| //! This module contains `TyKind` and its major components. |
| |
| #![allow(rustc::usage_of_ty_tykind)] |
| |
| use std::assert_matches::debug_assert_matches; |
| use std::borrow::Cow; |
| use std::ops::{ControlFlow, Range}; |
| |
| use hir::def::{CtorKind, DefKind}; |
| use rustc_abi::{FIRST_VARIANT, FieldIdx, VariantIdx}; |
| use rustc_errors::{ErrorGuaranteed, MultiSpan}; |
| use rustc_hir as hir; |
| use rustc_hir::LangItem; |
| use rustc_hir::def_id::DefId; |
| use rustc_macros::{HashStable, TyDecodable, TyEncodable, TypeFoldable, extension}; |
| use rustc_span::{DUMMY_SP, Span, Symbol, sym}; |
| use rustc_type_ir::TyKind::*; |
| use rustc_type_ir::solve::SizedTraitKind; |
| use rustc_type_ir::walk::TypeWalker; |
| use rustc_type_ir::{self as ir, BoundVar, CollectAndApply, DynKind, TypeVisitableExt, elaborate}; |
| use tracing::instrument; |
| use ty::util::IntTypeExt; |
| |
| use super::GenericParamDefKind; |
| use crate::infer::canonical::Canonical; |
| use crate::ty::InferTy::*; |
| use crate::ty::{ |
| self, AdtDef, BoundRegionKind, Discr, GenericArg, GenericArgs, GenericArgsRef, List, ParamEnv, |
| Region, Ty, TyCtxt, TypeFlags, TypeSuperVisitable, TypeVisitable, TypeVisitor, UintTy, |
| }; |
| |
| // Re-export and re-parameterize some `I = TyCtxt<'tcx>` types here |
| #[rustc_diagnostic_item = "TyKind"] |
| pub type TyKind<'tcx> = ir::TyKind<TyCtxt<'tcx>>; |
| pub type TypeAndMut<'tcx> = ir::TypeAndMut<TyCtxt<'tcx>>; |
| pub type AliasTy<'tcx> = ir::AliasTy<TyCtxt<'tcx>>; |
| pub type FnSig<'tcx> = ir::FnSig<TyCtxt<'tcx>>; |
| pub type Binder<'tcx, T> = ir::Binder<TyCtxt<'tcx>, T>; |
| pub type EarlyBinder<'tcx, T> = ir::EarlyBinder<TyCtxt<'tcx>, T>; |
| pub type TypingMode<'tcx> = ir::TypingMode<TyCtxt<'tcx>>; |
| |
| pub trait Article { |
| fn article(&self) -> &'static str; |
| } |
| |
| impl<'tcx> Article for TyKind<'tcx> { |
| /// Get the article ("a" or "an") to use with this type. |
| fn article(&self) -> &'static str { |
| match self { |
| Int(_) | Float(_) | Array(_, _) => "an", |
| Adt(def, _) if def.is_enum() => "an", |
| // This should never happen, but ICEing and causing the user's code |
| // to not compile felt too harsh. |
| Error(_) => "a", |
| _ => "a", |
| } |
| } |
| } |
| |
| #[extension(pub trait CoroutineArgsExt<'tcx>)] |
| impl<'tcx> ty::CoroutineArgs<TyCtxt<'tcx>> { |
| /// Coroutine has not been resumed yet. |
| const UNRESUMED: usize = 0; |
| /// Coroutine has returned or is completed. |
| const RETURNED: usize = 1; |
| /// Coroutine has been poisoned. |
| const POISONED: usize = 2; |
| /// Number of variants to reserve in coroutine state. Corresponds to |
| /// `UNRESUMED` (beginning of a coroutine) and `RETURNED`/`POISONED` |
| /// (end of a coroutine) states. |
| const RESERVED_VARIANTS: usize = 3; |
| |
| const UNRESUMED_NAME: &'static str = "Unresumed"; |
| const RETURNED_NAME: &'static str = "Returned"; |
| const POISONED_NAME: &'static str = "Panicked"; |
| |
| /// The valid variant indices of this coroutine. |
| #[inline] |
| fn variant_range(&self, def_id: DefId, tcx: TyCtxt<'tcx>) -> Range<VariantIdx> { |
| // FIXME requires optimized MIR |
| FIRST_VARIANT..tcx.coroutine_layout(def_id, self.args).unwrap().variant_fields.next_index() |
| } |
| |
| /// The discriminant for the given variant. Panics if the `variant_index` is |
| /// out of range. |
| #[inline] |
| fn discriminant_for_variant( |
| &self, |
| def_id: DefId, |
| tcx: TyCtxt<'tcx>, |
| variant_index: VariantIdx, |
| ) -> Discr<'tcx> { |
| // Coroutines don't support explicit discriminant values, so they are |
| // the same as the variant index. |
| assert!(self.variant_range(def_id, tcx).contains(&variant_index)); |
| Discr { val: variant_index.as_usize() as u128, ty: self.discr_ty(tcx) } |
| } |
| |
| /// The set of all discriminants for the coroutine, enumerated with their |
| /// variant indices. |
| #[inline] |
| fn discriminants( |
| self, |
| def_id: DefId, |
| tcx: TyCtxt<'tcx>, |
| ) -> impl Iterator<Item = (VariantIdx, Discr<'tcx>)> { |
| self.variant_range(def_id, tcx).map(move |index| { |
| (index, Discr { val: index.as_usize() as u128, ty: self.discr_ty(tcx) }) |
| }) |
| } |
| |
| /// Calls `f` with a reference to the name of the enumerator for the given |
| /// variant `v`. |
| fn variant_name(v: VariantIdx) -> Cow<'static, str> { |
| match v.as_usize() { |
| Self::UNRESUMED => Cow::from(Self::UNRESUMED_NAME), |
| Self::RETURNED => Cow::from(Self::RETURNED_NAME), |
| Self::POISONED => Cow::from(Self::POISONED_NAME), |
| _ => Cow::from(format!("Suspend{}", v.as_usize() - Self::RESERVED_VARIANTS)), |
| } |
| } |
| |
| /// The type of the state discriminant used in the coroutine type. |
| #[inline] |
| fn discr_ty(&self, tcx: TyCtxt<'tcx>) -> Ty<'tcx> { |
| tcx.types.u32 |
| } |
| |
| /// This returns the types of the MIR locals which had to be stored across suspension points. |
| /// It is calculated in rustc_mir_transform::coroutine::StateTransform. |
| /// All the types here must be in the tuple in CoroutineInterior. |
| /// |
| /// The locals are grouped by their variant number. Note that some locals may |
| /// be repeated in multiple variants. |
| #[inline] |
| fn state_tys( |
| self, |
| def_id: DefId, |
| tcx: TyCtxt<'tcx>, |
| ) -> impl Iterator<Item: Iterator<Item = Ty<'tcx>>> { |
| let layout = tcx.coroutine_layout(def_id, self.args).unwrap(); |
| layout.variant_fields.iter().map(move |variant| { |
| variant.iter().map(move |field| { |
| if tcx.is_async_drop_in_place_coroutine(def_id) { |
| layout.field_tys[*field].ty |
| } else { |
| ty::EarlyBinder::bind(layout.field_tys[*field].ty).instantiate(tcx, self.args) |
| } |
| }) |
| }) |
| } |
| |
| /// This is the types of the fields of a coroutine which are not stored in a |
| /// variant. |
| #[inline] |
| fn prefix_tys(self) -> &'tcx List<Ty<'tcx>> { |
| self.upvar_tys() |
| } |
| } |
| |
| #[derive(Debug, Copy, Clone, HashStable, TypeFoldable, TypeVisitable)] |
| pub enum UpvarArgs<'tcx> { |
| Closure(GenericArgsRef<'tcx>), |
| Coroutine(GenericArgsRef<'tcx>), |
| CoroutineClosure(GenericArgsRef<'tcx>), |
| } |
| |
| impl<'tcx> UpvarArgs<'tcx> { |
| /// Returns an iterator over the list of types of captured paths by the closure/coroutine. |
| /// In case there was a type error in figuring out the types of the captured path, an |
| /// empty iterator is returned. |
| #[inline] |
| pub fn upvar_tys(self) -> &'tcx List<Ty<'tcx>> { |
| let tupled_tys = match self { |
| UpvarArgs::Closure(args) => args.as_closure().tupled_upvars_ty(), |
| UpvarArgs::Coroutine(args) => args.as_coroutine().tupled_upvars_ty(), |
| UpvarArgs::CoroutineClosure(args) => args.as_coroutine_closure().tupled_upvars_ty(), |
| }; |
| |
| match tupled_tys.kind() { |
| TyKind::Error(_) => ty::List::empty(), |
| TyKind::Tuple(..) => self.tupled_upvars_ty().tuple_fields(), |
| TyKind::Infer(_) => bug!("upvar_tys called before capture types are inferred"), |
| ty => bug!("Unexpected representation of upvar types tuple {:?}", ty), |
| } |
| } |
| |
| #[inline] |
| pub fn tupled_upvars_ty(self) -> Ty<'tcx> { |
| match self { |
| UpvarArgs::Closure(args) => args.as_closure().tupled_upvars_ty(), |
| UpvarArgs::Coroutine(args) => args.as_coroutine().tupled_upvars_ty(), |
| UpvarArgs::CoroutineClosure(args) => args.as_coroutine_closure().tupled_upvars_ty(), |
| } |
| } |
| } |
| |
| /// An inline const is modeled like |
| /// ```ignore (illustrative) |
| /// const InlineConst<'l0...'li, T0...Tj, R>: R; |
| /// ``` |
| /// where: |
| /// |
| /// - 'l0...'li and T0...Tj are the generic parameters |
| /// inherited from the item that defined the inline const, |
| /// - R represents the type of the constant. |
| /// |
| /// When the inline const is instantiated, `R` is instantiated as the actual inferred |
| /// type of the constant. The reason that `R` is represented as an extra type parameter |
| /// is the same reason that [`ty::ClosureArgs`] have `CS` and `U` as type parameters: |
| /// inline const can reference lifetimes that are internal to the creating function. |
| #[derive(Copy, Clone, Debug)] |
| pub struct InlineConstArgs<'tcx> { |
| /// Generic parameters from the enclosing item, |
| /// concatenated with the inferred type of the constant. |
| pub args: GenericArgsRef<'tcx>, |
| } |
| |
| /// Struct returned by `split()`. |
| pub struct InlineConstArgsParts<'tcx, T> { |
| pub parent_args: &'tcx [GenericArg<'tcx>], |
| pub ty: T, |
| } |
| |
| impl<'tcx> InlineConstArgs<'tcx> { |
| /// Construct `InlineConstArgs` from `InlineConstArgsParts`. |
| pub fn new( |
| tcx: TyCtxt<'tcx>, |
| parts: InlineConstArgsParts<'tcx, Ty<'tcx>>, |
| ) -> InlineConstArgs<'tcx> { |
| InlineConstArgs { |
| args: tcx.mk_args_from_iter( |
| parts.parent_args.iter().copied().chain(std::iter::once(parts.ty.into())), |
| ), |
| } |
| } |
| |
| /// Divides the inline const args into their respective components. |
| /// The ordering assumed here must match that used by `InlineConstArgs::new` above. |
| fn split(self) -> InlineConstArgsParts<'tcx, GenericArg<'tcx>> { |
| match self.args[..] { |
| [ref parent_args @ .., ty] => InlineConstArgsParts { parent_args, ty }, |
| _ => bug!("inline const args missing synthetics"), |
| } |
| } |
| |
| /// Returns the generic parameters of the inline const's parent. |
| pub fn parent_args(self) -> &'tcx [GenericArg<'tcx>] { |
| self.split().parent_args |
| } |
| |
| /// Returns the type of this inline const. |
| pub fn ty(self) -> Ty<'tcx> { |
| self.split().ty.expect_ty() |
| } |
| } |
| |
| #[derive(Copy, Clone, PartialEq, Eq, Hash, Debug, TyEncodable, TyDecodable)] |
| #[derive(HashStable)] |
| pub enum BoundVariableKind { |
| Ty(BoundTyKind), |
| Region(BoundRegionKind), |
| Const, |
| } |
| |
| impl BoundVariableKind { |
| pub fn expect_region(self) -> BoundRegionKind { |
| match self { |
| BoundVariableKind::Region(lt) => lt, |
| _ => bug!("expected a region, but found another kind"), |
| } |
| } |
| |
| pub fn expect_ty(self) -> BoundTyKind { |
| match self { |
| BoundVariableKind::Ty(ty) => ty, |
| _ => bug!("expected a type, but found another kind"), |
| } |
| } |
| |
| pub fn expect_const(self) { |
| match self { |
| BoundVariableKind::Const => (), |
| _ => bug!("expected a const, but found another kind"), |
| } |
| } |
| } |
| |
| pub type PolyFnSig<'tcx> = Binder<'tcx, FnSig<'tcx>>; |
| pub type CanonicalPolyFnSig<'tcx> = Canonical<'tcx, Binder<'tcx, FnSig<'tcx>>>; |
| |
| #[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, TyEncodable, TyDecodable)] |
| #[derive(HashStable)] |
| pub struct ParamTy { |
| pub index: u32, |
| pub name: Symbol, |
| } |
| |
| impl rustc_type_ir::inherent::ParamLike for ParamTy { |
| fn index(self) -> u32 { |
| self.index |
| } |
| } |
| |
| impl<'tcx> ParamTy { |
| pub fn new(index: u32, name: Symbol) -> ParamTy { |
| ParamTy { index, name } |
| } |
| |
| pub fn for_def(def: &ty::GenericParamDef) -> ParamTy { |
| ParamTy::new(def.index, def.name) |
| } |
| |
| #[inline] |
| pub fn to_ty(self, tcx: TyCtxt<'tcx>) -> Ty<'tcx> { |
| Ty::new_param(tcx, self.index, self.name) |
| } |
| |
| pub fn span_from_generics(self, tcx: TyCtxt<'tcx>, item_with_generics: DefId) -> Span { |
| let generics = tcx.generics_of(item_with_generics); |
| let type_param = generics.type_param(self, tcx); |
| tcx.def_span(type_param.def_id) |
| } |
| } |
| |
| #[derive(Copy, Clone, Hash, TyEncodable, TyDecodable, Eq, PartialEq, Ord, PartialOrd)] |
| #[derive(HashStable)] |
| pub struct ParamConst { |
| pub index: u32, |
| pub name: Symbol, |
| } |
| |
| impl rustc_type_ir::inherent::ParamLike for ParamConst { |
| fn index(self) -> u32 { |
| self.index |
| } |
| } |
| |
| impl ParamConst { |
| pub fn new(index: u32, name: Symbol) -> ParamConst { |
| ParamConst { index, name } |
| } |
| |
| pub fn for_def(def: &ty::GenericParamDef) -> ParamConst { |
| ParamConst::new(def.index, def.name) |
| } |
| |
| #[instrument(level = "debug")] |
| pub fn find_const_ty_from_env<'tcx>(self, env: ParamEnv<'tcx>) -> Ty<'tcx> { |
| let mut candidates = env.caller_bounds().iter().filter_map(|clause| { |
| // `ConstArgHasType` are never desugared to be higher ranked. |
| match clause.kind().skip_binder() { |
| ty::ClauseKind::ConstArgHasType(param_ct, ty) => { |
| assert!(!(param_ct, ty).has_escaping_bound_vars()); |
| |
| match param_ct.kind() { |
| ty::ConstKind::Param(param_ct) if param_ct.index == self.index => Some(ty), |
| _ => None, |
| } |
| } |
| _ => None, |
| } |
| }); |
| |
| // N.B. it may be tempting to fix ICEs by making this function return |
| // `Option<Ty<'tcx>>` instead of `Ty<'tcx>`; however, this is generally |
| // considered to be a bandaid solution, since it hides more important |
| // underlying issues with how we construct generics and predicates of |
| // items. It's advised to fix the underlying issue rather than trying |
| // to modify this function. |
| let ty = candidates.next().unwrap_or_else(|| { |
| bug!("cannot find `{self:?}` in param-env: {env:#?}"); |
| }); |
| assert!( |
| candidates.next().is_none(), |
| "did not expect duplicate `ConstParamHasTy` for `{self:?}` in param-env: {env:#?}" |
| ); |
| ty |
| } |
| } |
| |
| #[derive(Clone, Copy, PartialEq, Eq, Hash, TyEncodable, TyDecodable)] |
| #[derive(HashStable)] |
| pub struct BoundTy { |
| pub var: BoundVar, |
| pub kind: BoundTyKind, |
| } |
| |
| impl<'tcx> rustc_type_ir::inherent::BoundVarLike<TyCtxt<'tcx>> for BoundTy { |
| fn var(self) -> BoundVar { |
| self.var |
| } |
| |
| fn assert_eq(self, var: ty::BoundVariableKind) { |
| assert_eq!(self.kind, var.expect_ty()) |
| } |
| } |
| |
| #[derive(Clone, Copy, PartialEq, Eq, Hash, Debug, TyEncodable, TyDecodable)] |
| #[derive(HashStable)] |
| pub enum BoundTyKind { |
| Anon, |
| Param(DefId, Symbol), |
| } |
| |
| impl From<BoundVar> for BoundTy { |
| fn from(var: BoundVar) -> Self { |
| BoundTy { var, kind: BoundTyKind::Anon } |
| } |
| } |
| |
| /// Constructors for `Ty` |
| impl<'tcx> Ty<'tcx> { |
| /// Avoid using this in favour of more specific `new_*` methods, where possible. |
| /// The more specific methods will often optimize their creation. |
| #[allow(rustc::usage_of_ty_tykind)] |
| #[inline] |
| fn new(tcx: TyCtxt<'tcx>, st: TyKind<'tcx>) -> Ty<'tcx> { |
| tcx.mk_ty_from_kind(st) |
| } |
| |
| #[inline] |
| pub fn new_infer(tcx: TyCtxt<'tcx>, infer: ty::InferTy) -> Ty<'tcx> { |
| Ty::new(tcx, TyKind::Infer(infer)) |
| } |
| |
| #[inline] |
| pub fn new_var(tcx: TyCtxt<'tcx>, v: ty::TyVid) -> Ty<'tcx> { |
| // Use a pre-interned one when possible. |
| tcx.types |
| .ty_vars |
| .get(v.as_usize()) |
| .copied() |
| .unwrap_or_else(|| Ty::new(tcx, Infer(TyVar(v)))) |
| } |
| |
| #[inline] |
| pub fn new_int_var(tcx: TyCtxt<'tcx>, v: ty::IntVid) -> Ty<'tcx> { |
| Ty::new_infer(tcx, IntVar(v)) |
| } |
| |
| #[inline] |
| pub fn new_float_var(tcx: TyCtxt<'tcx>, v: ty::FloatVid) -> Ty<'tcx> { |
| Ty::new_infer(tcx, FloatVar(v)) |
| } |
| |
| #[inline] |
| pub fn new_fresh(tcx: TyCtxt<'tcx>, n: u32) -> Ty<'tcx> { |
| // Use a pre-interned one when possible. |
| tcx.types |
| .fresh_tys |
| .get(n as usize) |
| .copied() |
| .unwrap_or_else(|| Ty::new_infer(tcx, ty::FreshTy(n))) |
| } |
| |
| #[inline] |
| pub fn new_fresh_int(tcx: TyCtxt<'tcx>, n: u32) -> Ty<'tcx> { |
| // Use a pre-interned one when possible. |
| tcx.types |
| .fresh_int_tys |
| .get(n as usize) |
| .copied() |
| .unwrap_or_else(|| Ty::new_infer(tcx, ty::FreshIntTy(n))) |
| } |
| |
| #[inline] |
| pub fn new_fresh_float(tcx: TyCtxt<'tcx>, n: u32) -> Ty<'tcx> { |
| // Use a pre-interned one when possible. |
| tcx.types |
| .fresh_float_tys |
| .get(n as usize) |
| .copied() |
| .unwrap_or_else(|| Ty::new_infer(tcx, ty::FreshFloatTy(n))) |
| } |
| |
| #[inline] |
| pub fn new_param(tcx: TyCtxt<'tcx>, index: u32, name: Symbol) -> Ty<'tcx> { |
| Ty::new(tcx, Param(ParamTy { index, name })) |
| } |
| |
| #[inline] |
| pub fn new_bound( |
| tcx: TyCtxt<'tcx>, |
| index: ty::DebruijnIndex, |
| bound_ty: ty::BoundTy, |
| ) -> Ty<'tcx> { |
| Ty::new(tcx, Bound(index, bound_ty)) |
| } |
| |
| #[inline] |
| pub fn new_placeholder(tcx: TyCtxt<'tcx>, placeholder: ty::PlaceholderType) -> Ty<'tcx> { |
| Ty::new(tcx, Placeholder(placeholder)) |
| } |
| |
| #[inline] |
| pub fn new_alias( |
| tcx: TyCtxt<'tcx>, |
| kind: ty::AliasTyKind, |
| alias_ty: ty::AliasTy<'tcx>, |
| ) -> Ty<'tcx> { |
| debug_assert_matches!( |
| (kind, tcx.def_kind(alias_ty.def_id)), |
| (ty::Opaque, DefKind::OpaqueTy) |
| | (ty::Projection | ty::Inherent, DefKind::AssocTy) |
| | (ty::Free, DefKind::TyAlias) |
| ); |
| Ty::new(tcx, Alias(kind, alias_ty)) |
| } |
| |
| #[inline] |
| pub fn new_pat(tcx: TyCtxt<'tcx>, base: Ty<'tcx>, pat: ty::Pattern<'tcx>) -> Ty<'tcx> { |
| Ty::new(tcx, Pat(base, pat)) |
| } |
| |
| #[inline] |
| #[instrument(level = "debug", skip(tcx))] |
| pub fn new_opaque(tcx: TyCtxt<'tcx>, def_id: DefId, args: GenericArgsRef<'tcx>) -> Ty<'tcx> { |
| Ty::new_alias(tcx, ty::Opaque, AliasTy::new_from_args(tcx, def_id, args)) |
| } |
| |
| /// Constructs a `TyKind::Error` type with current `ErrorGuaranteed` |
| pub fn new_error(tcx: TyCtxt<'tcx>, guar: ErrorGuaranteed) -> Ty<'tcx> { |
| Ty::new(tcx, Error(guar)) |
| } |
| |
| /// Constructs a `TyKind::Error` type and registers a `span_delayed_bug` to ensure it gets used. |
| #[track_caller] |
| pub fn new_misc_error(tcx: TyCtxt<'tcx>) -> Ty<'tcx> { |
| Ty::new_error_with_message(tcx, DUMMY_SP, "TyKind::Error constructed but no error reported") |
| } |
| |
| /// Constructs a `TyKind::Error` type and registers a `span_delayed_bug` with the given `msg` to |
| /// ensure it gets used. |
| #[track_caller] |
| pub fn new_error_with_message<S: Into<MultiSpan>>( |
| tcx: TyCtxt<'tcx>, |
| span: S, |
| msg: impl Into<Cow<'static, str>>, |
| ) -> Ty<'tcx> { |
| let reported = tcx.dcx().span_delayed_bug(span, msg); |
| Ty::new(tcx, Error(reported)) |
| } |
| |
| #[inline] |
| pub fn new_int(tcx: TyCtxt<'tcx>, i: ty::IntTy) -> Ty<'tcx> { |
| use ty::IntTy::*; |
| match i { |
| Isize => tcx.types.isize, |
| I8 => tcx.types.i8, |
| I16 => tcx.types.i16, |
| I32 => tcx.types.i32, |
| I64 => tcx.types.i64, |
| I128 => tcx.types.i128, |
| } |
| } |
| |
| #[inline] |
| pub fn new_uint(tcx: TyCtxt<'tcx>, ui: ty::UintTy) -> Ty<'tcx> { |
| use ty::UintTy::*; |
| match ui { |
| Usize => tcx.types.usize, |
| U8 => tcx.types.u8, |
| U16 => tcx.types.u16, |
| U32 => tcx.types.u32, |
| U64 => tcx.types.u64, |
| U128 => tcx.types.u128, |
| } |
| } |
| |
| #[inline] |
| pub fn new_float(tcx: TyCtxt<'tcx>, f: ty::FloatTy) -> Ty<'tcx> { |
| use ty::FloatTy::*; |
| match f { |
| F16 => tcx.types.f16, |
| F32 => tcx.types.f32, |
| F64 => tcx.types.f64, |
| F128 => tcx.types.f128, |
| } |
| } |
| |
| #[inline] |
| pub fn new_ref( |
| tcx: TyCtxt<'tcx>, |
| r: Region<'tcx>, |
| ty: Ty<'tcx>, |
| mutbl: ty::Mutability, |
| ) -> Ty<'tcx> { |
| Ty::new(tcx, Ref(r, ty, mutbl)) |
| } |
| |
| #[inline] |
| pub fn new_mut_ref(tcx: TyCtxt<'tcx>, r: Region<'tcx>, ty: Ty<'tcx>) -> Ty<'tcx> { |
| Ty::new_ref(tcx, r, ty, hir::Mutability::Mut) |
| } |
| |
| #[inline] |
| pub fn new_imm_ref(tcx: TyCtxt<'tcx>, r: Region<'tcx>, ty: Ty<'tcx>) -> Ty<'tcx> { |
| Ty::new_ref(tcx, r, ty, hir::Mutability::Not) |
| } |
| |
| pub fn new_pinned_ref( |
| tcx: TyCtxt<'tcx>, |
| r: Region<'tcx>, |
| ty: Ty<'tcx>, |
| mutbl: ty::Mutability, |
| ) -> Ty<'tcx> { |
| let pin = tcx.adt_def(tcx.require_lang_item(LangItem::Pin, DUMMY_SP)); |
| Ty::new_adt(tcx, pin, tcx.mk_args(&[Ty::new_ref(tcx, r, ty, mutbl).into()])) |
| } |
| |
| #[inline] |
| pub fn new_ptr(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>, mutbl: ty::Mutability) -> Ty<'tcx> { |
| Ty::new(tcx, ty::RawPtr(ty, mutbl)) |
| } |
| |
| #[inline] |
| pub fn new_mut_ptr(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>) -> Ty<'tcx> { |
| Ty::new_ptr(tcx, ty, hir::Mutability::Mut) |
| } |
| |
| #[inline] |
| pub fn new_imm_ptr(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>) -> Ty<'tcx> { |
| Ty::new_ptr(tcx, ty, hir::Mutability::Not) |
| } |
| |
| #[inline] |
| pub fn new_adt(tcx: TyCtxt<'tcx>, def: AdtDef<'tcx>, args: GenericArgsRef<'tcx>) -> Ty<'tcx> { |
| tcx.debug_assert_args_compatible(def.did(), args); |
| if cfg!(debug_assertions) { |
| match tcx.def_kind(def.did()) { |
| DefKind::Struct | DefKind::Union | DefKind::Enum => {} |
| DefKind::Mod |
| | DefKind::Variant |
| | DefKind::Trait |
| | DefKind::TyAlias |
| | DefKind::ForeignTy |
| | DefKind::TraitAlias |
| | DefKind::AssocTy |
| | DefKind::TyParam |
| | DefKind::Fn |
| | DefKind::Const |
| | DefKind::ConstParam |
| | DefKind::Static { .. } |
| | DefKind::Ctor(..) |
| | DefKind::AssocFn |
| | DefKind::AssocConst |
| | DefKind::Macro(..) |
| | DefKind::ExternCrate |
| | DefKind::Use |
| | DefKind::ForeignMod |
| | DefKind::AnonConst |
| | DefKind::InlineConst |
| | DefKind::OpaqueTy |
| | DefKind::Field |
| | DefKind::LifetimeParam |
| | DefKind::GlobalAsm |
| | DefKind::Impl { .. } |
| | DefKind::Closure |
| | DefKind::SyntheticCoroutineBody => { |
| bug!("not an adt: {def:?} ({:?})", tcx.def_kind(def.did())) |
| } |
| } |
| } |
| Ty::new(tcx, Adt(def, args)) |
| } |
| |
| #[inline] |
| pub fn new_foreign(tcx: TyCtxt<'tcx>, def_id: DefId) -> Ty<'tcx> { |
| Ty::new(tcx, Foreign(def_id)) |
| } |
| |
| #[inline] |
| pub fn new_array(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>, n: u64) -> Ty<'tcx> { |
| Ty::new(tcx, Array(ty, ty::Const::from_target_usize(tcx, n))) |
| } |
| |
| #[inline] |
| pub fn new_array_with_const_len( |
| tcx: TyCtxt<'tcx>, |
| ty: Ty<'tcx>, |
| ct: ty::Const<'tcx>, |
| ) -> Ty<'tcx> { |
| Ty::new(tcx, Array(ty, ct)) |
| } |
| |
| #[inline] |
| pub fn new_slice(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>) -> Ty<'tcx> { |
| Ty::new(tcx, Slice(ty)) |
| } |
| |
| #[inline] |
| pub fn new_tup(tcx: TyCtxt<'tcx>, ts: &[Ty<'tcx>]) -> Ty<'tcx> { |
| if ts.is_empty() { tcx.types.unit } else { Ty::new(tcx, Tuple(tcx.mk_type_list(ts))) } |
| } |
| |
| pub fn new_tup_from_iter<I, T>(tcx: TyCtxt<'tcx>, iter: I) -> T::Output |
| where |
| I: Iterator<Item = T>, |
| T: CollectAndApply<Ty<'tcx>, Ty<'tcx>>, |
| { |
| T::collect_and_apply(iter, |ts| Ty::new_tup(tcx, ts)) |
| } |
| |
| #[inline] |
| pub fn new_fn_def( |
| tcx: TyCtxt<'tcx>, |
| def_id: DefId, |
| args: impl IntoIterator<Item: Into<GenericArg<'tcx>>>, |
| ) -> Ty<'tcx> { |
| debug_assert_matches!( |
| tcx.def_kind(def_id), |
| DefKind::AssocFn | DefKind::Fn | DefKind::Ctor(_, CtorKind::Fn) |
| ); |
| let args = tcx.check_and_mk_args(def_id, args); |
| Ty::new(tcx, FnDef(def_id, args)) |
| } |
| |
| #[inline] |
| pub fn new_fn_ptr(tcx: TyCtxt<'tcx>, fty: PolyFnSig<'tcx>) -> Ty<'tcx> { |
| let (sig_tys, hdr) = fty.split(); |
| Ty::new(tcx, FnPtr(sig_tys, hdr)) |
| } |
| |
| #[inline] |
| pub fn new_unsafe_binder(tcx: TyCtxt<'tcx>, b: Binder<'tcx, Ty<'tcx>>) -> Ty<'tcx> { |
| Ty::new(tcx, UnsafeBinder(b.into())) |
| } |
| |
| #[inline] |
| pub fn new_dynamic( |
| tcx: TyCtxt<'tcx>, |
| obj: &'tcx List<ty::PolyExistentialPredicate<'tcx>>, |
| reg: ty::Region<'tcx>, |
| repr: DynKind, |
| ) -> Ty<'tcx> { |
| if cfg!(debug_assertions) { |
| let projection_count = obj |
| .projection_bounds() |
| .filter(|item| !tcx.generics_require_sized_self(item.item_def_id())) |
| .count(); |
| let expected_count: usize = obj |
| .principal_def_id() |
| .into_iter() |
| .flat_map(|principal_def_id| { |
| // NOTE: This should agree with `needed_associated_types` in |
| // dyn trait lowering, or else we'll have ICEs. |
| elaborate::supertraits( |
| tcx, |
| ty::Binder::dummy(ty::TraitRef::identity(tcx, principal_def_id)), |
| ) |
| .map(|principal| { |
| tcx.associated_items(principal.def_id()) |
| .in_definition_order() |
| .filter(|item| item.is_type()) |
| .filter(|item| !item.is_impl_trait_in_trait()) |
| .filter(|item| !tcx.generics_require_sized_self(item.def_id)) |
| .count() |
| }) |
| }) |
| .sum(); |
| assert_eq!( |
| projection_count, expected_count, |
| "expected {obj:?} to have {expected_count} projections, \ |
| but it has {projection_count}" |
| ); |
| } |
| Ty::new(tcx, Dynamic(obj, reg, repr)) |
| } |
| |
| #[inline] |
| pub fn new_projection_from_args( |
| tcx: TyCtxt<'tcx>, |
| item_def_id: DefId, |
| args: ty::GenericArgsRef<'tcx>, |
| ) -> Ty<'tcx> { |
| Ty::new_alias(tcx, ty::Projection, AliasTy::new_from_args(tcx, item_def_id, args)) |
| } |
| |
| #[inline] |
| pub fn new_projection( |
| tcx: TyCtxt<'tcx>, |
| item_def_id: DefId, |
| args: impl IntoIterator<Item: Into<GenericArg<'tcx>>>, |
| ) -> Ty<'tcx> { |
| Ty::new_alias(tcx, ty::Projection, AliasTy::new(tcx, item_def_id, args)) |
| } |
| |
| #[inline] |
| pub fn new_closure( |
| tcx: TyCtxt<'tcx>, |
| def_id: DefId, |
| closure_args: GenericArgsRef<'tcx>, |
| ) -> Ty<'tcx> { |
| tcx.debug_assert_args_compatible(def_id, closure_args); |
| Ty::new(tcx, Closure(def_id, closure_args)) |
| } |
| |
| #[inline] |
| pub fn new_coroutine_closure( |
| tcx: TyCtxt<'tcx>, |
| def_id: DefId, |
| closure_args: GenericArgsRef<'tcx>, |
| ) -> Ty<'tcx> { |
| tcx.debug_assert_args_compatible(def_id, closure_args); |
| Ty::new(tcx, CoroutineClosure(def_id, closure_args)) |
| } |
| |
| #[inline] |
| pub fn new_coroutine( |
| tcx: TyCtxt<'tcx>, |
| def_id: DefId, |
| coroutine_args: GenericArgsRef<'tcx>, |
| ) -> Ty<'tcx> { |
| tcx.debug_assert_args_compatible(def_id, coroutine_args); |
| Ty::new(tcx, Coroutine(def_id, coroutine_args)) |
| } |
| |
| #[inline] |
| pub fn new_coroutine_witness( |
| tcx: TyCtxt<'tcx>, |
| id: DefId, |
| args: GenericArgsRef<'tcx>, |
| ) -> Ty<'tcx> { |
| Ty::new(tcx, CoroutineWitness(id, args)) |
| } |
| |
| // misc |
| |
| #[inline] |
| pub fn new_static_str(tcx: TyCtxt<'tcx>) -> Ty<'tcx> { |
| Ty::new_imm_ref(tcx, tcx.lifetimes.re_static, tcx.types.str_) |
| } |
| |
| #[inline] |
| pub fn new_diverging_default(tcx: TyCtxt<'tcx>) -> Ty<'tcx> { |
| if tcx.features().never_type_fallback() { tcx.types.never } else { tcx.types.unit } |
| } |
| |
| // lang and diagnostic tys |
| |
| fn new_generic_adt(tcx: TyCtxt<'tcx>, wrapper_def_id: DefId, ty_param: Ty<'tcx>) -> Ty<'tcx> { |
| let adt_def = tcx.adt_def(wrapper_def_id); |
| let args = GenericArgs::for_item(tcx, wrapper_def_id, |param, args| match param.kind { |
| GenericParamDefKind::Lifetime | GenericParamDefKind::Const { .. } => bug!(), |
| GenericParamDefKind::Type { has_default, .. } => { |
| if param.index == 0 { |
| ty_param.into() |
| } else { |
| assert!(has_default); |
| tcx.type_of(param.def_id).instantiate(tcx, args).into() |
| } |
| } |
| }); |
| Ty::new_adt(tcx, adt_def, args) |
| } |
| |
| #[inline] |
| pub fn new_lang_item(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>, item: LangItem) -> Option<Ty<'tcx>> { |
| let def_id = tcx.lang_items().get(item)?; |
| Some(Ty::new_generic_adt(tcx, def_id, ty)) |
| } |
| |
| #[inline] |
| pub fn new_diagnostic_item(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>, name: Symbol) -> Option<Ty<'tcx>> { |
| let def_id = tcx.get_diagnostic_item(name)?; |
| Some(Ty::new_generic_adt(tcx, def_id, ty)) |
| } |
| |
| #[inline] |
| pub fn new_box(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>) -> Ty<'tcx> { |
| let def_id = tcx.require_lang_item(LangItem::OwnedBox, DUMMY_SP); |
| Ty::new_generic_adt(tcx, def_id, ty) |
| } |
| |
| #[inline] |
| pub fn new_maybe_uninit(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>) -> Ty<'tcx> { |
| let def_id = tcx.require_lang_item(LangItem::MaybeUninit, DUMMY_SP); |
| Ty::new_generic_adt(tcx, def_id, ty) |
| } |
| |
| /// Creates a `&mut Context<'_>` [`Ty`] with erased lifetimes. |
| pub fn new_task_context(tcx: TyCtxt<'tcx>) -> Ty<'tcx> { |
| let context_did = tcx.require_lang_item(LangItem::Context, DUMMY_SP); |
| let context_adt_ref = tcx.adt_def(context_did); |
| let context_args = tcx.mk_args(&[tcx.lifetimes.re_erased.into()]); |
| let context_ty = Ty::new_adt(tcx, context_adt_ref, context_args); |
| Ty::new_mut_ref(tcx, tcx.lifetimes.re_erased, context_ty) |
| } |
| } |
| |
| impl<'tcx> rustc_type_ir::inherent::Ty<TyCtxt<'tcx>> for Ty<'tcx> { |
| fn new_bool(tcx: TyCtxt<'tcx>) -> Self { |
| tcx.types.bool |
| } |
| |
| fn new_u8(tcx: TyCtxt<'tcx>) -> Self { |
| tcx.types.u8 |
| } |
| |
| fn new_infer(tcx: TyCtxt<'tcx>, infer: ty::InferTy) -> Self { |
| Ty::new_infer(tcx, infer) |
| } |
| |
| fn new_var(tcx: TyCtxt<'tcx>, vid: ty::TyVid) -> Self { |
| Ty::new_var(tcx, vid) |
| } |
| |
| fn new_param(tcx: TyCtxt<'tcx>, param: ty::ParamTy) -> Self { |
| Ty::new_param(tcx, param.index, param.name) |
| } |
| |
| fn new_placeholder(tcx: TyCtxt<'tcx>, placeholder: ty::PlaceholderType) -> Self { |
| Ty::new_placeholder(tcx, placeholder) |
| } |
| |
| fn new_bound(interner: TyCtxt<'tcx>, debruijn: ty::DebruijnIndex, var: ty::BoundTy) -> Self { |
| Ty::new_bound(interner, debruijn, var) |
| } |
| |
| fn new_anon_bound(tcx: TyCtxt<'tcx>, debruijn: ty::DebruijnIndex, var: ty::BoundVar) -> Self { |
| Ty::new_bound(tcx, debruijn, ty::BoundTy { var, kind: ty::BoundTyKind::Anon }) |
| } |
| |
| fn new_alias( |
| interner: TyCtxt<'tcx>, |
| kind: ty::AliasTyKind, |
| alias_ty: ty::AliasTy<'tcx>, |
| ) -> Self { |
| Ty::new_alias(interner, kind, alias_ty) |
| } |
| |
| fn new_error(interner: TyCtxt<'tcx>, guar: ErrorGuaranteed) -> Self { |
| Ty::new_error(interner, guar) |
| } |
| |
| fn new_adt( |
| interner: TyCtxt<'tcx>, |
| adt_def: ty::AdtDef<'tcx>, |
| args: ty::GenericArgsRef<'tcx>, |
| ) -> Self { |
| Ty::new_adt(interner, adt_def, args) |
| } |
| |
| fn new_foreign(interner: TyCtxt<'tcx>, def_id: DefId) -> Self { |
| Ty::new_foreign(interner, def_id) |
| } |
| |
| fn new_dynamic( |
| interner: TyCtxt<'tcx>, |
| preds: &'tcx List<ty::PolyExistentialPredicate<'tcx>>, |
| region: ty::Region<'tcx>, |
| kind: ty::DynKind, |
| ) -> Self { |
| Ty::new_dynamic(interner, preds, region, kind) |
| } |
| |
| fn new_coroutine( |
| interner: TyCtxt<'tcx>, |
| def_id: DefId, |
| args: ty::GenericArgsRef<'tcx>, |
| ) -> Self { |
| Ty::new_coroutine(interner, def_id, args) |
| } |
| |
| fn new_coroutine_closure( |
| interner: TyCtxt<'tcx>, |
| def_id: DefId, |
| args: ty::GenericArgsRef<'tcx>, |
| ) -> Self { |
| Ty::new_coroutine_closure(interner, def_id, args) |
| } |
| |
| fn new_closure(interner: TyCtxt<'tcx>, def_id: DefId, args: ty::GenericArgsRef<'tcx>) -> Self { |
| Ty::new_closure(interner, def_id, args) |
| } |
| |
| fn new_coroutine_witness( |
| interner: TyCtxt<'tcx>, |
| def_id: DefId, |
| args: ty::GenericArgsRef<'tcx>, |
| ) -> Self { |
| Ty::new_coroutine_witness(interner, def_id, args) |
| } |
| |
| fn new_ptr(interner: TyCtxt<'tcx>, ty: Self, mutbl: hir::Mutability) -> Self { |
| Ty::new_ptr(interner, ty, mutbl) |
| } |
| |
| fn new_ref( |
| interner: TyCtxt<'tcx>, |
| region: ty::Region<'tcx>, |
| ty: Self, |
| mutbl: hir::Mutability, |
| ) -> Self { |
| Ty::new_ref(interner, region, ty, mutbl) |
| } |
| |
| fn new_array_with_const_len(interner: TyCtxt<'tcx>, ty: Self, len: ty::Const<'tcx>) -> Self { |
| Ty::new_array_with_const_len(interner, ty, len) |
| } |
| |
| fn new_slice(interner: TyCtxt<'tcx>, ty: Self) -> Self { |
| Ty::new_slice(interner, ty) |
| } |
| |
| fn new_tup(interner: TyCtxt<'tcx>, tys: &[Ty<'tcx>]) -> Self { |
| Ty::new_tup(interner, tys) |
| } |
| |
| fn new_tup_from_iter<It, T>(interner: TyCtxt<'tcx>, iter: It) -> T::Output |
| where |
| It: Iterator<Item = T>, |
| T: CollectAndApply<Self, Self>, |
| { |
| Ty::new_tup_from_iter(interner, iter) |
| } |
| |
| fn tuple_fields(self) -> &'tcx ty::List<Ty<'tcx>> { |
| self.tuple_fields() |
| } |
| |
| fn to_opt_closure_kind(self) -> Option<ty::ClosureKind> { |
| self.to_opt_closure_kind() |
| } |
| |
| fn from_closure_kind(interner: TyCtxt<'tcx>, kind: ty::ClosureKind) -> Self { |
| Ty::from_closure_kind(interner, kind) |
| } |
| |
| fn from_coroutine_closure_kind( |
| interner: TyCtxt<'tcx>, |
| kind: rustc_type_ir::ClosureKind, |
| ) -> Self { |
| Ty::from_coroutine_closure_kind(interner, kind) |
| } |
| |
| fn new_fn_def(interner: TyCtxt<'tcx>, def_id: DefId, args: ty::GenericArgsRef<'tcx>) -> Self { |
| Ty::new_fn_def(interner, def_id, args) |
| } |
| |
| fn new_fn_ptr(interner: TyCtxt<'tcx>, sig: ty::Binder<'tcx, ty::FnSig<'tcx>>) -> Self { |
| Ty::new_fn_ptr(interner, sig) |
| } |
| |
| fn new_pat(interner: TyCtxt<'tcx>, ty: Self, pat: ty::Pattern<'tcx>) -> Self { |
| Ty::new_pat(interner, ty, pat) |
| } |
| |
| fn new_unsafe_binder(interner: TyCtxt<'tcx>, ty: ty::Binder<'tcx, Ty<'tcx>>) -> Self { |
| Ty::new_unsafe_binder(interner, ty) |
| } |
| |
| fn new_unit(interner: TyCtxt<'tcx>) -> Self { |
| interner.types.unit |
| } |
| |
| fn new_usize(interner: TyCtxt<'tcx>) -> Self { |
| interner.types.usize |
| } |
| |
| fn discriminant_ty(self, interner: TyCtxt<'tcx>) -> Ty<'tcx> { |
| self.discriminant_ty(interner) |
| } |
| |
| fn has_unsafe_fields(self) -> bool { |
| Ty::has_unsafe_fields(self) |
| } |
| } |
| |
| /// Type utilities |
| impl<'tcx> Ty<'tcx> { |
| // It would be nicer if this returned the value instead of a reference, |
| // like how `Predicate::kind` and `Region::kind` do. (It would result in |
| // many fewer subsequent dereferences.) But that gives a small but |
| // noticeable performance hit. See #126069 for details. |
| #[inline(always)] |
| pub fn kind(self) -> &'tcx TyKind<'tcx> { |
| self.0.0 |
| } |
| |
| // FIXME(compiler-errors): Think about removing this. |
| #[inline(always)] |
| pub fn flags(self) -> TypeFlags { |
| self.0.0.flags |
| } |
| |
| #[inline] |
| pub fn is_unit(self) -> bool { |
| match self.kind() { |
| Tuple(tys) => tys.is_empty(), |
| _ => false, |
| } |
| } |
| |
| /// Check if type is an `usize`. |
| #[inline] |
| pub fn is_usize(self) -> bool { |
| matches!(self.kind(), Uint(UintTy::Usize)) |
| } |
| |
| /// Check if type is an `usize` or an integral type variable. |
| #[inline] |
| pub fn is_usize_like(self) -> bool { |
| matches!(self.kind(), Uint(UintTy::Usize) | Infer(IntVar(_))) |
| } |
| |
| #[inline] |
| pub fn is_never(self) -> bool { |
| matches!(self.kind(), Never) |
| } |
| |
| #[inline] |
| pub fn is_primitive(self) -> bool { |
| matches!(self.kind(), Bool | Char | Int(_) | Uint(_) | Float(_)) |
| } |
| |
| #[inline] |
| pub fn is_adt(self) -> bool { |
| matches!(self.kind(), Adt(..)) |
| } |
| |
| #[inline] |
| pub fn is_ref(self) -> bool { |
| matches!(self.kind(), Ref(..)) |
| } |
| |
| #[inline] |
| pub fn is_ty_var(self) -> bool { |
| matches!(self.kind(), Infer(TyVar(_))) |
| } |
| |
| #[inline] |
| pub fn ty_vid(self) -> Option<ty::TyVid> { |
| match self.kind() { |
| &Infer(TyVar(vid)) => Some(vid), |
| _ => None, |
| } |
| } |
| |
| #[inline] |
| pub fn is_ty_or_numeric_infer(self) -> bool { |
| matches!(self.kind(), Infer(_)) |
| } |
| |
| #[inline] |
| pub fn is_phantom_data(self) -> bool { |
| if let Adt(def, _) = self.kind() { def.is_phantom_data() } else { false } |
| } |
| |
| #[inline] |
| pub fn is_bool(self) -> bool { |
| *self.kind() == Bool |
| } |
| |
| /// Returns `true` if this type is a `str`. |
| #[inline] |
| pub fn is_str(self) -> bool { |
| *self.kind() == Str |
| } |
| |
| #[inline] |
| pub fn is_param(self, index: u32) -> bool { |
| match self.kind() { |
| ty::Param(data) => data.index == index, |
| _ => false, |
| } |
| } |
| |
| #[inline] |
| pub fn is_slice(self) -> bool { |
| matches!(self.kind(), Slice(_)) |
| } |
| |
| #[inline] |
| pub fn is_array_slice(self) -> bool { |
| match self.kind() { |
| Slice(_) => true, |
| ty::RawPtr(ty, _) | Ref(_, ty, _) => matches!(ty.kind(), Slice(_)), |
| _ => false, |
| } |
| } |
| |
| #[inline] |
| pub fn is_array(self) -> bool { |
| matches!(self.kind(), Array(..)) |
| } |
| |
| #[inline] |
| pub fn is_simd(self) -> bool { |
| match self.kind() { |
| Adt(def, _) => def.repr().simd(), |
| _ => false, |
| } |
| } |
| |
| pub fn sequence_element_type(self, tcx: TyCtxt<'tcx>) -> Ty<'tcx> { |
| match self.kind() { |
| Array(ty, _) | Slice(ty) => *ty, |
| Str => tcx.types.u8, |
| _ => bug!("`sequence_element_type` called on non-sequence value: {}", self), |
| } |
| } |
| |
| pub fn simd_size_and_type(self, tcx: TyCtxt<'tcx>) -> (u64, Ty<'tcx>) { |
| let Adt(def, args) = self.kind() else { |
| bug!("`simd_size_and_type` called on invalid type") |
| }; |
| assert!(def.repr().simd(), "`simd_size_and_type` called on non-SIMD type"); |
| let variant = def.non_enum_variant(); |
| assert_eq!(variant.fields.len(), 1); |
| let field_ty = variant.fields[FieldIdx::ZERO].ty(tcx, args); |
| let Array(f0_elem_ty, f0_len) = field_ty.kind() else { |
| bug!("Simd type has non-array field type {field_ty:?}") |
| }; |
| // FIXME(repr_simd): https://github.com/rust-lang/rust/pull/78863#discussion_r522784112 |
| // The way we evaluate the `N` in `[T; N]` here only works since we use |
| // `simd_size_and_type` post-monomorphization. It will probably start to ICE |
| // if we use it in generic code. See the `simd-array-trait` ui test. |
| ( |
| f0_len |
| .try_to_target_usize(tcx) |
| .expect("expected SIMD field to have definite array size"), |
| *f0_elem_ty, |
| ) |
| } |
| |
| #[inline] |
| pub fn is_mutable_ptr(self) -> bool { |
| matches!(self.kind(), RawPtr(_, hir::Mutability::Mut) | Ref(_, _, hir::Mutability::Mut)) |
| } |
| |
| /// Get the mutability of the reference or `None` when not a reference |
| #[inline] |
| pub fn ref_mutability(self) -> Option<hir::Mutability> { |
| match self.kind() { |
| Ref(_, _, mutability) => Some(*mutability), |
| _ => None, |
| } |
| } |
| |
| #[inline] |
| pub fn is_raw_ptr(self) -> bool { |
| matches!(self.kind(), RawPtr(_, _)) |
| } |
| |
| /// Tests if this is any kind of primitive pointer type (reference, raw pointer, fn pointer). |
| /// `Box` is *not* considered a pointer here! |
| #[inline] |
| pub fn is_any_ptr(self) -> bool { |
| self.is_ref() || self.is_raw_ptr() || self.is_fn_ptr() |
| } |
| |
| #[inline] |
| pub fn is_box(self) -> bool { |
| match self.kind() { |
| Adt(def, _) => def.is_box(), |
| _ => false, |
| } |
| } |
| |
| /// Tests whether this is a Box definitely using the global allocator. |
| /// |
| /// If the allocator is still generic, the answer is `false`, but it may |
| /// later turn out that it does use the global allocator. |
| #[inline] |
| pub fn is_box_global(self, tcx: TyCtxt<'tcx>) -> bool { |
| match self.kind() { |
| Adt(def, args) if def.is_box() => { |
| let Some(alloc) = args.get(1) else { |
| // Single-argument Box is always global. (for "minicore" tests) |
| return true; |
| }; |
| alloc.expect_ty().ty_adt_def().is_some_and(|alloc_adt| { |
| tcx.is_lang_item(alloc_adt.did(), LangItem::GlobalAlloc) |
| }) |
| } |
| _ => false, |
| } |
| } |
| |
| pub fn boxed_ty(self) -> Option<Ty<'tcx>> { |
| match self.kind() { |
| Adt(def, args) if def.is_box() => Some(args.type_at(0)), |
| _ => None, |
| } |
| } |
| |
| /// Panics if called on any type other than `Box<T>`. |
| pub fn expect_boxed_ty(self) -> Ty<'tcx> { |
| self.boxed_ty() |
| .unwrap_or_else(|| bug!("`expect_boxed_ty` is called on non-box type {:?}", self)) |
| } |
| |
| /// A scalar type is one that denotes an atomic datum, with no sub-components. |
| /// (A RawPtr is scalar because it represents a non-managed pointer, so its |
| /// contents are abstract to rustc.) |
| #[inline] |
| pub fn is_scalar(self) -> bool { |
| matches!( |
| self.kind(), |
| Bool | Char |
| | Int(_) |
| | Float(_) |
| | Uint(_) |
| | FnDef(..) |
| | FnPtr(..) |
| | RawPtr(_, _) |
| | Infer(IntVar(_) | FloatVar(_)) |
| ) |
| } |
| |
| /// Returns `true` if this type is a floating point type. |
| #[inline] |
| pub fn is_floating_point(self) -> bool { |
| matches!(self.kind(), Float(_) | Infer(FloatVar(_))) |
| } |
| |
| #[inline] |
| pub fn is_trait(self) -> bool { |
| matches!(self.kind(), Dynamic(_, _, ty::Dyn)) |
| } |
| |
| #[inline] |
| pub fn is_enum(self) -> bool { |
| matches!(self.kind(), Adt(adt_def, _) if adt_def.is_enum()) |
| } |
| |
| #[inline] |
| pub fn is_union(self) -> bool { |
| matches!(self.kind(), Adt(adt_def, _) if adt_def.is_union()) |
| } |
| |
| #[inline] |
| pub fn is_closure(self) -> bool { |
| matches!(self.kind(), Closure(..)) |
| } |
| |
| #[inline] |
| pub fn is_coroutine(self) -> bool { |
| matches!(self.kind(), Coroutine(..)) |
| } |
| |
| #[inline] |
| pub fn is_coroutine_closure(self) -> bool { |
| matches!(self.kind(), CoroutineClosure(..)) |
| } |
| |
| #[inline] |
| pub fn is_integral(self) -> bool { |
| matches!(self.kind(), Infer(IntVar(_)) | Int(_) | Uint(_)) |
| } |
| |
| #[inline] |
| pub fn is_fresh_ty(self) -> bool { |
| matches!(self.kind(), Infer(FreshTy(_))) |
| } |
| |
| #[inline] |
| pub fn is_fresh(self) -> bool { |
| matches!(self.kind(), Infer(FreshTy(_) | FreshIntTy(_) | FreshFloatTy(_))) |
| } |
| |
| #[inline] |
| pub fn is_char(self) -> bool { |
| matches!(self.kind(), Char) |
| } |
| |
| #[inline] |
| pub fn is_numeric(self) -> bool { |
| self.is_integral() || self.is_floating_point() |
| } |
| |
| #[inline] |
| pub fn is_signed(self) -> bool { |
| matches!(self.kind(), Int(_)) |
| } |
| |
| #[inline] |
| pub fn is_ptr_sized_integral(self) -> bool { |
| matches!(self.kind(), Int(ty::IntTy::Isize) | Uint(ty::UintTy::Usize)) |
| } |
| |
| #[inline] |
| pub fn has_concrete_skeleton(self) -> bool { |
| !matches!(self.kind(), Param(_) | Infer(_) | Error(_)) |
| } |
| |
| /// Checks whether a type recursively contains another type |
| /// |
| /// Example: `Option<()>` contains `()` |
| pub fn contains(self, other: Ty<'tcx>) -> bool { |
| struct ContainsTyVisitor<'tcx>(Ty<'tcx>); |
| |
| impl<'tcx> TypeVisitor<TyCtxt<'tcx>> for ContainsTyVisitor<'tcx> { |
| type Result = ControlFlow<()>; |
| |
| fn visit_ty(&mut self, t: Ty<'tcx>) -> Self::Result { |
| if self.0 == t { ControlFlow::Break(()) } else { t.super_visit_with(self) } |
| } |
| } |
| |
| let cf = self.visit_with(&mut ContainsTyVisitor(other)); |
| cf.is_break() |
| } |
| |
| /// Checks whether a type recursively contains any closure |
| /// |
| /// Example: `Option<{closure@file.rs:4:20}>` returns true |
| pub fn contains_closure(self) -> bool { |
| struct ContainsClosureVisitor; |
| |
| impl<'tcx> TypeVisitor<TyCtxt<'tcx>> for ContainsClosureVisitor { |
| type Result = ControlFlow<()>; |
| |
| fn visit_ty(&mut self, t: Ty<'tcx>) -> Self::Result { |
| if let ty::Closure(..) = t.kind() { |
| ControlFlow::Break(()) |
| } else { |
| t.super_visit_with(self) |
| } |
| } |
| } |
| |
| let cf = self.visit_with(&mut ContainsClosureVisitor); |
| cf.is_break() |
| } |
| |
| /// Returns the deepest `async_drop_in_place::{closure}` implementation. |
| /// |
| /// `async_drop_in_place<T>::{closure}`, when T is a coroutine, is a proxy-impl |
| /// to call async drop poll from impl coroutine. |
| pub fn find_async_drop_impl_coroutine<F: FnMut(Ty<'tcx>)>( |
| self, |
| tcx: TyCtxt<'tcx>, |
| mut f: F, |
| ) -> Ty<'tcx> { |
| assert!(self.is_coroutine()); |
| let mut cor_ty = self; |
| let mut ty = cor_ty; |
| loop { |
| if let ty::Coroutine(def_id, args) = ty.kind() { |
| cor_ty = ty; |
| f(ty); |
| if tcx.is_async_drop_in_place_coroutine(*def_id) { |
| ty = args.first().unwrap().expect_ty(); |
| continue; |
| } else { |
| return cor_ty; |
| } |
| } else { |
| return cor_ty; |
| } |
| } |
| } |
| |
| /// Returns the type and mutability of `*ty`. |
| /// |
| /// The parameter `explicit` indicates if this is an *explicit* dereference. |
| /// Some types -- notably raw ptrs -- can only be dereferenced explicitly. |
| pub fn builtin_deref(self, explicit: bool) -> Option<Ty<'tcx>> { |
| match *self.kind() { |
| _ if let Some(boxed) = self.boxed_ty() => Some(boxed), |
| Ref(_, ty, _) => Some(ty), |
| RawPtr(ty, _) if explicit => Some(ty), |
| _ => None, |
| } |
| } |
| |
| /// Returns the type of `ty[i]`. |
| pub fn builtin_index(self) -> Option<Ty<'tcx>> { |
| match self.kind() { |
| Array(ty, _) | Slice(ty) => Some(*ty), |
| _ => None, |
| } |
| } |
| |
| #[tracing::instrument(level = "trace", skip(tcx))] |
| pub fn fn_sig(self, tcx: TyCtxt<'tcx>) -> PolyFnSig<'tcx> { |
| self.kind().fn_sig(tcx) |
| } |
| |
| #[inline] |
| pub fn is_fn(self) -> bool { |
| matches!(self.kind(), FnDef(..) | FnPtr(..)) |
| } |
| |
| #[inline] |
| pub fn is_fn_ptr(self) -> bool { |
| matches!(self.kind(), FnPtr(..)) |
| } |
| |
| #[inline] |
| pub fn is_impl_trait(self) -> bool { |
| matches!(self.kind(), Alias(ty::Opaque, ..)) |
| } |
| |
| #[inline] |
| pub fn ty_adt_def(self) -> Option<AdtDef<'tcx>> { |
| match self.kind() { |
| Adt(adt, _) => Some(*adt), |
| _ => None, |
| } |
| } |
| |
| /// Iterates over tuple fields. |
| /// Panics when called on anything but a tuple. |
| #[inline] |
| pub fn tuple_fields(self) -> &'tcx List<Ty<'tcx>> { |
| match self.kind() { |
| Tuple(args) => args, |
| _ => bug!("tuple_fields called on non-tuple: {self:?}"), |
| } |
| } |
| |
| /// If the type contains variants, returns the valid range of variant indices. |
| // |
| // FIXME: This requires the optimized MIR in the case of coroutines. |
| #[inline] |
| pub fn variant_range(self, tcx: TyCtxt<'tcx>) -> Option<Range<VariantIdx>> { |
| match self.kind() { |
| TyKind::Adt(adt, _) => Some(adt.variant_range()), |
| TyKind::Coroutine(def_id, args) => { |
| Some(args.as_coroutine().variant_range(*def_id, tcx)) |
| } |
| _ => None, |
| } |
| } |
| |
| /// If the type contains variants, returns the variant for `variant_index`. |
| /// Panics if `variant_index` is out of range. |
| // |
| // FIXME: This requires the optimized MIR in the case of coroutines. |
| #[inline] |
| pub fn discriminant_for_variant( |
| self, |
| tcx: TyCtxt<'tcx>, |
| variant_index: VariantIdx, |
| ) -> Option<Discr<'tcx>> { |
| match self.kind() { |
| TyKind::Adt(adt, _) if adt.is_enum() => { |
| Some(adt.discriminant_for_variant(tcx, variant_index)) |
| } |
| TyKind::Coroutine(def_id, args) => { |
| Some(args.as_coroutine().discriminant_for_variant(*def_id, tcx, variant_index)) |
| } |
| _ => None, |
| } |
| } |
| |
| /// Returns the type of the discriminant of this type. |
| pub fn discriminant_ty(self, tcx: TyCtxt<'tcx>) -> Ty<'tcx> { |
| match self.kind() { |
| ty::Adt(adt, _) if adt.is_enum() => adt.repr().discr_type().to_ty(tcx), |
| ty::Coroutine(_, args) => args.as_coroutine().discr_ty(tcx), |
| |
| ty::Param(_) | ty::Alias(..) | ty::Infer(ty::TyVar(_)) => { |
| let assoc_items = tcx.associated_item_def_ids( |
| tcx.require_lang_item(hir::LangItem::DiscriminantKind, DUMMY_SP), |
| ); |
| Ty::new_projection_from_args(tcx, assoc_items[0], tcx.mk_args(&[self.into()])) |
| } |
| |
| ty::Pat(ty, _) => ty.discriminant_ty(tcx), |
| |
| ty::Bool |
| | ty::Char |
| | ty::Int(_) |
| | ty::Uint(_) |
| | ty::Float(_) |
| | ty::Adt(..) |
| | ty::Foreign(_) |
| | ty::Str |
| | ty::Array(..) |
| | ty::Slice(_) |
| | ty::RawPtr(_, _) |
| | ty::Ref(..) |
| | ty::FnDef(..) |
| | ty::FnPtr(..) |
| | ty::Dynamic(..) |
| | ty::Closure(..) |
| | ty::CoroutineClosure(..) |
| | ty::CoroutineWitness(..) |
| | ty::Never |
| | ty::Tuple(_) |
| | ty::UnsafeBinder(_) |
| | ty::Error(_) |
| | ty::Infer(IntVar(_) | FloatVar(_)) => tcx.types.u8, |
| |
| ty::Bound(..) |
| | ty::Placeholder(_) |
| | ty::Infer(FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) => { |
| bug!("`discriminant_ty` applied to unexpected type: {:?}", self) |
| } |
| } |
| } |
| |
| /// Returns the type of metadata for (potentially wide) pointers to this type, |
| /// or the struct tail if the metadata type cannot be determined. |
| pub fn ptr_metadata_ty_or_tail( |
| self, |
| tcx: TyCtxt<'tcx>, |
| normalize: impl FnMut(Ty<'tcx>) -> Ty<'tcx>, |
| ) -> Result<Ty<'tcx>, Ty<'tcx>> { |
| let tail = tcx.struct_tail_raw(self, normalize, || {}); |
| match tail.kind() { |
| // Sized types |
| ty::Infer(ty::IntVar(_) | ty::FloatVar(_)) |
| | ty::Uint(_) |
| | ty::Int(_) |
| | ty::Bool |
| | ty::Float(_) |
| | ty::FnDef(..) |
| | ty::FnPtr(..) |
| | ty::RawPtr(..) |
| | ty::Char |
| | ty::Ref(..) |
| | ty::Coroutine(..) |
| | ty::CoroutineWitness(..) |
| | ty::Array(..) |
| | ty::Closure(..) |
| | ty::CoroutineClosure(..) |
| | ty::Never |
| | ty::Error(_) |
| // Extern types have metadata = (). |
| | ty::Foreign(..) |
| // If returned by `struct_tail_raw` this is a unit struct |
| // without any fields, or not a struct, and therefore is Sized. |
| | ty::Adt(..) |
| // If returned by `struct_tail_raw` this is the empty tuple, |
| // a.k.a. unit type, which is Sized |
| | ty::Tuple(..) => Ok(tcx.types.unit), |
| |
| ty::Str | ty::Slice(_) => Ok(tcx.types.usize), |
| |
| ty::Dynamic(_, _, ty::Dyn) => { |
| let dyn_metadata = tcx.require_lang_item(LangItem::DynMetadata, DUMMY_SP); |
| Ok(tcx.type_of(dyn_metadata).instantiate(tcx, &[tail.into()])) |
| } |
| |
| // We don't know the metadata of `self`, but it must be equal to the |
| // metadata of `tail`. |
| ty::Param(_) | ty::Alias(..) => Err(tail), |
| |
| | ty::UnsafeBinder(_) => todo!("FIXME(unsafe_binder)"), |
| |
| ty::Infer(ty::TyVar(_)) |
| | ty::Pat(..) |
| | ty::Bound(..) |
| | ty::Placeholder(..) |
| | ty::Infer(ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) => bug!( |
| "`ptr_metadata_ty_or_tail` applied to unexpected type: {self:?} (tail = {tail:?})" |
| ), |
| } |
| } |
| |
| /// Returns the type of metadata for (potentially wide) pointers to this type. |
| /// Causes an ICE if the metadata type cannot be determined. |
| pub fn ptr_metadata_ty( |
| self, |
| tcx: TyCtxt<'tcx>, |
| normalize: impl FnMut(Ty<'tcx>) -> Ty<'tcx>, |
| ) -> Ty<'tcx> { |
| match self.ptr_metadata_ty_or_tail(tcx, normalize) { |
| Ok(metadata) => metadata, |
| Err(tail) => bug!( |
| "`ptr_metadata_ty` failed to get metadata for type: {self:?} (tail = {tail:?})" |
| ), |
| } |
| } |
| |
| /// Given a pointer or reference type, returns the type of the *pointee*'s |
| /// metadata. If it can't be determined exactly (perhaps due to still |
| /// being generic) then a projection through `ptr::Pointee` will be returned. |
| /// |
| /// This is particularly useful for getting the type of the result of |
| /// [`UnOp::PtrMetadata`](crate::mir::UnOp::PtrMetadata). |
| /// |
| /// Panics if `self` is not dereferencable. |
| #[track_caller] |
| pub fn pointee_metadata_ty_or_projection(self, tcx: TyCtxt<'tcx>) -> Ty<'tcx> { |
| let Some(pointee_ty) = self.builtin_deref(true) else { |
| bug!("Type {self:?} is not a pointer or reference type") |
| }; |
| if pointee_ty.has_trivial_sizedness(tcx, SizedTraitKind::Sized) { |
| tcx.types.unit |
| } else { |
| match pointee_ty.ptr_metadata_ty_or_tail(tcx, |x| x) { |
| Ok(metadata_ty) => metadata_ty, |
| Err(tail_ty) => { |
| let metadata_def_id = tcx.require_lang_item(LangItem::Metadata, DUMMY_SP); |
| Ty::new_projection(tcx, metadata_def_id, [tail_ty]) |
| } |
| } |
| } |
| } |
| |
| /// When we create a closure, we record its kind (i.e., what trait |
| /// it implements, constrained by how it uses its borrows) into its |
| /// [`ty::ClosureArgs`] or [`ty::CoroutineClosureArgs`] using a type |
| /// parameter. This is kind of a phantom type, except that the |
| /// most convenient thing for us to are the integral types. This |
| /// function converts such a special type into the closure |
| /// kind. To go the other way, use [`Ty::from_closure_kind`]. |
| /// |
| /// Note that during type checking, we use an inference variable |
| /// to represent the closure kind, because it has not yet been |
| /// inferred. Once upvar inference (in `rustc_hir_analysis/src/check/upvar.rs`) |
| /// is complete, that type variable will be unified with one of |
| /// the integral types. |
| /// |
| /// ```rust,ignore (snippet of compiler code) |
| /// if let TyKind::Closure(def_id, args) = closure_ty.kind() |
| /// && let Some(closure_kind) = args.as_closure().kind_ty().to_opt_closure_kind() |
| /// { |
| /// println!("{closure_kind:?}"); |
| /// } else if let TyKind::CoroutineClosure(def_id, args) = closure_ty.kind() |
| /// && let Some(closure_kind) = args.as_coroutine_closure().kind_ty().to_opt_closure_kind() |
| /// { |
| /// println!("{closure_kind:?}"); |
| /// } |
| /// ``` |
| /// |
| /// After upvar analysis, you should instead use [`ty::ClosureArgs::kind()`] |
| /// or [`ty::CoroutineClosureArgs::kind()`] to assert that the `ClosureKind` |
| /// has been constrained instead of manually calling this method. |
| /// |
| /// ```rust,ignore (snippet of compiler code) |
| /// if let TyKind::Closure(def_id, args) = closure_ty.kind() |
| /// { |
| /// println!("{:?}", args.as_closure().kind()); |
| /// } else if let TyKind::CoroutineClosure(def_id, args) = closure_ty.kind() |
| /// { |
| /// println!("{:?}", args.as_coroutine_closure().kind()); |
| /// } |
| /// ``` |
| pub fn to_opt_closure_kind(self) -> Option<ty::ClosureKind> { |
| match self.kind() { |
| Int(int_ty) => match int_ty { |
| ty::IntTy::I8 => Some(ty::ClosureKind::Fn), |
| ty::IntTy::I16 => Some(ty::ClosureKind::FnMut), |
| ty::IntTy::I32 => Some(ty::ClosureKind::FnOnce), |
| _ => bug!("cannot convert type `{:?}` to a closure kind", self), |
| }, |
| |
| // "Bound" types appear in canonical queries when the |
| // closure type is not yet known, and `Placeholder` and `Param` |
| // may be encountered in generic `AsyncFnKindHelper` goals. |
| Bound(..) | Placeholder(_) | Param(_) | Infer(_) => None, |
| |
| Error(_) => Some(ty::ClosureKind::Fn), |
| |
| _ => bug!("cannot convert type `{:?}` to a closure kind", self), |
| } |
| } |
| |
| /// Inverse of [`Ty::to_opt_closure_kind`]. See docs on that method |
| /// for explanation of the relationship between `Ty` and [`ty::ClosureKind`]. |
| pub fn from_closure_kind(tcx: TyCtxt<'tcx>, kind: ty::ClosureKind) -> Ty<'tcx> { |
| match kind { |
| ty::ClosureKind::Fn => tcx.types.i8, |
| ty::ClosureKind::FnMut => tcx.types.i16, |
| ty::ClosureKind::FnOnce => tcx.types.i32, |
| } |
| } |
| |
| /// Like [`Ty::to_opt_closure_kind`], but it caps the "maximum" closure kind |
| /// to `FnMut`. This is because although we have three capability states, |
| /// `AsyncFn`/`AsyncFnMut`/`AsyncFnOnce`, we only need to distinguish two coroutine |
| /// bodies: by-ref and by-value. |
| /// |
| /// See the definition of `AsyncFn` and `AsyncFnMut` and the `CallRefFuture` |
| /// associated type for why we don't distinguish [`ty::ClosureKind::Fn`] and |
| /// [`ty::ClosureKind::FnMut`] for the purpose of the generated MIR bodies. |
| /// |
| /// This method should be used when constructing a `Coroutine` out of a |
| /// `CoroutineClosure`, when the `Coroutine`'s `kind` field is being populated |
| /// directly from the `CoroutineClosure`'s `kind`. |
| pub fn from_coroutine_closure_kind(tcx: TyCtxt<'tcx>, kind: ty::ClosureKind) -> Ty<'tcx> { |
| match kind { |
| ty::ClosureKind::Fn | ty::ClosureKind::FnMut => tcx.types.i16, |
| ty::ClosureKind::FnOnce => tcx.types.i32, |
| } |
| } |
| |
| /// Fast path helper for testing if a type is `Sized` or `MetaSized`. |
| /// |
| /// Returning true means the type is known to implement the sizedness trait. Returning `false` |
| /// means nothing -- could be sized, might not be. |
| /// |
| /// Note that we could never rely on the fact that a type such as `[_]` is trivially `!Sized` |
| /// because we could be in a type environment with a bound such as `[_]: Copy`. A function with |
| /// such a bound obviously never can be called, but that doesn't mean it shouldn't typecheck. |
| /// This is why this method doesn't return `Option<bool>`. |
| #[instrument(skip(tcx), level = "debug")] |
| pub fn has_trivial_sizedness(self, tcx: TyCtxt<'tcx>, sizedness: SizedTraitKind) -> bool { |
| match self.kind() { |
| ty::Infer(ty::IntVar(_) | ty::FloatVar(_)) |
| | ty::Uint(_) |
| | ty::Int(_) |
| | ty::Bool |
| | ty::Float(_) |
| | ty::FnDef(..) |
| | ty::FnPtr(..) |
| | ty::UnsafeBinder(_) |
| | ty::RawPtr(..) |
| | ty::Char |
| | ty::Ref(..) |
| | ty::Coroutine(..) |
| | ty::CoroutineWitness(..) |
| | ty::Array(..) |
| | ty::Pat(..) |
| | ty::Closure(..) |
| | ty::CoroutineClosure(..) |
| | ty::Never |
| | ty::Error(_) => true, |
| |
| ty::Str | ty::Slice(_) | ty::Dynamic(_, _, ty::Dyn) => match sizedness { |
| SizedTraitKind::Sized => false, |
| SizedTraitKind::MetaSized => true, |
| }, |
| |
| ty::Foreign(..) => match sizedness { |
| SizedTraitKind::Sized | SizedTraitKind::MetaSized => false, |
| }, |
| |
| ty::Tuple(tys) => tys.last().is_none_or(|ty| ty.has_trivial_sizedness(tcx, sizedness)), |
| |
| ty::Adt(def, args) => def |
| .sizedness_constraint(tcx, sizedness) |
| .is_none_or(|ty| ty.instantiate(tcx, args).has_trivial_sizedness(tcx, sizedness)), |
| |
| ty::Alias(..) | ty::Param(_) | ty::Placeholder(..) | ty::Bound(..) => false, |
| |
| ty::Infer(ty::TyVar(_)) => false, |
| |
| ty::Infer(ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) => { |
| bug!("`has_trivial_sizedness` applied to unexpected type: {:?}", self) |
| } |
| } |
| } |
| |
| /// Fast path helper for primitives which are always `Copy` and which |
| /// have a side-effect-free `Clone` impl. |
| /// |
| /// Returning true means the type is known to be pure and `Copy+Clone`. |
| /// Returning `false` means nothing -- could be `Copy`, might not be. |
| /// |
| /// This is mostly useful for optimizations, as these are the types |
| /// on which we can replace cloning with dereferencing. |
| pub fn is_trivially_pure_clone_copy(self) -> bool { |
| match self.kind() { |
| ty::Bool | ty::Char | ty::Never => true, |
| |
| // These aren't even `Clone` |
| ty::Str | ty::Slice(..) | ty::Foreign(..) | ty::Dynamic(..) => false, |
| |
| ty::Infer(ty::InferTy::FloatVar(_) | ty::InferTy::IntVar(_)) |
| | ty::Int(..) |
| | ty::Uint(..) |
| | ty::Float(..) => true, |
| |
| // ZST which can't be named are fine. |
| ty::FnDef(..) => true, |
| |
| ty::Array(element_ty, _len) => element_ty.is_trivially_pure_clone_copy(), |
| |
| // A 100-tuple isn't "trivial", so doing this only for reasonable sizes. |
| ty::Tuple(field_tys) => { |
| field_tys.len() <= 3 && field_tys.iter().all(Self::is_trivially_pure_clone_copy) |
| } |
| |
| ty::Pat(ty, _) => ty.is_trivially_pure_clone_copy(), |
| |
| // Sometimes traits aren't implemented for every ABI or arity, |
| // because we can't be generic over everything yet. |
| ty::FnPtr(..) => false, |
| |
| // Definitely absolutely not copy. |
| ty::Ref(_, _, hir::Mutability::Mut) => false, |
| |
| // The standard library has a blanket Copy impl for shared references and raw pointers, |
| // for all unsized types. |
| ty::Ref(_, _, hir::Mutability::Not) | ty::RawPtr(..) => true, |
| |
| ty::Coroutine(..) | ty::CoroutineWitness(..) => false, |
| |
| // Might be, but not "trivial" so just giving the safe answer. |
| ty::Adt(..) | ty::Closure(..) | ty::CoroutineClosure(..) => false, |
| |
| ty::UnsafeBinder(_) => false, |
| |
| // Needs normalization or revealing to determine, so no is the safe answer. |
| ty::Alias(..) => false, |
| |
| ty::Param(..) | ty::Placeholder(..) | ty::Bound(..) | ty::Infer(..) | ty::Error(..) => { |
| false |
| } |
| } |
| } |
| |
| pub fn is_trivially_wf(self, tcx: TyCtxt<'tcx>) -> bool { |
| match *self.kind() { |
| ty::Bool |
| | ty::Char |
| | ty::Int(_) |
| | ty::Uint(_) |
| | ty::Float(_) |
| | ty::Str |
| | ty::Never |
| | ty::Param(_) |
| | ty::Placeholder(_) |
| | ty::Bound(..) => true, |
| |
| ty::Slice(ty) => { |
| ty.is_trivially_wf(tcx) && ty.has_trivial_sizedness(tcx, SizedTraitKind::Sized) |
| } |
| ty::RawPtr(ty, _) => ty.is_trivially_wf(tcx), |
| |
| ty::FnPtr(sig_tys, _) => { |
| sig_tys.skip_binder().inputs_and_output.iter().all(|ty| ty.is_trivially_wf(tcx)) |
| } |
| ty::Ref(_, ty, _) => ty.is_global() && ty.is_trivially_wf(tcx), |
| |
| ty::Infer(infer) => match infer { |
| ty::TyVar(_) => false, |
| ty::IntVar(_) | ty::FloatVar(_) => true, |
| ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_) => true, |
| }, |
| |
| ty::Adt(_, _) |
| | ty::Tuple(_) |
| | ty::Array(..) |
| | ty::Foreign(_) |
| | ty::Pat(_, _) |
| | ty::FnDef(..) |
| | ty::UnsafeBinder(..) |
| | ty::Dynamic(..) |
| | ty::Closure(..) |
| | ty::CoroutineClosure(..) |
| | ty::Coroutine(..) |
| | ty::CoroutineWitness(..) |
| | ty::Alias(..) |
| | ty::Error(_) => false, |
| } |
| } |
| |
| /// If `self` is a primitive, return its [`Symbol`]. |
| pub fn primitive_symbol(self) -> Option<Symbol> { |
| match self.kind() { |
| ty::Bool => Some(sym::bool), |
| ty::Char => Some(sym::char), |
| ty::Float(f) => match f { |
| ty::FloatTy::F16 => Some(sym::f16), |
| ty::FloatTy::F32 => Some(sym::f32), |
| ty::FloatTy::F64 => Some(sym::f64), |
| ty::FloatTy::F128 => Some(sym::f128), |
| }, |
| ty::Int(f) => match f { |
| ty::IntTy::Isize => Some(sym::isize), |
| ty::IntTy::I8 => Some(sym::i8), |
| ty::IntTy::I16 => Some(sym::i16), |
| ty::IntTy::I32 => Some(sym::i32), |
| ty::IntTy::I64 => Some(sym::i64), |
| ty::IntTy::I128 => Some(sym::i128), |
| }, |
| ty::Uint(f) => match f { |
| ty::UintTy::Usize => Some(sym::usize), |
| ty::UintTy::U8 => Some(sym::u8), |
| ty::UintTy::U16 => Some(sym::u16), |
| ty::UintTy::U32 => Some(sym::u32), |
| ty::UintTy::U64 => Some(sym::u64), |
| ty::UintTy::U128 => Some(sym::u128), |
| }, |
| ty::Str => Some(sym::str), |
| _ => None, |
| } |
| } |
| |
| pub fn is_c_void(self, tcx: TyCtxt<'_>) -> bool { |
| match self.kind() { |
| ty::Adt(adt, _) => tcx.is_lang_item(adt.did(), LangItem::CVoid), |
| _ => false, |
| } |
| } |
| |
| pub fn is_async_drop_in_place_coroutine(self, tcx: TyCtxt<'_>) -> bool { |
| match self.kind() { |
| ty::Coroutine(def, ..) => tcx.is_async_drop_in_place_coroutine(*def), |
| _ => false, |
| } |
| } |
| |
| /// Returns `true` when the outermost type cannot be further normalized, |
| /// resolved, or instantiated. This includes all primitive types, but also |
| /// things like ADTs and trait objects, since even if their arguments or |
| /// nested types may be further simplified, the outermost [`TyKind`] or |
| /// type constructor remains the same. |
| pub fn is_known_rigid(self) -> bool { |
| self.kind().is_known_rigid() |
| } |
| |
| /// Iterator that walks `self` and any types reachable from |
| /// `self`, in depth-first order. Note that just walks the types |
| /// that appear in `self`, it does not descend into the fields of |
| /// structs or variants. For example: |
| /// |
| /// ```text |
| /// isize => { isize } |
| /// Foo<Bar<isize>> => { Foo<Bar<isize>>, Bar<isize>, isize } |
| /// [isize] => { [isize], isize } |
| /// ``` |
| pub fn walk(self) -> TypeWalker<TyCtxt<'tcx>> { |
| TypeWalker::new(self.into()) |
| } |
| } |
| |
| impl<'tcx> rustc_type_ir::inherent::Tys<TyCtxt<'tcx>> for &'tcx ty::List<Ty<'tcx>> { |
| fn inputs(self) -> &'tcx [Ty<'tcx>] { |
| self.split_last().unwrap().1 |
| } |
| |
| fn output(self) -> Ty<'tcx> { |
| *self.split_last().unwrap().0 |
| } |
| } |
| |
| // Some types are used a lot. Make sure they don't unintentionally get bigger. |
| #[cfg(target_pointer_width = "64")] |
| mod size_asserts { |
| use rustc_data_structures::static_assert_size; |
| |
| use super::*; |
| // tidy-alphabetical-start |
| static_assert_size!(ty::RegionKind<'_>, 24); |
| static_assert_size!(ty::TyKind<'_>, 24); |
| // tidy-alphabetical-end |
| } |