAnnotatedTokenTree::Delimited(span, delim, stream) => smallvec![( |
| TokenTree::Delimited(*span, *delim, stream.to_tokenstream()), |
| tree.1, |
| )] |
| .into_iter(), |
| AttrAnnotatedTokenTree::Attributes(data) => { |
| let mut outer_attrs = Vec::new(); |
| let mut inner_attrs = Vec::new(); |
| for attr in &data.attrs { |
| match attr.style { |
| crate::AttrStyle::Outer => { |
| outer_attrs.push(attr); |
| } |
| crate::AttrStyle::Inner => { |
| inner_attrs.push(attr); |
| } |
| } |
| } |
| |
| let mut target_tokens: Vec<_> = data |
| .tokens |
| .create_token_stream() |
| .to_tokenstream() |
| .0 |
| .iter() |
| .cloned() |
| .collect(); |
| if !inner_attrs.is_empty() { |
| let mut found = false; |
| // Check the last two trees (to account for a trailing semi) |
| for (tree, _) in target_tokens.iter_mut().rev().take(2) { |
| if let TokenTree::Delimited(span, delim, delim_tokens) = tree { |
| // Inner attributes are only supported on extern blocks, functions, impls, |
| // and modules. All of these have their inner attributes placed at |
| // the beginning of the rightmost outermost braced group: |
| // e.g. fn foo() { #![my_attr} } |
| // |
| // Therefore, we can insert them back into the right location |
| // without needing to do any extra position tracking. |
| // |
| // Note: Outline modules are an exception - they can |
| // have attributes like `#![my_attr]` at the start of a file. |
| // Support for custom attributes in this position is not |
| // properly implemented - we always synthesize fake tokens, |
| // so we never reach this code. |
| |
| let mut builder = TokenStreamBuilder::new(); |
| for inner_attr in inner_attrs { |
| builder.push(inner_attr.tokens().to_tokenstream()); |
| } |
| builder.push(delim_tokens.clone()); |
| *tree = TokenTree::Delimited(*span, *delim, builder.build()); |
| found = true; |
| break; |
| } |
| } |
| |
| assert!( |
| found, |
| "Failed to find trailing delimited group in: {:?}", |
| target_tokens |
| ); |
| } |
| let mut flat: SmallVec<[_; 1]> = SmallVec::new(); |
| for attr in outer_attrs { |
| // FIXME: Make this more efficient |
| flat.extend(attr.tokens().to_tokenstream().0.clone().iter().cloned()); |
| } |
| flat.extend(target_tokens); |
| flat.into_iter() |
| } |
| }) |
| .collect(); |
| TokenStream::new(trees) |
| } |
| } |
| |
| /// Stores the tokens for an attribute target, along |
| /// with its attributes. |
| /// |
| /// This is constructed during parsing when we need to capture |
| /// tokens. |
| /// |
| /// For example, `#[cfg(FALSE)] struct Foo {}` would |
| /// have an `attrs` field containing the `#[cfg(FALSE)]` attr, |
| /// and a `tokens` field storing the (unparsed) tokens `struct Foo {}` |
| #[derive(Clone, Debug, Encodable, Decodable)] |
| pub struct AttributesData { |
| /// Attributes, both outer and inner. |
| /// These are stored in the original order that they were parsed in. |
| pub attrs: AttrVec, |
| /// The underlying tokens for the attribute target that `attrs` |
| /// are applied to |
| pub tokens: LazyTokenStream, |
| } |
| |
| /// A `TokenStream` is an abstract sequence of tokens, organized into [`TokenTree`]s. |
| /// |
| /// The goal is for procedural macros to work with `TokenStream`s and `TokenTree`s |
| /// instead of a representation of the abstract syntax tree. |
| /// Today's `TokenTree`s can still contain AST via `token::Interpolated` for |
| /// backwards compatibility. |
| #[derive(Clone, Debug, Default, Encodable, Decodable)] |
| pub struct TokenStream(pub(crate) Lrc<Vec<TreeAndSpacing>>); |
| |
| pub type TreeAndSpacing = (TokenTree, Spacing); |
| |
| // `TokenStream` is used a lot. Make sure it doesn't unintentionally get bigger. |
| #[cfg(all(target_arch = "x86_64", target_pointer_width = "64"))] |
| rustc_data_structures::static_assert_size!(TokenStream, 8); |
| |
| #[derive(Clone, Copy, Debug, PartialEq, Encodable, Decodable)] |
| pub enum Spacing { |
| Alone, |
| Joint, |
| } |
| |
| impl TokenStream { |
| /// Given a `TokenStream` with a `Stream` of only two arguments, return a new `TokenStream` |
| /// separating the two arguments with a comma for diagnostic suggestions. |
| pub fn add_comma(&self) -> Option<(TokenStream, Span)> { |
| // Used to suggest if a user writes `foo!(a b);` |
| let mut suggestion = None; |
| let mut iter = self.0.iter().enumerate().peekable(); |
| while let Some((pos, ts)) = iter.next() { |
| if let Some((_, next)) = iter.peek() { |
| let sp = match (&ts, &next) { |
| (_, (TokenTree::Token(Token { kind: token::Comma, .. }), _)) => continue, |
| ( |
| (TokenTree::Token(token_left), Spacing::Alone), |
| (TokenTree::Token(token_right), _), |
| ) if ((token_left.is_ident() && !token_left.is_reserved_ident()) |
| || token_left.is_lit()) |
| && ((token_right.is_ident() && !token_right.is_reserved_ident()) |
| || token_right.is_lit()) => |
| { |
| token_left.span |
| } |
| ((TokenTree::Delimited(sp, ..), Spacing::Alone), _) => sp.entire(), |
| _ => continue, |
| }; |
| let sp = sp.shrink_to_hi(); |
| let comma = (TokenTree::token(token::Comma, sp), Spacing::Alone); |
| suggestion = Some((pos, comma, sp)); |
| } |
| } |
| if let Some((pos, comma, sp)) = suggestion { |
| let mut new_stream = Vec::with_capacity(self.0.len() + 1); |
| let parts = self.0.split_at(pos + 1); |
| new_stream.extend_from_slice(parts.0); |
| new_stream.push(comma); |
| new_stream.extend_from_slice(parts.1); |
| return Some((TokenStream::new(new_stream), sp)); |
| } |
| None |
| } |
| } |
| |
| impl From<(AttrAnnotatedTokenTree, Spacing)> for AttrAnnotatedTokenStream { |
| fn from((tree, spacing): (AttrAnnotatedTokenTree, Spacing)) -> AttrAnnotatedTokenStream { |
| AttrAnnotatedTokenStream::new(vec![(tree, spacing)]) |
| } |
| } |
| |
| impl From<TokenTree> for TokenStream { |
| fn from(tree: TokenTree) -> TokenStream { |
| TokenStream::new(vec![(tree, Spacing::Alone)]) |
| } |
| } |
| |
| impl From<TokenTree> for TreeAndSpacing { |
| fn from(tree: TokenTree) -> TreeAndSpacing { |
| (tree, Spacing::Alone) |
| } |
| } |
| |
| impl iter::FromIterator<TokenTree> for TokenStream { |
| fn from_iter<I: IntoIterator<Item = TokenTree>>(iter: I) -> Self { |
| TokenStream::new(iter.into_iter().map(Into::into).collect::<Vec<TreeAndSpacing>>()) |
| } |
| } |
| |
| impl Eq for TokenStream {} |
| |
| impl PartialEq<TokenStream> for TokenStream { |
| fn eq(&self, other: &TokenStream) -> bool { |
| self.trees().eq(other.trees()) |
| } |
| } |
| |
| impl TokenStream { |
| pub fn new(streams: Vec<TreeAndSpacing>) -> TokenStream { |
| TokenStream(Lrc::new(streams)) |
| } |
| |
| pub fn is_empty(&self) -> bool { |
| self.0.is_empty() |
| } |
| |
| pub fn len(&self) -> usize { |
| self.0.len() |
| } |
| |
| pub fn trees(&self) -> CursorRef<'_> { |
| CursorRef::new(self) |
| } |
| |
| pub fn into_trees(self) -> Cursor { |
| Cursor::new(self) |
| } |
| |
| /// Compares two `TokenStream`s, checking equality without regarding span information. |
| pub fn eq_unspanned(&self, other: &TokenStream) -> bool { |
| let mut t1 = self.trees(); |
| let mut t2 = other.trees(); |
| for (t1, t2) in iter::zip(&mut t1, &mut t2) { |
| if !t1.eq_unspanned(&t2) { |
| return false; |
| } |
| } |
| t1.next().is_none() && t2.next().is_none() |
| } |
| |
| pub fn map_enumerated<F: FnMut(usize, &TokenTree) -> TokenTree>(self, mut f: F) -> TokenStream { |
| TokenStream(Lrc::new( |
| self.0 |
| .iter() |
| .enumerate() |
| .map(|(i, (tree, is_joint))| (f(i, tree), *is_joint)) |
| .collect(), |
| )) |
| } |
| |
| fn opt_from_ast(node: &(impl HasAttrs + HasTokens)) -> Option<TokenStream> { |
| let tokens = node.tokens()?; |
| let attrs = node.attrs(); |
| let attr_annotated = if attrs.is_empty() { |
| tokens.create_token_stream() |
| } else { |
| let attr_data = AttributesData { attrs: attrs.to_vec().into(), tokens: tokens.clone() }; |
| AttrAnnotatedTokenStream::new(vec![( |
| AttrAnnotatedTokenTree::Attributes(attr_data), |
| Spacing::Alone, |
| )]) |
| }; |
| Some(attr_annotated.to_tokenstream()) |
| } |
| |
| pub fn from_ast(node: &(impl HasAttrs + HasSpan + HasTokens + fmt::Debug)) -> TokenStream { |
| TokenStream::opt_from_ast(node) |
| .unwrap_or_else(|| panic!("missing tokens for node at {:?}: {:?}", node.span(), node)) |
| } |
| |
| pub fn from_nonterminal_ast(nt: &Nonterminal) -> TokenStream { |
| match nt { |
| Nonterminal::NtIdent(ident, is_raw) => { |
| TokenTree::token(token::Ident(ident.name, *is_raw), ident.span).into() |
| } |
| Nonterminal::NtLifetime(ident) => { |
| TokenTree::token(token::Lifetime(ident.name), ident.span).into() |
| } |
| Nonterminal::NtItem(item) => TokenStream::from_ast(item), |
| Nonterminal::NtBlock(block) => TokenStream::from_ast(block), |
| Nonterminal::NtStmt(stmt) if let StmtKind::Empty = stmt.kind => { |
| // FIXME: Properly collect tokens for empty statements. |
| TokenTree::token(token::Semi, stmt.span).into() |
| } |
| Nonterminal::NtStmt(stmt) => TokenStream::from_ast(stmt), |
| Nonterminal::NtPat(pat) => TokenStream::from_ast(pat), |
| Nonterminal::NtTy(ty) => TokenStream::from_ast(ty), |
| Nonterminal::NtMeta(attr) => TokenStream::from_ast(attr), |
| Nonterminal::NtPath(path) => TokenStream::from_ast(path), |
| Nonterminal::NtVis(vis) => TokenStream::from_ast(vis), |
| Nonterminal::NtExpr(expr) | Nonterminal::NtLiteral(expr) => TokenStream::from_ast(expr), |
| } |
| } |
| |
| fn flatten_token(token: &Token) -> TokenTree { |
| match &token.kind { |
| token::Interpolated(nt) if let token::NtIdent(ident, is_raw) = **nt => { |
| TokenTree::token(token::Ident(ident.name, is_raw), ident.span) |
| } |
| token::Interpolated(nt) => TokenTree::Delimited( |
| DelimSpan::from_single(token.span), |
| Delimiter::Invisible, |
| TokenStream::from_nonterminal_ast(&nt).flattened(), |
| ), |
| _ => TokenTree::Token(token.clone()), |
| } |
| } |
| |
| fn flatten_token_tree(tree: &TokenTree) -> TokenTree { |
| match tree { |
| TokenTree::Token(token) => TokenStream::flatten_token(token), |
| TokenTree::Delimited(span, delim, tts) => { |
| TokenTree::Delimited(*span, *delim, tts.flattened()) |
| } |
| } |
| } |
| |
| #[must_use] |
| pub fn flattened(&self) -> TokenStream { |
| fn can_skip(stream: &TokenStream) -> bool { |
| stream.trees().all(|tree| match tree { |
| TokenTree::Token(token) => !matches!(token.kind, token::Interpolated(_)), |
| TokenTree::Delimited(_, _, inner) => can_skip(inner), |
| }) |
| } |
| |
| if can_skip(self) { |
| return self.clone(); |
| } |
| |
| self.trees().map(|tree| TokenStream::flatten_token_tree(tree)).collect() |
| } |
| } |
| |
| // 99.5%+ of the time we have 1 or 2 elements in this vector. |
| #[derive(Clone)] |
| pub struct TokenStreamBuilder(SmallVec<[TokenStream; 2]>); |
| |
| impl TokenStreamBuilder { |
| pub fn new() -> TokenStreamBuilder { |
| TokenStreamBuilder(SmallVec::new()) |
| } |
| |
| pub fn push<T: Into<TokenStream>>(&mut self, stream: T) { |
| self.0.push(stream.into()); |
| } |
| |
| pub fn build(self) -> TokenStream { |
| let mut streams = self.0; |
| match streams.len() { |
| 0 => TokenStream::default(), |
| 1 => streams.pop().unwrap(), |
| _ => { |
| // We will extend the first stream in `streams` with the |
| // elements from the subsequent streams. This requires using |
| // `make_mut()` on the first stream, and in practice this |
| // doesn't cause cloning 99.9% of the time. |
| // |
| // One very common use case is when `streams` has two elements, |
| // where the first stream has any number of elements within |
| // (often 1, but sometimes many more) and the second stream has |
| // a single element within. |
| |
| // Determine how much the first stream will be extended. |
| // Needed to avoid quadratic blow up from on-the-fly |
| // reallocations (#57735). |
| let num_appends = streams.iter().skip(1).map(|ts| ts.len()).sum(); |
| |
| // Get the first stream, which will become the result stream. |
| // If it's `None`, create an empty stream. |
| let mut iter = streams.drain(..); |
| let mut res_stream_lrc = iter.next().unwrap().0; |
| |
| // Append the subsequent elements to the result stream, after |
| // reserving space for them. |
| let res_vec_mut = Lrc::make_mut(&mut res_stream_lrc); |
| res_vec_mut.reserve(num_appends); |
| for stream in iter { |
| let stream_iter = stream.0.iter().cloned(); |
| |
| // If (a) `res_mut_vec` is not empty and the last tree |
| // within it is a token tree marked with `Joint`, and (b) |
| // `stream` is not empty and the first tree within it is a |
| // token tree, and (c) the two tokens can be glued |
| // together... |
| if let Some((TokenTree::Token(last_tok), Spacing::Joint)) = res_vec_mut.last() |
| && let Some((TokenTree::Token(tok), spacing)) = stream.0.first() |
| && let Some(glued_tok) = last_tok.glue(&tok) |
| { |
| // ...then overwrite the last token tree in |
| // `res_vec_mut` with the glued token, and skip the |
| // first token tree from `stream`. |
| *res_vec_mut.last_mut().unwrap() = (TokenTree::Token(glued_tok), *spacing); |
| res_vec_mut.extend(stream_iter.skip(1)); |
| } else { |
| // Append all of `stream`. |
| res_vec_mut.extend(stream_iter); |
| } |
| } |
| |
| TokenStream(res_stream_lrc) |
| } |
| } |
| } |
| } |
| |
| /// By-reference iterator over a [`TokenStream`]. |
| #[derive(Clone)] |
| pub struct CursorRef<'t> { |
| stream: &'t TokenStream, |
| index: usize, |
| } |
| |
| impl<'t> CursorRef<'t> { |
| fn new(stream: &'t TokenStream) -> Self { |
| CursorRef { stream, index: 0 } |
| } |
| |
| #[inline] |
| fn next_with_spacing(&mut self) -> Option<&'t TreeAndSpacing> { |
| self.stream.0.get(self.index).map(|tree| { |
| self.index += 1; |
| tree |
| }) |
| } |
| |
| pub fn look_ahead(&self, n: usize) -> Option<&TokenTree> { |
| self.stream.0[self.index..].get(n).map(|(tree, _)| tree) |
| } |
| } |
| |
| impl<'t> Iterator for CursorRef<'t> { |
| type Item = &'t TokenTree; |
| |
| fn next(&mut self) -> Option<&'t TokenTree> { |
| self.next_with_spacing().map(|(tree, _)| tree) |
| } |
| } |
| |
| /// Owning by-value iterator over a [`TokenStream`]. |
| // FIXME: Many uses of this can be replaced with by-reference iterator to avoid clones. |
| #[derive(Clone)] |
| pub struct Cursor { |
| pub stream: TokenStream, |
| index: usize, |
| } |
| |
| impl Iterator for Cursor { |
| type Item = TokenTree; |
| |
| fn next(&mut self) -> Option<TokenTree> { |
| self.next_with_spacing().map(|(tree, _)| tree) |
| } |
| } |
| |
| impl Cursor { |
| fn new(stream: TokenStream) -> Self { |
| Cursor { stream, index: 0 } |
| } |
| |
| #[inline] |
| pub fn next_with_spacing(&mut self) -> Option<TreeAndSpacing> { |
| self.stream.0.get(self.index).map(|tree| { |
| self.index += 1; |
| tree.clone() |
| }) |
| } |
| |
| #[inline] |
| pub fn next_with_spacing_ref(&mut self) -> Option<&TreeAndSpacing> { |
| self.stream.0.get(self.index).map(|tree| { |
| self.index += 1; |
| tree |
| }) |
| } |
| |
| pub fn look_ahead(&self, n: usize) -> Option<&TokenTree> { |
| self.stream.0[self.index..].get(n).map(|(tree, _)| tree) |
| } |
| } |
| |
| #[derive(Debug, Copy, Clone, PartialEq, Encodable, Decodable, HashStable_Generic)] |
| pub struct DelimSpan { |
| pub open: Span, |
| pub close: Span, |
| } |
| |
| impl DelimSpan { |
| pub fn from_single(sp: Span) -> Self { |
| DelimSpan { open: sp, close: sp } |
| } |
| |
| pub fn from_pair(open: Span, close: Span) -> Self { |
| DelimSpan { open, close } |
| } |
| |
| pub fn dummy() -> Self { |
| Self::from_single(DUMMY_SP) |
| } |
| |
| pub fn entire(self) -> Span { |
| self.open.with_hi(self.close.hi()) |
| } |
| } |