blob: fdae5c08f1e8e373c6c49f0a39d2c596a14aa4ab [file] [log] [blame]
//! Defines the `IntoIter` owned iterator for arrays.
use crate::intrinsics::transmute_unchecked;
use crate::iter::{FusedIterator, TrustedLen, TrustedRandomAccessNoCoerce};
use crate::mem::MaybeUninit;
use crate::num::NonZero;
use crate::ops::{IndexRange, Range, Try};
use crate::{fmt, ptr};
mod iter_inner;
type InnerSized<T, const N: usize> = iter_inner::PolymorphicIter<[MaybeUninit<T>; N]>;
type InnerUnsized<T> = iter_inner::PolymorphicIter<[MaybeUninit<T>]>;
/// A by-value [array] iterator.
#[stable(feature = "array_value_iter", since = "1.51.0")]
#[rustc_insignificant_dtor]
#[rustc_diagnostic_item = "ArrayIntoIter"]
#[derive(Clone)]
pub struct IntoIter<T, const N: usize> {
inner: InnerSized<T, N>,
}
impl<T, const N: usize> IntoIter<T, N> {
#[inline]
fn unsize(&self) -> &InnerUnsized<T> {
&self.inner
}
#[inline]
fn unsize_mut(&mut self) -> &mut InnerUnsized<T> {
&mut self.inner
}
}
// Note: the `#[rustc_skip_during_method_dispatch(array)]` on `trait IntoIterator`
// hides this implementation from explicit `.into_iter()` calls on editions < 2021,
// so those calls will still resolve to the slice implementation, by reference.
#[stable(feature = "array_into_iter_impl", since = "1.53.0")]
impl<T, const N: usize> IntoIterator for [T; N] {
type Item = T;
type IntoIter = IntoIter<T, N>;
/// Creates a consuming iterator, that is, one that moves each value out of
/// the array (from start to end).
///
/// The array cannot be used after calling this unless `T` implements
/// `Copy`, so the whole array is copied.
///
/// Arrays have special behavior when calling `.into_iter()` prior to the
/// 2021 edition -- see the [array] Editions section for more information.
///
/// [array]: prim@array
#[inline]
fn into_iter(self) -> Self::IntoIter {
// SAFETY: The transmute here is actually safe. The docs of `MaybeUninit`
// promise:
//
// > `MaybeUninit<T>` is guaranteed to have the same size and alignment
// > as `T`.
//
// The docs even show a transmute from an array of `MaybeUninit<T>` to
// an array of `T`.
//
// With that, this initialization satisfies the invariants.
//
// FIXME: If normal `transmute` ever gets smart enough to allow this
// directly, use it instead of `transmute_unchecked`.
let data: [MaybeUninit<T>; N] = unsafe { transmute_unchecked(self) };
// SAFETY: The original array was entirely initialized and the the alive
// range we're passing here represents that fact.
let inner = unsafe { InnerSized::new_unchecked(IndexRange::zero_to(N), data) };
IntoIter { inner }
}
}
impl<T, const N: usize> IntoIter<T, N> {
/// Creates a new iterator over the given `array`.
#[stable(feature = "array_value_iter", since = "1.51.0")]
#[deprecated(since = "1.59.0", note = "use `IntoIterator::into_iter` instead")]
pub fn new(array: [T; N]) -> Self {
IntoIterator::into_iter(array)
}
/// Creates an iterator over the elements in a partially-initialized buffer.
///
/// If you have a fully-initialized array, then use [`IntoIterator`].
/// But this is useful for returning partial results from unsafe code.
///
/// # Safety
///
/// - The `buffer[initialized]` elements must all be initialized.
/// - The range must be canonical, with `initialized.start <= initialized.end`.
/// - The range must be in-bounds for the buffer, with `initialized.end <= N`.
/// (Like how indexing `[0][100..100]` fails despite the range being empty.)
///
/// It's sound to have more elements initialized than mentioned, though that
/// will most likely result in them being leaked.
///
/// # Examples
///
/// ```
/// #![feature(array_into_iter_constructors)]
/// #![feature(maybe_uninit_uninit_array_transpose)]
/// use std::array::IntoIter;
/// use std::mem::MaybeUninit;
///
/// # // Hi! Thanks for reading the code. This is restricted to `Copy` because
/// # // otherwise it could leak. A fully-general version this would need a drop
/// # // guard to handle panics from the iterator, but this works for an example.
/// fn next_chunk<T: Copy, const N: usize>(
/// it: &mut impl Iterator<Item = T>,
/// ) -> Result<[T; N], IntoIter<T, N>> {
/// let mut buffer = [const { MaybeUninit::uninit() }; N];
/// let mut i = 0;
/// while i < N {
/// match it.next() {
/// Some(x) => {
/// buffer[i].write(x);
/// i += 1;
/// }
/// None => {
/// // SAFETY: We've initialized the first `i` items
/// unsafe {
/// return Err(IntoIter::new_unchecked(buffer, 0..i));
/// }
/// }
/// }
/// }
///
/// // SAFETY: We've initialized all N items
/// unsafe { Ok(buffer.transpose().assume_init()) }
/// }
///
/// let r: [_; 4] = next_chunk(&mut (10..16)).unwrap();
/// assert_eq!(r, [10, 11, 12, 13]);
/// let r: IntoIter<_, 40> = next_chunk(&mut (10..16)).unwrap_err();
/// assert_eq!(r.collect::<Vec<_>>(), vec![10, 11, 12, 13, 14, 15]);
/// ```
#[unstable(feature = "array_into_iter_constructors", issue = "91583")]
#[inline]
pub const unsafe fn new_unchecked(
buffer: [MaybeUninit<T>; N],
initialized: Range<usize>,
) -> Self {
// SAFETY: one of our safety conditions is that the range is canonical.
let alive = unsafe { IndexRange::new_unchecked(initialized.start, initialized.end) };
// SAFETY: one of our safety condition is that these items are initialized.
let inner = unsafe { InnerSized::new_unchecked(alive, buffer) };
IntoIter { inner }
}
/// Creates an iterator over `T` which returns no elements.
///
/// If you just need an empty iterator, then use
/// [`iter::empty()`](crate::iter::empty) instead.
/// And if you need an empty array, use `[]`.
///
/// But this is useful when you need an `array::IntoIter<T, N>` *specifically*.
///
/// # Examples
///
/// ```
/// #![feature(array_into_iter_constructors)]
/// use std::array::IntoIter;
///
/// let empty = IntoIter::<i32, 3>::empty();
/// assert_eq!(empty.len(), 0);
/// assert_eq!(empty.as_slice(), &[]);
///
/// let empty = IntoIter::<std::convert::Infallible, 200>::empty();
/// assert_eq!(empty.len(), 0);
/// ```
///
/// `[1, 2].into_iter()` and `[].into_iter()` have different types
/// ```should_fail,edition2021
/// #![feature(array_into_iter_constructors)]
/// use std::array::IntoIter;
///
/// pub fn get_bytes(b: bool) -> IntoIter<i8, 4> {
/// if b {
/// [1, 2, 3, 4].into_iter()
/// } else {
/// [].into_iter() // error[E0308]: mismatched types
/// }
/// }
/// ```
///
/// But using this method you can get an empty iterator of appropriate size:
/// ```edition2021
/// #![feature(array_into_iter_constructors)]
/// use std::array::IntoIter;
///
/// pub fn get_bytes(b: bool) -> IntoIter<i8, 4> {
/// if b {
/// [1, 2, 3, 4].into_iter()
/// } else {
/// IntoIter::empty()
/// }
/// }
///
/// assert_eq!(get_bytes(true).collect::<Vec<_>>(), vec![1, 2, 3, 4]);
/// assert_eq!(get_bytes(false).collect::<Vec<_>>(), vec![]);
/// ```
#[unstable(feature = "array_into_iter_constructors", issue = "91583")]
#[inline]
pub const fn empty() -> Self {
let inner = InnerSized::empty();
IntoIter { inner }
}
/// Returns an immutable slice of all elements that have not been yielded
/// yet.
#[stable(feature = "array_value_iter", since = "1.51.0")]
#[inline]
pub fn as_slice(&self) -> &[T] {
self.unsize().as_slice()
}
/// Returns a mutable slice of all elements that have not been yielded yet.
#[stable(feature = "array_value_iter", since = "1.51.0")]
#[inline]
pub fn as_mut_slice(&mut self) -> &mut [T] {
self.unsize_mut().as_mut_slice()
}
}
#[stable(feature = "array_value_iter_default", since = "1.89.0")]
impl<T, const N: usize> Default for IntoIter<T, N> {
fn default() -> Self {
IntoIter::empty()
}
}
#[stable(feature = "array_value_iter_impls", since = "1.40.0")]
impl<T, const N: usize> Iterator for IntoIter<T, N> {
type Item = T;
#[inline]
fn next(&mut self) -> Option<Self::Item> {
self.unsize_mut().next()
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
self.unsize().size_hint()
}
#[inline]
fn fold<Acc, Fold>(mut self, init: Acc, fold: Fold) -> Acc
where
Fold: FnMut(Acc, Self::Item) -> Acc,
{
self.unsize_mut().fold(init, fold)
}
#[inline]
fn try_fold<B, F, R>(&mut self, init: B, f: F) -> R
where
Self: Sized,
F: FnMut(B, Self::Item) -> R,
R: Try<Output = B>,
{
self.unsize_mut().try_fold(init, f)
}
#[inline]
fn count(self) -> usize {
self.len()
}
#[inline]
fn last(mut self) -> Option<Self::Item> {
self.next_back()
}
#[inline]
fn advance_by(&mut self, n: usize) -> Result<(), NonZero<usize>> {
self.unsize_mut().advance_by(n)
}
#[inline]
unsafe fn __iterator_get_unchecked(&mut self, idx: usize) -> Self::Item {
// SAFETY: The caller must provide an idx that is in bound of the remainder.
let elem_ref = unsafe { self.as_mut_slice().get_unchecked_mut(idx) };
// SAFETY: We only implement `TrustedRandomAccessNoCoerce` for types
// which are actually `Copy`, so cannot have multiple-drop issues.
unsafe { ptr::read(elem_ref) }
}
}
#[stable(feature = "array_value_iter_impls", since = "1.40.0")]
impl<T, const N: usize> DoubleEndedIterator for IntoIter<T, N> {
#[inline]
fn next_back(&mut self) -> Option<Self::Item> {
self.unsize_mut().next_back()
}
#[inline]
fn rfold<Acc, Fold>(mut self, init: Acc, rfold: Fold) -> Acc
where
Fold: FnMut(Acc, Self::Item) -> Acc,
{
self.unsize_mut().rfold(init, rfold)
}
#[inline]
fn try_rfold<B, F, R>(&mut self, init: B, f: F) -> R
where
Self: Sized,
F: FnMut(B, Self::Item) -> R,
R: Try<Output = B>,
{
self.unsize_mut().try_rfold(init, f)
}
#[inline]
fn advance_back_by(&mut self, n: usize) -> Result<(), NonZero<usize>> {
self.unsize_mut().advance_back_by(n)
}
}
#[stable(feature = "array_value_iter_impls", since = "1.40.0")]
impl<T, const N: usize> Drop for IntoIter<T, N> {
#[inline]
fn drop(&mut self) {
// `inner` now handles this, but it'd technically be a breaking change
// to remove this `impl`, even though it's useless.
}
}
#[stable(feature = "array_value_iter_impls", since = "1.40.0")]
impl<T, const N: usize> ExactSizeIterator for IntoIter<T, N> {
#[inline]
fn len(&self) -> usize {
self.inner.len()
}
#[inline]
fn is_empty(&self) -> bool {
self.inner.len() == 0
}
}
#[stable(feature = "array_value_iter_impls", since = "1.40.0")]
impl<T, const N: usize> FusedIterator for IntoIter<T, N> {}
// The iterator indeed reports the correct length. The number of "alive"
// elements (that will still be yielded) is the length of the range `alive`.
// This range is decremented in length in either `next` or `next_back`. It is
// always decremented by 1 in those methods, but only if `Some(_)` is returned.
#[stable(feature = "array_value_iter_impls", since = "1.40.0")]
unsafe impl<T, const N: usize> TrustedLen for IntoIter<T, N> {}
#[doc(hidden)]
#[unstable(issue = "none", feature = "std_internals")]
#[rustc_unsafe_specialization_marker]
pub trait NonDrop {}
// T: Copy as approximation for !Drop since get_unchecked does not advance self.alive
// and thus we can't implement drop-handling
#[unstable(issue = "none", feature = "std_internals")]
impl<T: Copy> NonDrop for T {}
#[doc(hidden)]
#[unstable(issue = "none", feature = "std_internals")]
unsafe impl<T, const N: usize> TrustedRandomAccessNoCoerce for IntoIter<T, N>
where
T: NonDrop,
{
const MAY_HAVE_SIDE_EFFECT: bool = false;
}
#[stable(feature = "array_value_iter_impls", since = "1.40.0")]
impl<T: fmt::Debug, const N: usize> fmt::Debug for IntoIter<T, N> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
self.unsize().fmt(f)
}
}