blob: d3a2c4d20f95d5e0935003409473f2b9da99a7a0 [file] [log] [blame]
use rustc_infer::infer::TyCtxtInferExt;
use rustc_middle::query::Providers;
use rustc_middle::traits::query::NoSolution;
use rustc_middle::ty::{self, PseudoCanonicalInput, TyCtxt, TypeFoldable, TypeVisitableExt};
use rustc_trait_selection::traits::query::normalize::QueryNormalizeExt;
use rustc_trait_selection::traits::{Normalized, ObligationCause};
use tracing::debug;
pub(crate) fn provide(p: &mut Providers) {
*p = Providers {
try_normalize_generic_arg_after_erasing_regions: |tcx, goal| {
debug!("try_normalize_generic_arg_after_erasing_regions(goal={:#?}", goal);
try_normalize_after_erasing_regions(tcx, goal)
},
..*p
};
}
fn try_normalize_after_erasing_regions<'tcx, T: TypeFoldable<TyCtxt<'tcx>> + PartialEq + Copy>(
tcx: TyCtxt<'tcx>,
goal: PseudoCanonicalInput<'tcx, T>,
) -> Result<T, NoSolution> {
let PseudoCanonicalInput { typing_env, value } = goal;
let (infcx, param_env) = tcx.infer_ctxt().build_with_typing_env(typing_env);
let cause = ObligationCause::dummy();
match infcx.at(&cause, param_env).query_normalize(value) {
Ok(Normalized { value: normalized_value, obligations: normalized_obligations }) => {
// We don't care about the `obligations`; they are
// always only region relations, and we are about to
// erase those anyway:
// This has been seen to fail in RL, so making it a non-debug assertion to better catch
// those cases.
assert_eq!(
normalized_obligations.iter().find(|p| not_outlives_predicate(p.predicate)),
None,
);
let resolved_value = infcx.resolve_vars_if_possible(normalized_value);
// It's unclear when `resolve_vars` would have an effect in a
// fresh `InferCtxt`. If this assert does trigger, it will give
// us a test case.
debug_assert_eq!(normalized_value, resolved_value);
let erased = infcx.tcx.erase_and_anonymize_regions(resolved_value);
if infcx.next_trait_solver() {
debug_assert!(!erased.has_infer(), "{erased:?}");
} else {
// The old solver returns an ty var with the failed obligation in case of
// selection error. And when the obligation is re-tried, the error should be
// reported. However in case of overflow error, the obligation may be fulfilled
// due to the original depth being dropped.
// In conclusion, overflow results in an unconstrained ty var.
if erased.has_infer() {
return Err(NoSolution);
}
}
Ok(erased)
}
Err(NoSolution) => Err(NoSolution),
}
}
fn not_outlives_predicate(p: ty::Predicate<'_>) -> bool {
match p.kind().skip_binder() {
ty::PredicateKind::Clause(ty::ClauseKind::RegionOutlives(..))
| ty::PredicateKind::Clause(ty::ClauseKind::TypeOutlives(..)) => false,
ty::PredicateKind::Clause(ty::ClauseKind::Trait(..))
| ty::PredicateKind::Clause(ty::ClauseKind::Projection(..))
| ty::PredicateKind::Clause(ty::ClauseKind::HostEffect(..))
| ty::PredicateKind::Clause(ty::ClauseKind::ConstArgHasType(..))
| ty::PredicateKind::Clause(ty::ClauseKind::UnstableFeature(_))
| ty::PredicateKind::NormalizesTo(..)
| ty::PredicateKind::AliasRelate(..)
| ty::PredicateKind::Clause(ty::ClauseKind::WellFormed(..))
| ty::PredicateKind::DynCompatible(..)
| ty::PredicateKind::Subtype(..)
| ty::PredicateKind::Coerce(..)
| ty::PredicateKind::Clause(ty::ClauseKind::ConstEvaluatable(..))
| ty::PredicateKind::ConstEquate(..)
| ty::PredicateKind::Ambiguous => true,
}
}