| //! Code shared by trait and projection goals for candidate assembly. |
| |
| pub(super) mod structural_traits; |
| |
| use std::cell::Cell; |
| use std::ops::ControlFlow; |
| |
| use derive_where::derive_where; |
| use rustc_type_ir::inherent::*; |
| use rustc_type_ir::lang_items::TraitSolverLangItem; |
| use rustc_type_ir::solve::SizedTraitKind; |
| use rustc_type_ir::{ |
| self as ty, Interner, TypeFoldable, TypeSuperVisitable, TypeVisitable, TypeVisitableExt as _, |
| TypeVisitor, TypingMode, Upcast as _, elaborate, |
| }; |
| use tracing::{debug, instrument}; |
| |
| use super::trait_goals::TraitGoalProvenVia; |
| use super::{has_only_region_constraints, inspect}; |
| use crate::delegate::SolverDelegate; |
| use crate::solve::inspect::ProbeKind; |
| use crate::solve::{ |
| BuiltinImplSource, CandidateSource, CanonicalResponse, Certainty, EvalCtxt, Goal, GoalSource, |
| MaybeCause, NoSolution, ParamEnvSource, QueryResult, |
| }; |
| |
| enum AliasBoundKind { |
| SelfBounds, |
| NonSelfBounds, |
| } |
| |
| /// A candidate is a possible way to prove a goal. |
| /// |
| /// It consists of both the `source`, which describes how that goal would be proven, |
| /// and the `result` when using the given `source`. |
| #[derive_where(Clone, Debug; I: Interner)] |
| pub(super) struct Candidate<I: Interner> { |
| pub(super) source: CandidateSource<I>, |
| pub(super) result: CanonicalResponse<I>, |
| } |
| |
| /// Methods used to assemble candidates for either trait or projection goals. |
| pub(super) trait GoalKind<D, I = <D as SolverDelegate>::Interner>: |
| TypeFoldable<I> + Copy + Eq + std::fmt::Display |
| where |
| D: SolverDelegate<Interner = I>, |
| I: Interner, |
| { |
| fn self_ty(self) -> I::Ty; |
| |
| fn trait_ref(self, cx: I) -> ty::TraitRef<I>; |
| |
| fn with_self_ty(self, cx: I, self_ty: I::Ty) -> Self; |
| |
| fn trait_def_id(self, cx: I) -> I::DefId; |
| |
| /// Consider a clause, which consists of a "assumption" and some "requirements", |
| /// to satisfy a goal. If the requirements hold, then attempt to satisfy our |
| /// goal by equating it with the assumption. |
| fn probe_and_consider_implied_clause( |
| ecx: &mut EvalCtxt<'_, D>, |
| parent_source: CandidateSource<I>, |
| goal: Goal<I, Self>, |
| assumption: I::Clause, |
| requirements: impl IntoIterator<Item = (GoalSource, Goal<I, I::Predicate>)>, |
| ) -> Result<Candidate<I>, NoSolution> { |
| Self::probe_and_match_goal_against_assumption(ecx, parent_source, goal, assumption, |ecx| { |
| for (nested_source, goal) in requirements { |
| ecx.add_goal(nested_source, goal); |
| } |
| ecx.evaluate_added_goals_and_make_canonical_response(Certainty::Yes) |
| }) |
| } |
| |
| /// Consider a clause specifically for a `dyn Trait` self type. This requires |
| /// additionally checking all of the supertraits and object bounds to hold, |
| /// since they're not implied by the well-formedness of the object type. |
| fn probe_and_consider_object_bound_candidate( |
| ecx: &mut EvalCtxt<'_, D>, |
| source: CandidateSource<I>, |
| goal: Goal<I, Self>, |
| assumption: I::Clause, |
| ) -> Result<Candidate<I>, NoSolution> { |
| Self::probe_and_match_goal_against_assumption(ecx, source, goal, assumption, |ecx| { |
| let cx = ecx.cx(); |
| let ty::Dynamic(bounds, _, _) = goal.predicate.self_ty().kind() else { |
| panic!("expected object type in `probe_and_consider_object_bound_candidate`"); |
| }; |
| match structural_traits::predicates_for_object_candidate( |
| ecx, |
| goal.param_env, |
| goal.predicate.trait_ref(cx), |
| bounds, |
| ) { |
| Ok(requirements) => { |
| ecx.add_goals(GoalSource::ImplWhereBound, requirements); |
| ecx.evaluate_added_goals_and_make_canonical_response(Certainty::Yes) |
| } |
| Err(_) => { |
| ecx.evaluate_added_goals_and_make_canonical_response(Certainty::AMBIGUOUS) |
| } |
| } |
| }) |
| } |
| |
| /// Assemble additional assumptions for an alias that are not included |
| /// in the item bounds of the alias. For now, this is limited to the |
| /// `explicit_implied_const_bounds` for an associated type. |
| fn consider_additional_alias_assumptions( |
| ecx: &mut EvalCtxt<'_, D>, |
| goal: Goal<I, Self>, |
| alias_ty: ty::AliasTy<I>, |
| ) -> Vec<Candidate<I>>; |
| |
| fn probe_and_consider_param_env_candidate( |
| ecx: &mut EvalCtxt<'_, D>, |
| goal: Goal<I, Self>, |
| assumption: I::Clause, |
| ) -> Result<Candidate<I>, NoSolution> { |
| Self::fast_reject_assumption(ecx, goal, assumption)?; |
| |
| // Dealing with `ParamEnv` candidates is a bit of a mess as we need to lazily |
| // check whether the candidate is global while considering normalization. |
| // |
| // We need to write into `source` inside of `match_assumption`, but need to access it |
| // in `probe` even if the candidate does not apply before we get there. We handle this |
| // by using a `Cell` here. We only ever write into it inside of `match_assumption`. |
| let source = Cell::new(CandidateSource::ParamEnv(ParamEnvSource::Global)); |
| ecx.probe(|result: &QueryResult<I>| inspect::ProbeKind::TraitCandidate { |
| source: source.get(), |
| result: *result, |
| }) |
| .enter(|ecx| { |
| Self::match_assumption(ecx, goal, assumption, |ecx| { |
| source.set(ecx.characterize_param_env_assumption(goal.param_env, assumption)?); |
| ecx.evaluate_added_goals_and_make_canonical_response(Certainty::Yes) |
| }) |
| }) |
| .map(|result| Candidate { source: source.get(), result }) |
| } |
| |
| /// Try equating an assumption predicate against a goal's predicate. If it |
| /// holds, then execute the `then` callback, which should do any additional |
| /// work, then produce a response (typically by executing |
| /// [`EvalCtxt::evaluate_added_goals_and_make_canonical_response`]). |
| fn probe_and_match_goal_against_assumption( |
| ecx: &mut EvalCtxt<'_, D>, |
| source: CandidateSource<I>, |
| goal: Goal<I, Self>, |
| assumption: I::Clause, |
| then: impl FnOnce(&mut EvalCtxt<'_, D>) -> QueryResult<I>, |
| ) -> Result<Candidate<I>, NoSolution> { |
| Self::fast_reject_assumption(ecx, goal, assumption)?; |
| |
| ecx.probe_trait_candidate(source) |
| .enter(|ecx| Self::match_assumption(ecx, goal, assumption, then)) |
| } |
| |
| /// Try to reject the assumption based off of simple heuristics, such as [`ty::ClauseKind`] |
| /// and `DefId`. |
| fn fast_reject_assumption( |
| ecx: &mut EvalCtxt<'_, D>, |
| goal: Goal<I, Self>, |
| assumption: I::Clause, |
| ) -> Result<(), NoSolution>; |
| |
| /// Relate the goal and assumption. |
| fn match_assumption( |
| ecx: &mut EvalCtxt<'_, D>, |
| goal: Goal<I, Self>, |
| assumption: I::Clause, |
| then: impl FnOnce(&mut EvalCtxt<'_, D>) -> QueryResult<I>, |
| ) -> QueryResult<I>; |
| |
| fn consider_impl_candidate( |
| ecx: &mut EvalCtxt<'_, D>, |
| goal: Goal<I, Self>, |
| impl_def_id: I::DefId, |
| ) -> Result<Candidate<I>, NoSolution>; |
| |
| /// If the predicate contained an error, we want to avoid emitting unnecessary trait |
| /// errors but still want to emit errors for other trait goals. We have some special |
| /// handling for this case. |
| /// |
| /// Trait goals always hold while projection goals never do. This is a bit arbitrary |
| /// but prevents incorrect normalization while hiding any trait errors. |
| fn consider_error_guaranteed_candidate( |
| ecx: &mut EvalCtxt<'_, D>, |
| guar: I::ErrorGuaranteed, |
| ) -> Result<Candidate<I>, NoSolution>; |
| |
| /// A type implements an `auto trait` if its components do as well. |
| /// |
| /// These components are given by built-in rules from |
| /// [`structural_traits::instantiate_constituent_tys_for_auto_trait`]. |
| fn consider_auto_trait_candidate( |
| ecx: &mut EvalCtxt<'_, D>, |
| goal: Goal<I, Self>, |
| ) -> Result<Candidate<I>, NoSolution>; |
| |
| /// A trait alias holds if the RHS traits and `where` clauses hold. |
| fn consider_trait_alias_candidate( |
| ecx: &mut EvalCtxt<'_, D>, |
| goal: Goal<I, Self>, |
| ) -> Result<Candidate<I>, NoSolution>; |
| |
| /// A type is `Sized` if its tail component is `Sized` and a type is `MetaSized` if its tail |
| /// component is `MetaSized`. |
| /// |
| /// These components are given by built-in rules from |
| /// [`structural_traits::instantiate_constituent_tys_for_sizedness_trait`]. |
| fn consider_builtin_sizedness_candidates( |
| ecx: &mut EvalCtxt<'_, D>, |
| goal: Goal<I, Self>, |
| sizedness: SizedTraitKind, |
| ) -> Result<Candidate<I>, NoSolution>; |
| |
| /// A type is `Copy` or `Clone` if its components are `Copy` or `Clone`. |
| /// |
| /// These components are given by built-in rules from |
| /// [`structural_traits::instantiate_constituent_tys_for_copy_clone_trait`]. |
| fn consider_builtin_copy_clone_candidate( |
| ecx: &mut EvalCtxt<'_, D>, |
| goal: Goal<I, Self>, |
| ) -> Result<Candidate<I>, NoSolution>; |
| |
| /// A type is a `FnPtr` if it is of `FnPtr` type. |
| fn consider_builtin_fn_ptr_trait_candidate( |
| ecx: &mut EvalCtxt<'_, D>, |
| goal: Goal<I, Self>, |
| ) -> Result<Candidate<I>, NoSolution>; |
| |
| /// A callable type (a closure, fn def, or fn ptr) is known to implement the `Fn<A>` |
| /// family of traits where `A` is given by the signature of the type. |
| fn consider_builtin_fn_trait_candidates( |
| ecx: &mut EvalCtxt<'_, D>, |
| goal: Goal<I, Self>, |
| kind: ty::ClosureKind, |
| ) -> Result<Candidate<I>, NoSolution>; |
| |
| /// An async closure is known to implement the `AsyncFn<A>` family of traits |
| /// where `A` is given by the signature of the type. |
| fn consider_builtin_async_fn_trait_candidates( |
| ecx: &mut EvalCtxt<'_, D>, |
| goal: Goal<I, Self>, |
| kind: ty::ClosureKind, |
| ) -> Result<Candidate<I>, NoSolution>; |
| |
| /// Compute the built-in logic of the `AsyncFnKindHelper` helper trait, which |
| /// is used internally to delay computation for async closures until after |
| /// upvar analysis is performed in HIR typeck. |
| fn consider_builtin_async_fn_kind_helper_candidate( |
| ecx: &mut EvalCtxt<'_, D>, |
| goal: Goal<I, Self>, |
| ) -> Result<Candidate<I>, NoSolution>; |
| |
| /// `Tuple` is implemented if the `Self` type is a tuple. |
| fn consider_builtin_tuple_candidate( |
| ecx: &mut EvalCtxt<'_, D>, |
| goal: Goal<I, Self>, |
| ) -> Result<Candidate<I>, NoSolution>; |
| |
| /// `Pointee` is always implemented. |
| /// |
| /// See the projection implementation for the `Metadata` types for all of |
| /// the built-in types. For structs, the metadata type is given by the struct |
| /// tail. |
| fn consider_builtin_pointee_candidate( |
| ecx: &mut EvalCtxt<'_, D>, |
| goal: Goal<I, Self>, |
| ) -> Result<Candidate<I>, NoSolution>; |
| |
| /// A coroutine (that comes from an `async` desugaring) is known to implement |
| /// `Future<Output = O>`, where `O` is given by the coroutine's return type |
| /// that was computed during type-checking. |
| fn consider_builtin_future_candidate( |
| ecx: &mut EvalCtxt<'_, D>, |
| goal: Goal<I, Self>, |
| ) -> Result<Candidate<I>, NoSolution>; |
| |
| /// A coroutine (that comes from a `gen` desugaring) is known to implement |
| /// `Iterator<Item = O>`, where `O` is given by the generator's yield type |
| /// that was computed during type-checking. |
| fn consider_builtin_iterator_candidate( |
| ecx: &mut EvalCtxt<'_, D>, |
| goal: Goal<I, Self>, |
| ) -> Result<Candidate<I>, NoSolution>; |
| |
| /// A coroutine (that comes from a `gen` desugaring) is known to implement |
| /// `FusedIterator` |
| fn consider_builtin_fused_iterator_candidate( |
| ecx: &mut EvalCtxt<'_, D>, |
| goal: Goal<I, Self>, |
| ) -> Result<Candidate<I>, NoSolution>; |
| |
| fn consider_builtin_async_iterator_candidate( |
| ecx: &mut EvalCtxt<'_, D>, |
| goal: Goal<I, Self>, |
| ) -> Result<Candidate<I>, NoSolution>; |
| |
| /// A coroutine (that doesn't come from an `async` or `gen` desugaring) is known to |
| /// implement `Coroutine<R, Yield = Y, Return = O>`, given the resume, yield, |
| /// and return types of the coroutine computed during type-checking. |
| fn consider_builtin_coroutine_candidate( |
| ecx: &mut EvalCtxt<'_, D>, |
| goal: Goal<I, Self>, |
| ) -> Result<Candidate<I>, NoSolution>; |
| |
| fn consider_builtin_discriminant_kind_candidate( |
| ecx: &mut EvalCtxt<'_, D>, |
| goal: Goal<I, Self>, |
| ) -> Result<Candidate<I>, NoSolution>; |
| |
| fn consider_builtin_destruct_candidate( |
| ecx: &mut EvalCtxt<'_, D>, |
| goal: Goal<I, Self>, |
| ) -> Result<Candidate<I>, NoSolution>; |
| |
| fn consider_builtin_transmute_candidate( |
| ecx: &mut EvalCtxt<'_, D>, |
| goal: Goal<I, Self>, |
| ) -> Result<Candidate<I>, NoSolution>; |
| |
| fn consider_builtin_bikeshed_guaranteed_no_drop_candidate( |
| ecx: &mut EvalCtxt<'_, D>, |
| goal: Goal<I, Self>, |
| ) -> Result<Candidate<I>, NoSolution>; |
| |
| /// Consider (possibly several) candidates to upcast or unsize a type to another |
| /// type, excluding the coercion of a sized type into a `dyn Trait`. |
| /// |
| /// We return the `BuiltinImplSource` for each candidate as it is needed |
| /// for unsize coercion in hir typeck and because it is difficult to |
| /// otherwise recompute this for codegen. This is a bit of a mess but the |
| /// easiest way to maintain the existing behavior for now. |
| fn consider_structural_builtin_unsize_candidates( |
| ecx: &mut EvalCtxt<'_, D>, |
| goal: Goal<I, Self>, |
| ) -> Vec<Candidate<I>>; |
| } |
| |
| /// Allows callers of `assemble_and_evaluate_candidates` to choose whether to limit |
| /// candidate assembly to param-env and alias-bound candidates. |
| /// |
| /// On top of being a micro-optimization, as it avoids doing unnecessary work when |
| /// a param-env trait bound candidate shadows impls for normalization, this is also |
| /// required to prevent query cycles due to RPITIT inference. See the issue at: |
| /// <https://github.com/rust-lang/trait-system-refactor-initiative/issues/173>. |
| pub(super) enum AssembleCandidatesFrom { |
| All, |
| /// Only assemble candidates from the environment and alias bounds, ignoring |
| /// user-written and built-in impls. We only expect `ParamEnv` and `AliasBound` |
| /// candidates to be assembled. |
| EnvAndBounds, |
| } |
| |
| impl<D, I> EvalCtxt<'_, D> |
| where |
| D: SolverDelegate<Interner = I>, |
| I: Interner, |
| { |
| pub(super) fn assemble_and_evaluate_candidates<G: GoalKind<D>>( |
| &mut self, |
| goal: Goal<I, G>, |
| assemble_from: AssembleCandidatesFrom, |
| ) -> Vec<Candidate<I>> { |
| let Ok(normalized_self_ty) = |
| self.structurally_normalize_ty(goal.param_env, goal.predicate.self_ty()) |
| else { |
| return vec![]; |
| }; |
| |
| if normalized_self_ty.is_ty_var() { |
| debug!("self type has been normalized to infer"); |
| return self.forced_ambiguity(MaybeCause::Ambiguity).into_iter().collect(); |
| } |
| |
| let goal: Goal<I, G> = |
| goal.with(self.cx(), goal.predicate.with_self_ty(self.cx(), normalized_self_ty)); |
| // Vars that show up in the rest of the goal substs may have been constrained by |
| // normalizing the self type as well, since type variables are not uniquified. |
| let goal = self.resolve_vars_if_possible(goal); |
| |
| let mut candidates = vec![]; |
| |
| if let TypingMode::Coherence = self.typing_mode() |
| && let Ok(candidate) = self.consider_coherence_unknowable_candidate(goal) |
| { |
| return vec![candidate]; |
| } |
| |
| self.assemble_alias_bound_candidates(goal, &mut candidates); |
| self.assemble_param_env_candidates(goal, &mut candidates); |
| |
| match assemble_from { |
| AssembleCandidatesFrom::All => { |
| self.assemble_impl_candidates(goal, &mut candidates); |
| self.assemble_builtin_impl_candidates(goal, &mut candidates); |
| self.assemble_object_bound_candidates(goal, &mut candidates); |
| } |
| AssembleCandidatesFrom::EnvAndBounds => {} |
| } |
| |
| candidates |
| } |
| |
| pub(super) fn forced_ambiguity( |
| &mut self, |
| cause: MaybeCause, |
| ) -> Result<Candidate<I>, NoSolution> { |
| // This may fail if `try_evaluate_added_goals` overflows because it |
| // fails to reach a fixpoint but ends up getting an error after |
| // running for some additional step. |
| // |
| // cc trait-system-refactor-initiative#105 |
| let source = CandidateSource::BuiltinImpl(BuiltinImplSource::Misc); |
| let certainty = Certainty::Maybe(cause); |
| self.probe_trait_candidate(source) |
| .enter(|this| this.evaluate_added_goals_and_make_canonical_response(certainty)) |
| } |
| |
| #[instrument(level = "trace", skip_all)] |
| fn assemble_impl_candidates<G: GoalKind<D>>( |
| &mut self, |
| goal: Goal<I, G>, |
| candidates: &mut Vec<Candidate<I>>, |
| ) { |
| let cx = self.cx(); |
| cx.for_each_relevant_impl( |
| goal.predicate.trait_def_id(cx), |
| goal.predicate.self_ty(), |
| |impl_def_id| { |
| // For every `default impl`, there's always a non-default `impl` |
| // that will *also* apply. There's no reason to register a candidate |
| // for this impl, since it is *not* proof that the trait goal holds. |
| if cx.impl_is_default(impl_def_id) { |
| return; |
| } |
| |
| match G::consider_impl_candidate(self, goal, impl_def_id) { |
| Ok(candidate) => candidates.push(candidate), |
| Err(NoSolution) => (), |
| } |
| }, |
| ); |
| } |
| |
| #[instrument(level = "trace", skip_all)] |
| fn assemble_builtin_impl_candidates<G: GoalKind<D>>( |
| &mut self, |
| goal: Goal<I, G>, |
| candidates: &mut Vec<Candidate<I>>, |
| ) { |
| let cx = self.cx(); |
| let trait_def_id = goal.predicate.trait_def_id(cx); |
| |
| // N.B. When assembling built-in candidates for lang items that are also |
| // `auto` traits, then the auto trait candidate that is assembled in |
| // `consider_auto_trait_candidate` MUST be disqualified to remain sound. |
| // |
| // Instead of adding the logic here, it's a better idea to add it in |
| // `EvalCtxt::disqualify_auto_trait_candidate_due_to_possible_impl` in |
| // `solve::trait_goals` instead. |
| let result = if let Err(guar) = goal.predicate.error_reported() { |
| G::consider_error_guaranteed_candidate(self, guar) |
| } else if cx.trait_is_auto(trait_def_id) { |
| G::consider_auto_trait_candidate(self, goal) |
| } else if cx.trait_is_alias(trait_def_id) { |
| G::consider_trait_alias_candidate(self, goal) |
| } else { |
| match cx.as_lang_item(trait_def_id) { |
| Some(TraitSolverLangItem::Sized) => { |
| G::consider_builtin_sizedness_candidates(self, goal, SizedTraitKind::Sized) |
| } |
| Some(TraitSolverLangItem::MetaSized) => { |
| G::consider_builtin_sizedness_candidates(self, goal, SizedTraitKind::MetaSized) |
| } |
| Some(TraitSolverLangItem::PointeeSized) => { |
| unreachable!("`PointeeSized` is removed during lowering"); |
| } |
| Some(TraitSolverLangItem::Copy | TraitSolverLangItem::Clone) => { |
| G::consider_builtin_copy_clone_candidate(self, goal) |
| } |
| Some(TraitSolverLangItem::Fn) => { |
| G::consider_builtin_fn_trait_candidates(self, goal, ty::ClosureKind::Fn) |
| } |
| Some(TraitSolverLangItem::FnMut) => { |
| G::consider_builtin_fn_trait_candidates(self, goal, ty::ClosureKind::FnMut) |
| } |
| Some(TraitSolverLangItem::FnOnce) => { |
| G::consider_builtin_fn_trait_candidates(self, goal, ty::ClosureKind::FnOnce) |
| } |
| Some(TraitSolverLangItem::AsyncFn) => { |
| G::consider_builtin_async_fn_trait_candidates(self, goal, ty::ClosureKind::Fn) |
| } |
| Some(TraitSolverLangItem::AsyncFnMut) => { |
| G::consider_builtin_async_fn_trait_candidates( |
| self, |
| goal, |
| ty::ClosureKind::FnMut, |
| ) |
| } |
| Some(TraitSolverLangItem::AsyncFnOnce) => { |
| G::consider_builtin_async_fn_trait_candidates( |
| self, |
| goal, |
| ty::ClosureKind::FnOnce, |
| ) |
| } |
| Some(TraitSolverLangItem::FnPtrTrait) => { |
| G::consider_builtin_fn_ptr_trait_candidate(self, goal) |
| } |
| Some(TraitSolverLangItem::AsyncFnKindHelper) => { |
| G::consider_builtin_async_fn_kind_helper_candidate(self, goal) |
| } |
| Some(TraitSolverLangItem::Tuple) => G::consider_builtin_tuple_candidate(self, goal), |
| Some(TraitSolverLangItem::PointeeTrait) => { |
| G::consider_builtin_pointee_candidate(self, goal) |
| } |
| Some(TraitSolverLangItem::Future) => { |
| G::consider_builtin_future_candidate(self, goal) |
| } |
| Some(TraitSolverLangItem::Iterator) => { |
| G::consider_builtin_iterator_candidate(self, goal) |
| } |
| Some(TraitSolverLangItem::FusedIterator) => { |
| G::consider_builtin_fused_iterator_candidate(self, goal) |
| } |
| Some(TraitSolverLangItem::AsyncIterator) => { |
| G::consider_builtin_async_iterator_candidate(self, goal) |
| } |
| Some(TraitSolverLangItem::Coroutine) => { |
| G::consider_builtin_coroutine_candidate(self, goal) |
| } |
| Some(TraitSolverLangItem::DiscriminantKind) => { |
| G::consider_builtin_discriminant_kind_candidate(self, goal) |
| } |
| Some(TraitSolverLangItem::Destruct) => { |
| G::consider_builtin_destruct_candidate(self, goal) |
| } |
| Some(TraitSolverLangItem::TransmuteTrait) => { |
| G::consider_builtin_transmute_candidate(self, goal) |
| } |
| Some(TraitSolverLangItem::BikeshedGuaranteedNoDrop) => { |
| G::consider_builtin_bikeshed_guaranteed_no_drop_candidate(self, goal) |
| } |
| _ => Err(NoSolution), |
| } |
| }; |
| |
| candidates.extend(result); |
| |
| // There may be multiple unsize candidates for a trait with several supertraits: |
| // `trait Foo: Bar<A> + Bar<B>` and `dyn Foo: Unsize<dyn Bar<_>>` |
| if cx.is_lang_item(trait_def_id, TraitSolverLangItem::Unsize) { |
| candidates.extend(G::consider_structural_builtin_unsize_candidates(self, goal)); |
| } |
| } |
| |
| #[instrument(level = "trace", skip_all)] |
| fn assemble_param_env_candidates<G: GoalKind<D>>( |
| &mut self, |
| goal: Goal<I, G>, |
| candidates: &mut Vec<Candidate<I>>, |
| ) { |
| for assumption in goal.param_env.caller_bounds().iter() { |
| candidates.extend(G::probe_and_consider_param_env_candidate(self, goal, assumption)); |
| } |
| } |
| |
| #[instrument(level = "trace", skip_all)] |
| fn assemble_alias_bound_candidates<G: GoalKind<D>>( |
| &mut self, |
| goal: Goal<I, G>, |
| candidates: &mut Vec<Candidate<I>>, |
| ) { |
| let () = self.probe(|_| ProbeKind::NormalizedSelfTyAssembly).enter(|ecx| { |
| ecx.assemble_alias_bound_candidates_recur( |
| goal.predicate.self_ty(), |
| goal, |
| candidates, |
| AliasBoundKind::SelfBounds, |
| ); |
| }); |
| } |
| |
| /// For some deeply nested `<T>::A::B::C::D` rigid associated type, |
| /// we should explore the item bounds for all levels, since the |
| /// `associated_type_bounds` feature means that a parent associated |
| /// type may carry bounds for a nested associated type. |
| /// |
| /// If we have a projection, check that its self type is a rigid projection. |
| /// If so, continue searching by recursively calling after normalization. |
| // FIXME: This may recurse infinitely, but I can't seem to trigger it without |
| // hitting another overflow error something. Add a depth parameter needed later. |
| fn assemble_alias_bound_candidates_recur<G: GoalKind<D>>( |
| &mut self, |
| self_ty: I::Ty, |
| goal: Goal<I, G>, |
| candidates: &mut Vec<Candidate<I>>, |
| consider_self_bounds: AliasBoundKind, |
| ) { |
| let (kind, alias_ty) = match self_ty.kind() { |
| ty::Bool |
| | ty::Char |
| | ty::Int(_) |
| | ty::Uint(_) |
| | ty::Float(_) |
| | ty::Adt(_, _) |
| | ty::Foreign(_) |
| | ty::Str |
| | ty::Array(_, _) |
| | ty::Pat(_, _) |
| | ty::Slice(_) |
| | ty::RawPtr(_, _) |
| | ty::Ref(_, _, _) |
| | ty::FnDef(_, _) |
| | ty::FnPtr(..) |
| | ty::UnsafeBinder(_) |
| | ty::Dynamic(..) |
| | ty::Closure(..) |
| | ty::CoroutineClosure(..) |
| | ty::Coroutine(..) |
| | ty::CoroutineWitness(..) |
| | ty::Never |
| | ty::Tuple(_) |
| | ty::Param(_) |
| | ty::Placeholder(..) |
| | ty::Infer(ty::IntVar(_) | ty::FloatVar(_)) |
| | ty::Error(_) => return, |
| ty::Infer(ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) | ty::Bound(..) => { |
| panic!("unexpected self type for `{goal:?}`") |
| } |
| |
| ty::Infer(ty::TyVar(_)) => { |
| // If we hit infer when normalizing the self type of an alias, |
| // then bail with ambiguity. We should never encounter this on |
| // the *first* iteration of this recursive function. |
| if let Ok(result) = |
| self.evaluate_added_goals_and_make_canonical_response(Certainty::AMBIGUOUS) |
| { |
| candidates.push(Candidate { source: CandidateSource::AliasBound, result }); |
| } |
| return; |
| } |
| |
| ty::Alias(kind @ (ty::Projection | ty::Opaque), alias_ty) => (kind, alias_ty), |
| ty::Alias(ty::Inherent | ty::Free, _) => { |
| self.cx().delay_bug(format!("could not normalize {self_ty:?}, it is not WF")); |
| return; |
| } |
| }; |
| |
| match consider_self_bounds { |
| AliasBoundKind::SelfBounds => { |
| for assumption in self |
| .cx() |
| .item_self_bounds(alias_ty.def_id) |
| .iter_instantiated(self.cx(), alias_ty.args) |
| { |
| candidates.extend(G::probe_and_consider_implied_clause( |
| self, |
| CandidateSource::AliasBound, |
| goal, |
| assumption, |
| [], |
| )); |
| } |
| } |
| AliasBoundKind::NonSelfBounds => { |
| for assumption in self |
| .cx() |
| .item_non_self_bounds(alias_ty.def_id) |
| .iter_instantiated(self.cx(), alias_ty.args) |
| { |
| candidates.extend(G::probe_and_consider_implied_clause( |
| self, |
| CandidateSource::AliasBound, |
| goal, |
| assumption, |
| [], |
| )); |
| } |
| } |
| } |
| |
| candidates.extend(G::consider_additional_alias_assumptions(self, goal, alias_ty)); |
| |
| if kind != ty::Projection { |
| return; |
| } |
| |
| // Recurse on the self type of the projection. |
| match self.structurally_normalize_ty(goal.param_env, alias_ty.self_ty()) { |
| Ok(next_self_ty) => self.assemble_alias_bound_candidates_recur( |
| next_self_ty, |
| goal, |
| candidates, |
| AliasBoundKind::NonSelfBounds, |
| ), |
| Err(NoSolution) => {} |
| } |
| } |
| |
| #[instrument(level = "trace", skip_all)] |
| fn assemble_object_bound_candidates<G: GoalKind<D>>( |
| &mut self, |
| goal: Goal<I, G>, |
| candidates: &mut Vec<Candidate<I>>, |
| ) { |
| let cx = self.cx(); |
| if !cx.trait_may_be_implemented_via_object(goal.predicate.trait_def_id(cx)) { |
| return; |
| } |
| |
| let self_ty = goal.predicate.self_ty(); |
| let bounds = match self_ty.kind() { |
| ty::Bool |
| | ty::Char |
| | ty::Int(_) |
| | ty::Uint(_) |
| | ty::Float(_) |
| | ty::Adt(_, _) |
| | ty::Foreign(_) |
| | ty::Str |
| | ty::Array(_, _) |
| | ty::Pat(_, _) |
| | ty::Slice(_) |
| | ty::RawPtr(_, _) |
| | ty::Ref(_, _, _) |
| | ty::FnDef(_, _) |
| | ty::FnPtr(..) |
| | ty::UnsafeBinder(_) |
| | ty::Alias(..) |
| | ty::Closure(..) |
| | ty::CoroutineClosure(..) |
| | ty::Coroutine(..) |
| | ty::CoroutineWitness(..) |
| | ty::Never |
| | ty::Tuple(_) |
| | ty::Param(_) |
| | ty::Placeholder(..) |
| | ty::Infer(ty::IntVar(_) | ty::FloatVar(_)) |
| | ty::Error(_) => return, |
| ty::Infer(ty::TyVar(_) | ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) |
| | ty::Bound(..) => panic!("unexpected self type for `{goal:?}`"), |
| ty::Dynamic(bounds, ..) => bounds, |
| }; |
| |
| // Do not consider built-in object impls for dyn-incompatible types. |
| if bounds.principal_def_id().is_some_and(|def_id| !cx.trait_is_dyn_compatible(def_id)) { |
| return; |
| } |
| |
| // Consider all of the auto-trait and projection bounds, which don't |
| // need to be recorded as a `BuiltinImplSource::Object` since they don't |
| // really have a vtable base... |
| for bound in bounds.iter() { |
| match bound.skip_binder() { |
| ty::ExistentialPredicate::Trait(_) => { |
| // Skip principal |
| } |
| ty::ExistentialPredicate::Projection(_) |
| | ty::ExistentialPredicate::AutoTrait(_) => { |
| candidates.extend(G::probe_and_consider_object_bound_candidate( |
| self, |
| CandidateSource::BuiltinImpl(BuiltinImplSource::Misc), |
| goal, |
| bound.with_self_ty(cx, self_ty), |
| )); |
| } |
| } |
| } |
| |
| // FIXME: We only need to do *any* of this if we're considering a trait goal, |
| // since we don't need to look at any supertrait or anything if we are doing |
| // a projection goal. |
| if let Some(principal) = bounds.principal() { |
| let principal_trait_ref = principal.with_self_ty(cx, self_ty); |
| for (idx, assumption) in elaborate::supertraits(cx, principal_trait_ref).enumerate() { |
| candidates.extend(G::probe_and_consider_object_bound_candidate( |
| self, |
| CandidateSource::BuiltinImpl(BuiltinImplSource::Object(idx)), |
| goal, |
| assumption.upcast(cx), |
| )); |
| } |
| } |
| } |
| |
| /// In coherence we have to not only care about all impls we know about, but |
| /// also consider impls which may get added in a downstream or sibling crate |
| /// or which an upstream impl may add in a minor release. |
| /// |
| /// To do so we return a single ambiguous candidate in case such an unknown |
| /// impl could apply to the current goal. |
| #[instrument(level = "trace", skip_all)] |
| fn consider_coherence_unknowable_candidate<G: GoalKind<D>>( |
| &mut self, |
| goal: Goal<I, G>, |
| ) -> Result<Candidate<I>, NoSolution> { |
| self.probe_trait_candidate(CandidateSource::CoherenceUnknowable).enter(|ecx| { |
| let cx = ecx.cx(); |
| let trait_ref = goal.predicate.trait_ref(cx); |
| if ecx.trait_ref_is_knowable(goal.param_env, trait_ref)? { |
| Err(NoSolution) |
| } else { |
| // While the trait bound itself may be unknowable, we may be able to |
| // prove that a super trait is not implemented. For this, we recursively |
| // prove the super trait bounds of the current goal. |
| // |
| // We skip the goal itself as that one would cycle. |
| let predicate: I::Predicate = trait_ref.upcast(cx); |
| ecx.add_goals( |
| GoalSource::Misc, |
| elaborate::elaborate(cx, [predicate]) |
| .skip(1) |
| .map(|predicate| goal.with(cx, predicate)), |
| ); |
| ecx.evaluate_added_goals_and_make_canonical_response(Certainty::AMBIGUOUS) |
| } |
| }) |
| } |
| } |
| |
| pub(super) enum AllowInferenceConstraints { |
| Yes, |
| No, |
| } |
| |
| impl<D, I> EvalCtxt<'_, D> |
| where |
| D: SolverDelegate<Interner = I>, |
| I: Interner, |
| { |
| /// Check whether we can ignore impl candidates due to specialization. |
| /// |
| /// This is only necessary for `feature(specialization)` and seems quite ugly. |
| pub(super) fn filter_specialized_impls( |
| &mut self, |
| allow_inference_constraints: AllowInferenceConstraints, |
| candidates: &mut Vec<Candidate<I>>, |
| ) { |
| match self.typing_mode() { |
| TypingMode::Coherence => return, |
| TypingMode::Analysis { .. } |
| | TypingMode::Borrowck { .. } |
| | TypingMode::PostBorrowckAnalysis { .. } |
| | TypingMode::PostAnalysis => {} |
| } |
| |
| let mut i = 0; |
| 'outer: while i < candidates.len() { |
| let CandidateSource::Impl(victim_def_id) = candidates[i].source else { |
| i += 1; |
| continue; |
| }; |
| |
| for (j, c) in candidates.iter().enumerate() { |
| if i == j { |
| continue; |
| } |
| |
| let CandidateSource::Impl(other_def_id) = c.source else { |
| continue; |
| }; |
| |
| // See if we can toss out `victim` based on specialization. |
| // |
| // While this requires us to know *for sure* that the `lhs` impl applies |
| // we still use modulo regions here. This is fine as specialization currently |
| // assumes that specializing impls have to be always applicable, meaning that |
| // the only allowed region constraints may be constraints also present on the default impl. |
| if matches!(allow_inference_constraints, AllowInferenceConstraints::Yes) |
| || has_only_region_constraints(c.result) |
| { |
| if self.cx().impl_specializes(other_def_id, victim_def_id) { |
| candidates.remove(i); |
| continue 'outer; |
| } |
| } |
| } |
| |
| i += 1; |
| } |
| } |
| |
| /// Assemble and merge candidates for goals which are related to an underlying trait |
| /// goal. Right now, this is normalizes-to and host effect goals. |
| /// |
| /// We sadly can't simply take all possible candidates for normalization goals |
| /// and check whether they result in the same constraints. We want to make sure |
| /// that trying to normalize an alias doesn't result in constraints which aren't |
| /// otherwise required. |
| /// |
| /// Most notably, when proving a trait goal by via a where-bound, we should not |
| /// normalize via impls which have stricter region constraints than the where-bound: |
| /// |
| /// ```rust |
| /// trait Trait<'a> { |
| /// type Assoc; |
| /// } |
| /// |
| /// impl<'a, T: 'a> Trait<'a> for T { |
| /// type Assoc = u32; |
| /// } |
| /// |
| /// fn with_bound<'a, T: Trait<'a>>(_value: T::Assoc) {} |
| /// ``` |
| /// |
| /// The where-bound of `with_bound` doesn't specify the associated type, so we would |
| /// only be able to normalize `<T as Trait<'a>>::Assoc` by using the impl. This impl |
| /// adds a `T: 'a` bound however, which would result in a region error. Given that the |
| /// user explicitly wrote that `T: Trait<'a>` holds, this is undesirable and we instead |
| /// treat the alias as rigid. |
| /// |
| /// See trait-system-refactor-initiative#124 for more details. |
| #[instrument(level = "debug", skip(self, inject_normalize_to_rigid_candidate), ret)] |
| pub(super) fn assemble_and_merge_candidates<G: GoalKind<D>>( |
| &mut self, |
| proven_via: Option<TraitGoalProvenVia>, |
| goal: Goal<I, G>, |
| inject_normalize_to_rigid_candidate: impl FnOnce(&mut EvalCtxt<'_, D>) -> QueryResult<I>, |
| ) -> QueryResult<I> { |
| let Some(proven_via) = proven_via else { |
| // We don't care about overflow. If proving the trait goal overflowed, then |
| // it's enough to report an overflow error for that, we don't also have to |
| // overflow during normalization. |
| // |
| // We use `forced_ambiguity` here over `make_ambiguous_response_no_constraints` |
| // because the former will also record a built-in candidate in the inspector. |
| return self.forced_ambiguity(MaybeCause::Ambiguity).map(|cand| cand.result); |
| }; |
| |
| match proven_via { |
| TraitGoalProvenVia::ParamEnv | TraitGoalProvenVia::AliasBound => { |
| // Even when a trait bound has been proven using a where-bound, we |
| // still need to consider alias-bounds for normalization, see |
| // `tests/ui/next-solver/alias-bound-shadowed-by-env.rs`. |
| let candidates_from_env_and_bounds: Vec<_> = self |
| .assemble_and_evaluate_candidates(goal, AssembleCandidatesFrom::EnvAndBounds); |
| |
| // We still need to prefer where-bounds over alias-bounds however. |
| // See `tests/ui/winnowing/norm-where-bound-gt-alias-bound.rs`. |
| let mut considered_candidates: Vec<_> = if candidates_from_env_and_bounds |
| .iter() |
| .any(|c| matches!(c.source, CandidateSource::ParamEnv(_))) |
| { |
| candidates_from_env_and_bounds |
| .into_iter() |
| .filter(|c| matches!(c.source, CandidateSource::ParamEnv(_))) |
| .map(|c| c.result) |
| .collect() |
| } else { |
| candidates_from_env_and_bounds.into_iter().map(|c| c.result).collect() |
| }; |
| |
| // If the trait goal has been proven by using the environment, we want to treat |
| // aliases as rigid if there are no applicable projection bounds in the environment. |
| if considered_candidates.is_empty() { |
| if let Ok(response) = inject_normalize_to_rigid_candidate(self) { |
| considered_candidates.push(response); |
| } |
| } |
| |
| if let Some(response) = self.try_merge_responses(&considered_candidates) { |
| Ok(response) |
| } else { |
| self.flounder(&considered_candidates) |
| } |
| } |
| TraitGoalProvenVia::Misc => { |
| let mut candidates = |
| self.assemble_and_evaluate_candidates(goal, AssembleCandidatesFrom::All); |
| |
| // Prefer "orphaned" param-env normalization predicates, which are used |
| // (for example, and ideally only) when proving item bounds for an impl. |
| let candidates_from_env: Vec<_> = candidates |
| .iter() |
| .filter(|c| matches!(c.source, CandidateSource::ParamEnv(_))) |
| .map(|c| c.result) |
| .collect(); |
| if let Some(response) = self.try_merge_responses(&candidates_from_env) { |
| return Ok(response); |
| } |
| |
| // We drop specialized impls to allow normalization via a final impl here. In case |
| // the specializing impl has different inference constraints from the specialized |
| // impl, proving the trait goal is already ambiguous, so we never get here. This |
| // means we can just ignore inference constraints and don't have to special-case |
| // constraining the normalized-to `term`. |
| self.filter_specialized_impls(AllowInferenceConstraints::Yes, &mut candidates); |
| |
| let responses: Vec<_> = candidates.iter().map(|c| c.result).collect(); |
| if let Some(response) = self.try_merge_responses(&responses) { |
| Ok(response) |
| } else { |
| self.flounder(&responses) |
| } |
| } |
| } |
| } |
| |
| /// Compute whether a param-env assumption is global or non-global after normalizing it. |
| /// |
| /// This is necessary because, for example, given: |
| /// |
| /// ```ignore,rust |
| /// where |
| /// T: Trait<Assoc = u32>, |
| /// i32: From<T::Assoc>, |
| /// ``` |
| /// |
| /// The `i32: From<T::Assoc>` bound is non-global before normalization, but is global after. |
| /// Since the old trait solver normalized param-envs eagerly, we want to emulate this |
| /// behavior lazily. |
| fn characterize_param_env_assumption( |
| &mut self, |
| param_env: I::ParamEnv, |
| assumption: I::Clause, |
| ) -> Result<CandidateSource<I>, NoSolution> { |
| // FIXME: This should be fixed, but it also requires changing the behavior |
| // in the old solver which is currently relied on. |
| if assumption.has_bound_vars() { |
| return Ok(CandidateSource::ParamEnv(ParamEnvSource::NonGlobal)); |
| } |
| |
| match assumption.visit_with(&mut FindParamInClause { |
| ecx: self, |
| param_env, |
| universes: vec![], |
| }) { |
| ControlFlow::Break(Err(NoSolution)) => Err(NoSolution), |
| ControlFlow::Break(Ok(())) => Ok(CandidateSource::ParamEnv(ParamEnvSource::NonGlobal)), |
| ControlFlow::Continue(()) => Ok(CandidateSource::ParamEnv(ParamEnvSource::Global)), |
| } |
| } |
| } |
| |
| struct FindParamInClause<'a, 'b, D: SolverDelegate<Interner = I>, I: Interner> { |
| ecx: &'a mut EvalCtxt<'b, D>, |
| param_env: I::ParamEnv, |
| universes: Vec<Option<ty::UniverseIndex>>, |
| } |
| |
| impl<D, I> TypeVisitor<I> for FindParamInClause<'_, '_, D, I> |
| where |
| D: SolverDelegate<Interner = I>, |
| I: Interner, |
| { |
| type Result = ControlFlow<Result<(), NoSolution>>; |
| |
| fn visit_binder<T: TypeVisitable<I>>(&mut self, t: &ty::Binder<I, T>) -> Self::Result { |
| self.universes.push(None); |
| t.super_visit_with(self)?; |
| self.universes.pop(); |
| ControlFlow::Continue(()) |
| } |
| |
| fn visit_ty(&mut self, ty: I::Ty) -> Self::Result { |
| let ty = self.ecx.replace_bound_vars(ty, &mut self.universes); |
| let Ok(ty) = self.ecx.structurally_normalize_ty(self.param_env, ty) else { |
| return ControlFlow::Break(Err(NoSolution)); |
| }; |
| |
| if let ty::Placeholder(p) = ty.kind() { |
| if p.universe() == ty::UniverseIndex::ROOT { |
| ControlFlow::Break(Ok(())) |
| } else { |
| ControlFlow::Continue(()) |
| } |
| } else { |
| ty.super_visit_with(self) |
| } |
| } |
| |
| fn visit_const(&mut self, ct: I::Const) -> Self::Result { |
| let ct = self.ecx.replace_bound_vars(ct, &mut self.universes); |
| let Ok(ct) = self.ecx.structurally_normalize_const(self.param_env, ct) else { |
| return ControlFlow::Break(Err(NoSolution)); |
| }; |
| |
| if let ty::ConstKind::Placeholder(p) = ct.kind() { |
| if p.universe() == ty::UniverseIndex::ROOT { |
| ControlFlow::Break(Ok(())) |
| } else { |
| ControlFlow::Continue(()) |
| } |
| } else { |
| ct.super_visit_with(self) |
| } |
| } |
| |
| fn visit_region(&mut self, r: I::Region) -> Self::Result { |
| match self.ecx.eager_resolve_region(r).kind() { |
| ty::ReStatic | ty::ReError(_) | ty::ReBound(..) => ControlFlow::Continue(()), |
| ty::RePlaceholder(p) => { |
| if p.universe() == ty::UniverseIndex::ROOT { |
| ControlFlow::Break(Ok(())) |
| } else { |
| ControlFlow::Continue(()) |
| } |
| } |
| ty::ReVar(_) => ControlFlow::Break(Ok(())), |
| ty::ReErased | ty::ReEarlyParam(_) | ty::ReLateParam(_) => { |
| unreachable!("unexpected region in param-env clause") |
| } |
| } |
| } |
| } |