blob: da88e5c698bfe4e26063f0a00e16e2e6a9ec23c2 [file] [log] [blame]
use std::fmt::Debug;
use rustc_middle::mir::*;
use rustc_middle::ty::{Ty, TyCtxt};
use tracing::trace;
use super::simplify::simplify_cfg;
use crate::patch::MirPatch;
/// This pass optimizes something like
/// ```ignore (syntax-highlighting-only)
/// let x: Option<()>;
/// let y: Option<()>;
/// match (x,y) {
/// (Some(_), Some(_)) => {0},
/// (None, None) => {2},
/// _ => {1}
/// }
/// ```
/// into something like
/// ```ignore (syntax-highlighting-only)
/// let x: Option<()>;
/// let y: Option<()>;
/// let discriminant_x = std::mem::discriminant(x);
/// let discriminant_y = std::mem::discriminant(y);
/// if discriminant_x == discriminant_y {
/// match x {
/// Some(_) => 0,
/// None => 2,
/// }
/// } else {
/// 1
/// }
/// ```
///
/// Specifically, it looks for instances of control flow like this:
/// ```text
///
/// =================
/// | BB1 |
/// |---------------| ============================
/// | ... | /------> | BBC |
/// |---------------| | |--------------------------|
/// | switchInt(Q) | | | _cl = discriminant(P) |
/// | c | --------/ |--------------------------|
/// | d | -------\ | switchInt(_cl) |
/// | ... | | | c | ---> BBC.2
/// | otherwise | --\ | /--- | otherwise |
/// ================= | | | ============================
/// | | |
/// ================= | | |
/// | BBU | <-| | | ============================
/// |---------------| \-------> | BBD |
/// |---------------| | |--------------------------|
/// | unreachable | | | _dl = discriminant(P) |
/// ================= | |--------------------------|
/// | | switchInt(_dl) |
/// ================= | | d | ---> BBD.2
/// | BB9 | <--------------- | otherwise |
/// |---------------| ============================
/// | ... |
/// =================
/// ```
/// Where the `otherwise` branch on `BB1` is permitted to either go to `BBU`. In the
/// code:
/// - `BB1` is `parent` and `BBC, BBD` are children
/// - `P` is `child_place`
/// - `child_ty` is the type of `_cl`.
/// - `Q` is `parent_op`.
/// - `parent_ty` is the type of `Q`.
/// - `BB9` is `destination`
/// All this is then transformed into:
/// ```text
///
/// =======================
/// | BB1 |
/// |---------------------| ============================
/// | ... | /------> | BBEq |
/// | _s = discriminant(P)| | |--------------------------|
/// | _t = Ne(Q, _s) | | |--------------------------|
/// |---------------------| | | switchInt(Q) |
/// | switchInt(_t) | | | c | ---> BBC.2
/// | false | --------/ | d | ---> BBD.2
/// | otherwise | /--------- | otherwise |
/// ======================= | ============================
/// |
/// ================= |
/// | BB9 | <-----------/
/// |---------------|
/// | ... |
/// =================
/// ```
pub(super) struct EarlyOtherwiseBranch;
impl<'tcx> crate::MirPass<'tcx> for EarlyOtherwiseBranch {
fn is_enabled(&self, sess: &rustc_session::Session) -> bool {
sess.mir_opt_level() >= 2
}
fn run_pass(&self, tcx: TyCtxt<'tcx>, body: &mut Body<'tcx>) {
trace!("running EarlyOtherwiseBranch on {:?}", body.source);
let mut should_cleanup = false;
// Also consider newly generated bbs in the same pass
for parent in body.basic_blocks.indices() {
let bbs = &*body.basic_blocks;
let Some(opt_data) = evaluate_candidate(tcx, body, parent) else { continue };
trace!("SUCCESS: found optimization possibility to apply: {opt_data:?}");
should_cleanup = true;
let TerminatorKind::SwitchInt { discr: parent_op, targets: parent_targets } =
&bbs[parent].terminator().kind
else {
unreachable!()
};
// Always correct since we can only switch on `Copy` types
let parent_op = match parent_op {
Operand::Move(x) => Operand::Copy(*x),
Operand::Copy(x) => Operand::Copy(*x),
Operand::Constant(x) => Operand::Constant(x.clone()),
};
let parent_ty = parent_op.ty(body.local_decls(), tcx);
let statements_before = bbs[parent].statements.len();
let parent_end = Location { block: parent, statement_index: statements_before };
let mut patch = MirPatch::new(body);
let second_operand = if opt_data.need_hoist_discriminant {
// create temp to store second discriminant in, `_s` in example above
let second_discriminant_temp =
patch.new_temp(opt_data.child_ty, opt_data.child_source.span);
// create assignment of discriminant
patch.add_assign(
parent_end,
Place::from(second_discriminant_temp),
Rvalue::Discriminant(opt_data.child_place),
);
Operand::Move(Place::from(second_discriminant_temp))
} else {
Operand::Copy(opt_data.child_place)
};
// create temp to store inequality comparison between the two discriminants, `_t` in
// example above
let nequal = BinOp::Ne;
let comp_res_type = nequal.ty(tcx, parent_ty, opt_data.child_ty);
let comp_temp = patch.new_temp(comp_res_type, opt_data.child_source.span);
// create inequality comparison
let comp_rvalue =
Rvalue::BinaryOp(nequal, Box::new((parent_op.clone(), second_operand)));
patch.add_statement(
parent_end,
StatementKind::Assign(Box::new((Place::from(comp_temp), comp_rvalue))),
);
let eq_new_targets = parent_targets.iter().map(|(value, child)| {
let TerminatorKind::SwitchInt { targets, .. } = &bbs[child].terminator().kind
else {
unreachable!()
};
(value, targets.target_for_value(value))
});
// The otherwise either is the same target branch or an unreachable.
let eq_targets = SwitchTargets::new(eq_new_targets, parent_targets.otherwise());
// Create `bbEq` in example above
let eq_switch = BasicBlockData::new(
Some(Terminator {
source_info: bbs[parent].terminator().source_info,
kind: TerminatorKind::SwitchInt {
// switch on the first discriminant, so we can mark the second one as dead
discr: parent_op,
targets: eq_targets,
},
}),
bbs[parent].is_cleanup,
);
let eq_bb = patch.new_block(eq_switch);
// Jump to it on the basis of the inequality comparison
let true_case = opt_data.destination;
let false_case = eq_bb;
patch.patch_terminator(
parent,
TerminatorKind::if_(Operand::Move(Place::from(comp_temp)), true_case, false_case),
);
patch.apply(body);
}
// Since this optimization adds new basic blocks and invalidates others,
// clean up the cfg to make it nicer for other passes
if should_cleanup {
simplify_cfg(tcx, body);
}
}
fn is_required(&self) -> bool {
false
}
}
#[derive(Debug)]
struct OptimizationData<'tcx> {
destination: BasicBlock,
child_place: Place<'tcx>,
child_ty: Ty<'tcx>,
child_source: SourceInfo,
need_hoist_discriminant: bool,
}
fn evaluate_candidate<'tcx>(
tcx: TyCtxt<'tcx>,
body: &Body<'tcx>,
parent: BasicBlock,
) -> Option<OptimizationData<'tcx>> {
let bbs = &body.basic_blocks;
// NB: If this BB is a cleanup, we may need to figure out what else needs to be handled.
if bbs[parent].is_cleanup {
return None;
}
let TerminatorKind::SwitchInt { targets, discr: parent_discr } = &bbs[parent].terminator().kind
else {
return None;
};
let parent_ty = parent_discr.ty(body.local_decls(), tcx);
let (_, child) = targets.iter().next()?;
let Terminator {
kind: TerminatorKind::SwitchInt { targets: child_targets, discr: child_discr },
source_info,
} = bbs[child].terminator()
else {
return None;
};
let child_ty = child_discr.ty(body.local_decls(), tcx);
if child_ty != parent_ty {
return None;
}
// We only handle:
// ```
// bb4: {
// _8 = discriminant((_3.1: Enum1));
// switchInt(move _8) -> [2: bb7, otherwise: bb1];
// }
// ```
// and
// ```
// bb2: {
// switchInt((_3.1: u64)) -> [1: bb5, otherwise: bb1];
// }
// ```
if bbs[child].statements.len() > 1 {
return None;
}
// When thie BB has exactly one statement, this statement should be discriminant.
let need_hoist_discriminant = bbs[child].statements.len() == 1;
let child_place = if need_hoist_discriminant {
if !bbs[targets.otherwise()].is_empty_unreachable() {
// Someone could write code like this:
// ```rust
// let Q = val;
// if discriminant(P) == otherwise {
// let ptr = &mut Q as *mut _ as *mut u8;
// // It may be difficult for us to effectively determine whether values are valid.
// // Invalid values can come from all sorts of corners.
// unsafe { *ptr = 10; }
// }
//
// match P {
// A => match Q {
// A => {
// // code
// }
// _ => {
// // don't use Q
// }
// }
// _ => {
// // don't use Q
// }
// };
// ```
//
// Hoisting the `discriminant(Q)` out of the `A` arm causes us to compute the discriminant of an
// invalid value, which is UB.
// In order to fix this, **we would either need to show that the discriminant computation of
// `place` is computed in all branches**.
// FIXME(#95162) For the moment, we adopt a conservative approach and
// consider only the `otherwise` branch has no statements and an unreachable terminator.
return None;
}
// Handle:
// ```
// bb4: {
// _8 = discriminant((_3.1: Enum1));
// switchInt(move _8) -> [2: bb7, otherwise: bb1];
// }
// ```
let [
Statement {
kind: StatementKind::Assign(box (_, Rvalue::Discriminant(child_place))),
..
},
] = bbs[child].statements.as_slice()
else {
return None;
};
*child_place
} else {
// Handle:
// ```
// bb2: {
// switchInt((_3.1: u64)) -> [1: bb5, otherwise: bb1];
// }
// ```
let Operand::Copy(child_place) = child_discr else {
return None;
};
*child_place
};
let destination = if need_hoist_discriminant || bbs[targets.otherwise()].is_empty_unreachable()
{
child_targets.otherwise()
} else {
targets.otherwise()
};
// Verify that the optimization is legal for each branch
for (value, child) in targets.iter() {
if !verify_candidate_branch(
&bbs[child],
value,
child_place,
destination,
need_hoist_discriminant,
) {
return None;
}
}
Some(OptimizationData {
destination,
child_place,
child_ty,
child_source: *source_info,
need_hoist_discriminant,
})
}
fn verify_candidate_branch<'tcx>(
branch: &BasicBlockData<'tcx>,
value: u128,
place: Place<'tcx>,
destination: BasicBlock,
need_hoist_discriminant: bool,
) -> bool {
// In order for the optimization to be correct, the terminator must be a `SwitchInt`.
let TerminatorKind::SwitchInt { discr: switch_op, targets } = &branch.terminator().kind else {
return false;
};
if need_hoist_discriminant {
// If we need hoist discriminant, the branch must have exactly one statement.
let [statement] = branch.statements.as_slice() else {
return false;
};
// The statement must assign the discriminant of `place`.
let StatementKind::Assign(box (discr_place, Rvalue::Discriminant(from_place))) =
statement.kind
else {
return false;
};
if from_place != place {
return false;
}
// The assignment must invalidate a local that terminate on a `SwitchInt`.
if !discr_place.projection.is_empty() || *switch_op != Operand::Move(discr_place) {
return false;
}
} else {
// If we don't need hoist discriminant, the branch must not have any statements.
if !branch.statements.is_empty() {
return false;
}
// The place on `SwitchInt` must be the same.
if *switch_op != Operand::Copy(place) {
return false;
}
}
// It must fall through to `destination` if the switch misses.
if destination != targets.otherwise() {
return false;
}
// It must have exactly one branch for value `value` and have no more branches.
let mut iter = targets.iter();
let (Some((target_value, _)), None) = (iter.next(), iter.next()) else {
return false;
};
target_value == value
}