blob: 9ad1a9f14c155a3d714fe24b6a68bc607b05a042 [file] [log] [blame]
use crate::core_arch::{simd::*, x86::*};
#[allow(improper_ctypes)]
unsafe extern "C" {
#[link_name = "llvm.x86.sha1msg1"]
fn sha1msg1(a: i32x4, b: i32x4) -> i32x4;
#[link_name = "llvm.x86.sha1msg2"]
fn sha1msg2(a: i32x4, b: i32x4) -> i32x4;
#[link_name = "llvm.x86.sha1nexte"]
fn sha1nexte(a: i32x4, b: i32x4) -> i32x4;
#[link_name = "llvm.x86.sha1rnds4"]
fn sha1rnds4(a: i32x4, b: i32x4, c: i8) -> i32x4;
#[link_name = "llvm.x86.sha256msg1"]
fn sha256msg1(a: i32x4, b: i32x4) -> i32x4;
#[link_name = "llvm.x86.sha256msg2"]
fn sha256msg2(a: i32x4, b: i32x4) -> i32x4;
#[link_name = "llvm.x86.sha256rnds2"]
fn sha256rnds2(a: i32x4, b: i32x4, k: i32x4) -> i32x4;
#[link_name = "llvm.x86.vsha512msg1"]
fn vsha512msg1(a: i64x4, b: i64x2) -> i64x4;
#[link_name = "llvm.x86.vsha512msg2"]
fn vsha512msg2(a: i64x4, b: i64x4) -> i64x4;
#[link_name = "llvm.x86.vsha512rnds2"]
fn vsha512rnds2(a: i64x4, b: i64x4, k: i64x2) -> i64x4;
#[link_name = "llvm.x86.vsm3msg1"]
fn vsm3msg1(a: i32x4, b: i32x4, c: i32x4) -> i32x4;
#[link_name = "llvm.x86.vsm3msg2"]
fn vsm3msg2(a: i32x4, b: i32x4, c: i32x4) -> i32x4;
#[link_name = "llvm.x86.vsm3rnds2"]
fn vsm3rnds2(a: i32x4, b: i32x4, c: i32x4, d: i32) -> i32x4;
#[link_name = "llvm.x86.vsm4key4128"]
fn vsm4key4128(a: i32x4, b: i32x4) -> i32x4;
#[link_name = "llvm.x86.vsm4key4256"]
fn vsm4key4256(a: i32x8, b: i32x8) -> i32x8;
#[link_name = "llvm.x86.vsm4rnds4128"]
fn vsm4rnds4128(a: i32x4, b: i32x4) -> i32x4;
#[link_name = "llvm.x86.vsm4rnds4256"]
fn vsm4rnds4256(a: i32x8, b: i32x8) -> i32x8;
}
#[cfg(test)]
use stdarch_test::assert_instr;
/// Performs an intermediate calculation for the next four SHA1 message values
/// (unsigned 32-bit integers) using previous message values from `a` and `b`,
/// and returning the result.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sha1msg1_epu32)
#[inline]
#[target_feature(enable = "sha")]
#[cfg_attr(test, assert_instr(sha1msg1))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub fn _mm_sha1msg1_epu32(a: __m128i, b: __m128i) -> __m128i {
unsafe { transmute(sha1msg1(a.as_i32x4(), b.as_i32x4())) }
}
/// Performs the final calculation for the next four SHA1 message values
/// (unsigned 32-bit integers) using the intermediate result in `a` and the
/// previous message values in `b`, and returns the result.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sha1msg2_epu32)
#[inline]
#[target_feature(enable = "sha")]
#[cfg_attr(test, assert_instr(sha1msg2))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub fn _mm_sha1msg2_epu32(a: __m128i, b: __m128i) -> __m128i {
unsafe { transmute(sha1msg2(a.as_i32x4(), b.as_i32x4())) }
}
/// Calculate SHA1 state variable E after four rounds of operation from the
/// current SHA1 state variable `a`, add that value to the scheduled values
/// (unsigned 32-bit integers) in `b`, and returns the result.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sha1nexte_epu32)
#[inline]
#[target_feature(enable = "sha")]
#[cfg_attr(test, assert_instr(sha1nexte))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub fn _mm_sha1nexte_epu32(a: __m128i, b: __m128i) -> __m128i {
unsafe { transmute(sha1nexte(a.as_i32x4(), b.as_i32x4())) }
}
/// Performs four rounds of SHA1 operation using an initial SHA1 state (A,B,C,D)
/// from `a` and some pre-computed sum of the next 4 round message values
/// (unsigned 32-bit integers), and state variable E from `b`, and return the
/// updated SHA1 state (A,B,C,D). `FUNC` contains the logic functions and round
/// constants.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sha1rnds4_epu32)
#[inline]
#[target_feature(enable = "sha")]
#[cfg_attr(test, assert_instr(sha1rnds4, FUNC = 0))]
#[rustc_legacy_const_generics(2)]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub fn _mm_sha1rnds4_epu32<const FUNC: i32>(a: __m128i, b: __m128i) -> __m128i {
static_assert_uimm_bits!(FUNC, 2);
unsafe { transmute(sha1rnds4(a.as_i32x4(), b.as_i32x4(), FUNC as i8)) }
}
/// Performs an intermediate calculation for the next four SHA256 message values
/// (unsigned 32-bit integers) using previous message values from `a` and `b`,
/// and return the result.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sha256msg1_epu32)
#[inline]
#[target_feature(enable = "sha")]
#[cfg_attr(test, assert_instr(sha256msg1))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub fn _mm_sha256msg1_epu32(a: __m128i, b: __m128i) -> __m128i {
unsafe { transmute(sha256msg1(a.as_i32x4(), b.as_i32x4())) }
}
/// Performs the final calculation for the next four SHA256 message values
/// (unsigned 32-bit integers) using previous message values from `a` and `b`,
/// and return the result.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sha256msg2_epu32)
#[inline]
#[target_feature(enable = "sha")]
#[cfg_attr(test, assert_instr(sha256msg2))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub fn _mm_sha256msg2_epu32(a: __m128i, b: __m128i) -> __m128i {
unsafe { transmute(sha256msg2(a.as_i32x4(), b.as_i32x4())) }
}
/// Performs 2 rounds of SHA256 operation using an initial SHA256 state
/// (C,D,G,H) from `a`, an initial SHA256 state (A,B,E,F) from `b`, and a
/// pre-computed sum of the next 2 round message values (unsigned 32-bit
/// integers) and the corresponding round constants from `k`, and store the
/// updated SHA256 state (A,B,E,F) in dst.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sha256rnds2_epu32)
#[inline]
#[target_feature(enable = "sha")]
#[cfg_attr(test, assert_instr(sha256rnds2))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub fn _mm_sha256rnds2_epu32(a: __m128i, b: __m128i, k: __m128i) -> __m128i {
unsafe { transmute(sha256rnds2(a.as_i32x4(), b.as_i32x4(), k.as_i32x4())) }
}
/// This intrinsic is one of the two SHA512 message scheduling instructions.
/// The intrinsic performs an intermediate calculation for the next four SHA512
/// message qwords. The calculated results are stored in dst.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_sha512msg1_epi64)
#[inline]
#[target_feature(enable = "sha512,avx")]
#[cfg_attr(test, assert_instr(vsha512msg1))]
#[stable(feature = "sha512_sm_x86", since = "1.89.0")]
pub fn _mm256_sha512msg1_epi64(a: __m256i, b: __m128i) -> __m256i {
unsafe { transmute(vsha512msg1(a.as_i64x4(), b.as_i64x2())) }
}
/// This intrinsic is one of the two SHA512 message scheduling instructions.
/// The intrinsic performs the final calculation for the next four SHA512 message
/// qwords. The calculated results are stored in dst.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_sha512msg2_epi64)
#[inline]
#[target_feature(enable = "sha512,avx")]
#[cfg_attr(test, assert_instr(vsha512msg2))]
#[stable(feature = "sha512_sm_x86", since = "1.89.0")]
pub fn _mm256_sha512msg2_epi64(a: __m256i, b: __m256i) -> __m256i {
unsafe { transmute(vsha512msg2(a.as_i64x4(), b.as_i64x4())) }
}
/// This intrinsic performs two rounds of SHA512 operation using initial SHA512 state
/// `(C,D,G,H)` from `a`, an initial SHA512 state `(A,B,E,F)` from `b`, and a
/// pre-computed sum of the next two round message qwords and the corresponding
/// round constants from `c` (only the two lower qwords of the third operand). The
/// updated SHA512 state `(A,B,E,F)` is written to dst, and dst can be used as the
/// updated state `(C,D,G,H)` in later rounds.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_sha512rnds2_epi64)
#[inline]
#[target_feature(enable = "sha512,avx")]
#[cfg_attr(test, assert_instr(vsha512rnds2))]
#[stable(feature = "sha512_sm_x86", since = "1.89.0")]
pub fn _mm256_sha512rnds2_epi64(a: __m256i, b: __m256i, k: __m128i) -> __m256i {
unsafe { transmute(vsha512rnds2(a.as_i64x4(), b.as_i64x4(), k.as_i64x2())) }
}
/// This is one of the two SM3 message scheduling intrinsics. The intrinsic performs
/// an initial calculation for the next four SM3 message words. The calculated results
/// are stored in dst.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sm3msg1_epi32)
#[inline]
#[target_feature(enable = "sm3,avx")]
#[cfg_attr(test, assert_instr(vsm3msg1))]
#[stable(feature = "sha512_sm_x86", since = "1.89.0")]
pub fn _mm_sm3msg1_epi32(a: __m128i, b: __m128i, c: __m128i) -> __m128i {
unsafe { transmute(vsm3msg1(a.as_i32x4(), b.as_i32x4(), c.as_i32x4())) }
}
/// This is one of the two SM3 message scheduling intrinsics. The intrinsic performs
/// the final calculation for the next four SM3 message words. The calculated results
/// are stored in dst.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sm3msg2_epi32)
#[inline]
#[target_feature(enable = "sm3,avx")]
#[cfg_attr(test, assert_instr(vsm3msg2))]
#[stable(feature = "sha512_sm_x86", since = "1.89.0")]
pub fn _mm_sm3msg2_epi32(a: __m128i, b: __m128i, c: __m128i) -> __m128i {
unsafe { transmute(vsm3msg2(a.as_i32x4(), b.as_i32x4(), c.as_i32x4())) }
}
/// The intrinsic performs two rounds of SM3 operation using initial SM3 state `(C, D, G, H)`
/// from `a`, an initial SM3 states `(A, B, E, F)` from `b` and a pre-computed words from the
/// `c`. `a` with initial SM3 state of `(C, D, G, H)` assumes input of non-rotated left variables
/// from previous state. The updated SM3 state `(A, B, E, F)` is written to `a`. The `imm8`
/// should contain the even round number for the first of the two rounds computed by this instruction.
/// The computation masks the `imm8` value by ANDing it with `0x3E` so that only even round numbers
/// from 0 through 62 are used for this operation. The calculated results are stored in dst.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sm3rnds2_epi32)
#[inline]
#[target_feature(enable = "sm3,avx")]
#[cfg_attr(test, assert_instr(vsm3rnds2, IMM8 = 0))]
#[rustc_legacy_const_generics(3)]
#[stable(feature = "sha512_sm_x86", since = "1.89.0")]
pub fn _mm_sm3rnds2_epi32<const IMM8: i32>(a: __m128i, b: __m128i, c: __m128i) -> __m128i {
static_assert!(
IMM8 == (IMM8 & 0x3e),
"IMM8 must be an even number in the range `0..=62`"
);
unsafe { transmute(vsm3rnds2(a.as_i32x4(), b.as_i32x4(), c.as_i32x4(), IMM8)) }
}
/// This intrinsic performs four rounds of SM4 key expansion. The intrinsic operates on independent
/// 128-bit lanes. The calculated results are stored in dst.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sm4key4_epi32)
#[inline]
#[target_feature(enable = "sm4,avx")]
#[cfg_attr(test, assert_instr(vsm4key4))]
#[stable(feature = "sha512_sm_x86", since = "1.89.0")]
pub fn _mm_sm4key4_epi32(a: __m128i, b: __m128i) -> __m128i {
unsafe { transmute(vsm4key4128(a.as_i32x4(), b.as_i32x4())) }
}
/// This intrinsic performs four rounds of SM4 key expansion. The intrinsic operates on independent
/// 128-bit lanes. The calculated results are stored in dst.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_sm4key4_epi32)
#[inline]
#[target_feature(enable = "sm4,avx")]
#[cfg_attr(test, assert_instr(vsm4key4))]
#[stable(feature = "sha512_sm_x86", since = "1.89.0")]
pub fn _mm256_sm4key4_epi32(a: __m256i, b: __m256i) -> __m256i {
unsafe { transmute(vsm4key4256(a.as_i32x8(), b.as_i32x8())) }
}
/// This intrinsic performs four rounds of SM4 encryption. The intrinsic operates on independent
/// 128-bit lanes. The calculated results are stored in dst.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sm4rnds4_epi32)
#[inline]
#[target_feature(enable = "sm4,avx")]
#[cfg_attr(test, assert_instr(vsm4rnds4))]
#[stable(feature = "sha512_sm_x86", since = "1.89.0")]
pub fn _mm_sm4rnds4_epi32(a: __m128i, b: __m128i) -> __m128i {
unsafe { transmute(vsm4rnds4128(a.as_i32x4(), b.as_i32x4())) }
}
/// This intrinsic performs four rounds of SM4 encryption. The intrinsic operates on independent
/// 128-bit lanes. The calculated results are stored in dst.
///
/// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_sm4rnds4_epi32)
#[inline]
#[target_feature(enable = "sm4,avx")]
#[cfg_attr(test, assert_instr(vsm4rnds4))]
#[stable(feature = "sha512_sm_x86", since = "1.89.0")]
pub fn _mm256_sm4rnds4_epi32(a: __m256i, b: __m256i) -> __m256i {
unsafe { transmute(vsm4rnds4256(a.as_i32x8(), b.as_i32x8())) }
}
#[cfg(test)]
mod tests {
use crate::{
core_arch::{simd::*, x86::*},
hint::black_box,
};
use stdarch_test::simd_test;
#[simd_test(enable = "sha")]
#[allow(overflowing_literals)]
unsafe fn test_mm_sha1msg1_epu32() {
let a = _mm_set_epi64x(0xe9b5dba5b5c0fbcf, 0x71374491428a2f98);
let b = _mm_set_epi64x(0xab1c5ed5923f82a4, 0x59f111f13956c25b);
let expected = _mm_set_epi64x(0x98829f34f74ad457, 0xda2b1a44d0b5ad3c);
let r = _mm_sha1msg1_epu32(a, b);
assert_eq_m128i(r, expected);
}
#[simd_test(enable = "sha")]
#[allow(overflowing_literals)]
unsafe fn test_mm_sha1msg2_epu32() {
let a = _mm_set_epi64x(0xe9b5dba5b5c0fbcf, 0x71374491428a2f98);
let b = _mm_set_epi64x(0xab1c5ed5923f82a4, 0x59f111f13956c25b);
let expected = _mm_set_epi64x(0xf714b202d863d47d, 0x90c30d946b3d3b35);
let r = _mm_sha1msg2_epu32(a, b);
assert_eq_m128i(r, expected);
}
#[simd_test(enable = "sha")]
#[allow(overflowing_literals)]
unsafe fn test_mm_sha1nexte_epu32() {
let a = _mm_set_epi64x(0xe9b5dba5b5c0fbcf, 0x71374491428a2f98);
let b = _mm_set_epi64x(0xab1c5ed5923f82a4, 0x59f111f13956c25b);
let expected = _mm_set_epi64x(0x2589d5be923f82a4, 0x59f111f13956c25b);
let r = _mm_sha1nexte_epu32(a, b);
assert_eq_m128i(r, expected);
}
#[simd_test(enable = "sha")]
#[allow(overflowing_literals)]
unsafe fn test_mm_sha1rnds4_epu32() {
let a = _mm_set_epi64x(0xe9b5dba5b5c0fbcf, 0x71374491428a2f98);
let b = _mm_set_epi64x(0xab1c5ed5923f82a4, 0x59f111f13956c25b);
let expected = _mm_set_epi64x(0x32b13cd8322f5268, 0xc54420862bd9246f);
let r = _mm_sha1rnds4_epu32::<0>(a, b);
assert_eq_m128i(r, expected);
let expected = _mm_set_epi64x(0x6d4c43e56a3c25d9, 0xa7e00fb775cbd3fe);
let r = _mm_sha1rnds4_epu32::<1>(a, b);
assert_eq_m128i(r, expected);
let expected = _mm_set_epi64x(0xb304e383c01222f4, 0x66f6b3b1f89d8001);
let r = _mm_sha1rnds4_epu32::<2>(a, b);
assert_eq_m128i(r, expected);
let expected = _mm_set_epi64x(0x8189b758bfabfa79, 0xdb08f6e78cae098b);
let r = _mm_sha1rnds4_epu32::<3>(a, b);
assert_eq_m128i(r, expected);
}
#[simd_test(enable = "sha")]
#[allow(overflowing_literals)]
unsafe fn test_mm_sha256msg1_epu32() {
let a = _mm_set_epi64x(0xe9b5dba5b5c0fbcf, 0x71374491428a2f98);
let b = _mm_set_epi64x(0xab1c5ed5923f82a4, 0x59f111f13956c25b);
let expected = _mm_set_epi64x(0xeb84973fd5cda67d, 0x2857b88f406b09ee);
let r = _mm_sha256msg1_epu32(a, b);
assert_eq_m128i(r, expected);
}
#[simd_test(enable = "sha")]
#[allow(overflowing_literals)]
unsafe fn test_mm_sha256msg2_epu32() {
let a = _mm_set_epi64x(0xe9b5dba5b5c0fbcf, 0x71374491428a2f98);
let b = _mm_set_epi64x(0xab1c5ed5923f82a4, 0x59f111f13956c25b);
let expected = _mm_set_epi64x(0xb58777ce887fd851, 0x15d1ec8b73ac8450);
let r = _mm_sha256msg2_epu32(a, b);
assert_eq_m128i(r, expected);
}
#[simd_test(enable = "sha")]
#[allow(overflowing_literals)]
unsafe fn test_mm_sha256rnds2_epu32() {
let a = _mm_set_epi64x(0xe9b5dba5b5c0fbcf, 0x71374491428a2f98);
let b = _mm_set_epi64x(0xab1c5ed5923f82a4, 0x59f111f13956c25b);
let k = _mm_set_epi64x(0, 0x12835b01d807aa98);
let expected = _mm_set_epi64x(0xd3063037effb15ea, 0x187ee3db0d6d1d19);
let r = _mm_sha256rnds2_epu32(a, b, k);
assert_eq_m128i(r, expected);
}
static DATA_64: [u64; 10] = [
0x0011223344556677,
0x8899aabbccddeeff,
0xffeeddccbbaa9988,
0x7766554433221100,
0x0123456789abcdef,
0xfedcba9876543210,
0x02468ace13579bdf,
0xfdb97531eca86420,
0x048c159d26ae37bf,
0xfb73ea62d951c840,
];
#[simd_test(enable = "sha512,avx")]
unsafe fn test_mm256_sha512msg1_epi64() {
fn s0(word: u64) -> u64 {
word.rotate_right(1) ^ word.rotate_right(8) ^ (word >> 7)
}
let A = &DATA_64[0..4];
let B = &DATA_64[4..6];
let a = _mm256_loadu_si256(A.as_ptr().cast());
let b = _mm_loadu_si128(B.as_ptr().cast());
let r = _mm256_sha512msg1_epi64(a, b);
let e = _mm256_setr_epi64x(
A[0].wrapping_add(s0(A[1])) as _,
A[1].wrapping_add(s0(A[2])) as _,
A[2].wrapping_add(s0(A[3])) as _,
A[3].wrapping_add(s0(B[0])) as _,
);
assert_eq_m256i(r, e);
}
#[simd_test(enable = "sha512,avx")]
unsafe fn test_mm256_sha512msg2_epi64() {
fn s1(word: u64) -> u64 {
word.rotate_right(19) ^ word.rotate_right(61) ^ (word >> 6)
}
let A = &DATA_64[0..4];
let B = &DATA_64[4..8];
let a = _mm256_loadu_si256(A.as_ptr().cast());
let b = _mm256_loadu_si256(B.as_ptr().cast());
let r = _mm256_sha512msg2_epi64(a, b);
let e0 = A[0].wrapping_add(s1(B[2]));
let e1 = A[1].wrapping_add(s1(B[3]));
let e = _mm256_setr_epi64x(
e0 as _,
e1 as _,
A[2].wrapping_add(s1(e0)) as _,
A[3].wrapping_add(s1(e1)) as _,
);
assert_eq_m256i(r, e);
}
#[simd_test(enable = "sha512,avx")]
unsafe fn test_mm256_sha512rnds2_epi64() {
fn cap_sigma0(word: u64) -> u64 {
word.rotate_right(28) ^ word.rotate_right(34) ^ word.rotate_right(39)
}
fn cap_sigma1(word: u64) -> u64 {
word.rotate_right(14) ^ word.rotate_right(18) ^ word.rotate_right(41)
}
fn maj(a: u64, b: u64, c: u64) -> u64 {
(a & b) ^ (a & c) ^ (b & c)
}
fn ch(e: u64, f: u64, g: u64) -> u64 {
(e & f) ^ (g & !e)
}
let A = &DATA_64[0..4];
let B = &DATA_64[4..8];
let K = &DATA_64[8..10];
let a = _mm256_loadu_si256(A.as_ptr().cast());
let b = _mm256_loadu_si256(B.as_ptr().cast());
let k = _mm_loadu_si128(K.as_ptr().cast());
let r = _mm256_sha512rnds2_epi64(a, b, k);
let mut array = [B[3], B[2], A[3], A[2], B[1], B[0], A[1], A[0]];
for i in 0..2 {
let new_d = ch(array[4], array[5], array[6])
.wrapping_add(cap_sigma1(array[4]))
.wrapping_add(K[i])
.wrapping_add(array[7]);
array[7] = new_d
.wrapping_add(maj(array[0], array[1], array[2]))
.wrapping_add(cap_sigma0(array[0]));
array[3] = new_d.wrapping_add(array[3]);
array.rotate_right(1);
}
let e = _mm256_setr_epi64x(array[5] as _, array[4] as _, array[1] as _, array[0] as _);
assert_eq_m256i(r, e);
}
static DATA_32: [u32; 16] = [
0x00112233, 0x44556677, 0x8899aabb, 0xccddeeff, 0xffeeddcc, 0xbbaa9988, 0x77665544,
0x33221100, 0x01234567, 0x89abcdef, 0xfedcba98, 0x76543210, 0x02468ace, 0x13579bdf,
0xfdb97531, 0xeca86420,
];
#[simd_test(enable = "sm3,avx")]
unsafe fn test_mm_sm3msg1_epi32() {
fn p1(x: u32) -> u32 {
x ^ x.rotate_left(15) ^ x.rotate_left(23)
}
let A = &DATA_32[0..4];
let B = &DATA_32[4..8];
let C = &DATA_32[8..12];
let a = _mm_loadu_si128(A.as_ptr().cast());
let b = _mm_loadu_si128(B.as_ptr().cast());
let c = _mm_loadu_si128(C.as_ptr().cast());
let r = _mm_sm3msg1_epi32(a, b, c);
let e = _mm_setr_epi32(
p1(A[0] ^ C[0] ^ B[0].rotate_left(15)) as _,
p1(A[1] ^ C[1] ^ B[1].rotate_left(15)) as _,
p1(A[2] ^ C[2] ^ B[2].rotate_left(15)) as _,
p1(A[3] ^ C[3]) as _,
);
assert_eq_m128i(r, e);
}
#[simd_test(enable = "sm3,avx")]
unsafe fn test_mm_sm3msg2_epi32() {
let A = &DATA_32[0..4];
let B = &DATA_32[4..8];
let C = &DATA_32[8..12];
let a = _mm_loadu_si128(A.as_ptr().cast());
let b = _mm_loadu_si128(B.as_ptr().cast());
let c = _mm_loadu_si128(C.as_ptr().cast());
let r = _mm_sm3msg2_epi32(a, b, c);
let e0 = B[0].rotate_left(7) ^ C[0] ^ A[0];
let e = _mm_setr_epi32(
e0 as _,
(B[1].rotate_left(7) ^ C[1] ^ A[1]) as _,
(B[2].rotate_left(7) ^ C[2] ^ A[2]) as _,
(B[3].rotate_left(7)
^ C[3]
^ A[3]
^ e0.rotate_left(6)
^ e0.rotate_left(15)
^ e0.rotate_left(30)) as _,
);
assert_eq_m128i(r, e);
}
#[simd_test(enable = "sm3,avx")]
unsafe fn test_mm_sm3rnds2_epi32() {
fn p0(x: u32) -> u32 {
x ^ x.rotate_left(9) ^ x.rotate_left(17)
}
fn ff(x: u32, y: u32, z: u32, round: u32) -> u32 {
if round < 16 {
x ^ y ^ z
} else {
(x & y) | (x & z) | (y & z)
}
}
fn gg(x: u32, y: u32, z: u32, round: u32) -> u32 {
if round < 16 {
x ^ y ^ z
} else {
(x & y) | (!x & z)
}
}
const ROUND: u32 = 30;
let A = &DATA_32[0..4];
let B = &DATA_32[4..8];
let C = &DATA_32[8..12];
let a = _mm_loadu_si128(A.as_ptr().cast());
let b = _mm_loadu_si128(B.as_ptr().cast());
let c = _mm_loadu_si128(C.as_ptr().cast());
let r = _mm_sm3rnds2_epi32::<{ ROUND as i32 }>(a, b, c);
let CONST: u32 = if ROUND < 16 { 0x79cc4519 } else { 0x7a879d8a };
let mut array = [
B[3],
B[2],
A[3].rotate_left(9),
A[2].rotate_left(9),
B[1],
B[0],
A[1].rotate_left(19),
A[0].rotate_left(19),
];
for i in 0..2 {
let s1 = array[0]
.rotate_left(12)
.wrapping_add(array[4])
.wrapping_add(CONST.rotate_left(ROUND as u32 + i as u32))
.rotate_left(7);
let s2 = s1 ^ array[0].rotate_left(12);
let t1 = ff(array[0], array[1], array[2], ROUND)
.wrapping_add(array[3])
.wrapping_add(s2)
.wrapping_add(C[i] ^ C[i + 2]);
let t2 = gg(array[4], array[5], array[6], ROUND)
.wrapping_add(array[7])
.wrapping_add(s1)
.wrapping_add(C[i]);
array[3] = array[2];
array[2] = array[1].rotate_left(9);
array[1] = array[0];
array[0] = t1;
array[7] = array[6];
array[6] = array[5].rotate_left(19);
array[5] = array[4];
array[4] = p0(t2);
}
let e = _mm_setr_epi32(array[5] as _, array[4] as _, array[1] as _, array[0] as _);
assert_eq_m128i(r, e);
}
fn lower_t(x: u32) -> u32 {
static SBOX: [u8; 256] = [
0xD6, 0x90, 0xE9, 0xFE, 0xCC, 0xE1, 0x3D, 0xB7, 0x16, 0xB6, 0x14, 0xC2, 0x28, 0xFB,
0x2C, 0x05, 0x2B, 0x67, 0x9A, 0x76, 0x2A, 0xBE, 0x04, 0xC3, 0xAA, 0x44, 0x13, 0x26,
0x49, 0x86, 0x06, 0x99, 0x9C, 0x42, 0x50, 0xF4, 0x91, 0xEF, 0x98, 0x7A, 0x33, 0x54,
0x0B, 0x43, 0xED, 0xCF, 0xAC, 0x62, 0xE4, 0xB3, 0x1C, 0xA9, 0xC9, 0x08, 0xE8, 0x95,
0x80, 0xDF, 0x94, 0xFA, 0x75, 0x8F, 0x3F, 0xA6, 0x47, 0x07, 0xA7, 0xFC, 0xF3, 0x73,
0x17, 0xBA, 0x83, 0x59, 0x3C, 0x19, 0xE6, 0x85, 0x4F, 0xA8, 0x68, 0x6B, 0x81, 0xB2,
0x71, 0x64, 0xDA, 0x8B, 0xF8, 0xEB, 0x0F, 0x4B, 0x70, 0x56, 0x9D, 0x35, 0x1E, 0x24,
0x0E, 0x5E, 0x63, 0x58, 0xD1, 0xA2, 0x25, 0x22, 0x7C, 0x3B, 0x01, 0x21, 0x78, 0x87,
0xD4, 0x00, 0x46, 0x57, 0x9F, 0xD3, 0x27, 0x52, 0x4C, 0x36, 0x02, 0xE7, 0xA0, 0xC4,
0xC8, 0x9E, 0xEA, 0xBF, 0x8A, 0xD2, 0x40, 0xC7, 0x38, 0xB5, 0xA3, 0xF7, 0xF2, 0xCE,
0xF9, 0x61, 0x15, 0xA1, 0xE0, 0xAE, 0x5D, 0xA4, 0x9B, 0x34, 0x1A, 0x55, 0xAD, 0x93,
0x32, 0x30, 0xF5, 0x8C, 0xB1, 0xE3, 0x1D, 0xF6, 0xE2, 0x2E, 0x82, 0x66, 0xCA, 0x60,
0xC0, 0x29, 0x23, 0xAB, 0x0D, 0x53, 0x4E, 0x6F, 0xD5, 0xDB, 0x37, 0x45, 0xDE, 0xFD,
0x8E, 0x2F, 0x03, 0xFF, 0x6A, 0x72, 0x6D, 0x6C, 0x5B, 0x51, 0x8D, 0x1B, 0xAF, 0x92,
0xBB, 0xDD, 0xBC, 0x7F, 0x11, 0xD9, 0x5C, 0x41, 0x1F, 0x10, 0x5A, 0xD8, 0x0A, 0xC1,
0x31, 0x88, 0xA5, 0xCD, 0x7B, 0xBD, 0x2D, 0x74, 0xD0, 0x12, 0xB8, 0xE5, 0xB4, 0xB0,
0x89, 0x69, 0x97, 0x4A, 0x0C, 0x96, 0x77, 0x7E, 0x65, 0xB9, 0xF1, 0x09, 0xC5, 0x6E,
0xC6, 0x84, 0x18, 0xF0, 0x7D, 0xEC, 0x3A, 0xDC, 0x4D, 0x20, 0x79, 0xEE, 0x5F, 0x3E,
0xD7, 0xCB, 0x39, 0x48,
];
((SBOX[(x >> 24) as usize] as u32) << 24)
| ((SBOX[((x >> 16) & 0xff) as usize] as u32) << 16)
| ((SBOX[((x >> 8) & 0xff) as usize] as u32) << 8)
| (SBOX[(x & 0xff) as usize] as u32)
}
#[simd_test(enable = "sm4,avx")]
unsafe fn test_mm_sm4key4_epi32() {
fn l_key(x: u32) -> u32 {
x ^ x.rotate_left(13) ^ x.rotate_left(23)
}
fn f_key(x0: u32, x1: u32, x2: u32, x3: u32, rk: u32) -> u32 {
x0 ^ l_key(lower_t(x1 ^ x2 ^ x3 ^ rk))
}
let A = &DATA_32[0..4];
let B = &DATA_32[4..8];
let a = _mm_loadu_si128(A.as_ptr().cast());
let b = _mm_loadu_si128(B.as_ptr().cast());
let r = _mm_sm4key4_epi32(a, b);
let e0 = f_key(A[0], A[1], A[2], A[3], B[0]);
let e1 = f_key(A[1], A[2], A[3], e0, B[1]);
let e2 = f_key(A[2], A[3], e0, e1, B[2]);
let e3 = f_key(A[3], e0, e1, e2, B[3]);
let e = _mm_setr_epi32(e0 as _, e1 as _, e2 as _, e3 as _);
assert_eq_m128i(r, e);
}
#[simd_test(enable = "sm4,avx")]
unsafe fn test_mm256_sm4key4_epi32() {
let a_low = _mm_loadu_si128(DATA_32.as_ptr().cast());
let a_high = _mm_loadu_si128(DATA_32[4..].as_ptr().cast());
let b_low = _mm_loadu_si128(DATA_32[8..].as_ptr().cast());
let b_high = _mm_loadu_si128(DATA_32[12..].as_ptr().cast());
let a = _mm256_set_m128i(a_high, a_low);
let b = _mm256_set_m128i(b_high, b_low);
let r = _mm256_sm4key4_epi32(a, b);
let e_low = _mm_sm4key4_epi32(a_low, b_low);
let e_high = _mm_sm4key4_epi32(a_high, b_high);
let e = _mm256_set_m128i(e_high, e_low);
assert_eq_m256i(r, e);
}
#[simd_test(enable = "sm4,avx")]
unsafe fn test_mm_sm4rnds4_epi32() {
fn l_rnd(x: u32) -> u32 {
x ^ x.rotate_left(2) ^ x.rotate_left(10) ^ x.rotate_left(18) ^ x.rotate_left(24)
}
fn f_rnd(x0: u32, x1: u32, x2: u32, x3: u32, rk: u32) -> u32 {
x0 ^ l_rnd(lower_t(x1 ^ x2 ^ x3 ^ rk))
}
let A = &DATA_32[0..4];
let B = &DATA_32[4..8];
let a = _mm_loadu_si128(A.as_ptr().cast());
let b = _mm_loadu_si128(B.as_ptr().cast());
let r = _mm_sm4rnds4_epi32(a, b);
let e0 = f_rnd(A[0], A[1], A[2], A[3], B[0]);
let e1 = f_rnd(A[1], A[2], A[3], e0, B[1]);
let e2 = f_rnd(A[2], A[3], e0, e1, B[2]);
let e3 = f_rnd(A[3], e0, e1, e2, B[3]);
let e = _mm_setr_epi32(e0 as _, e1 as _, e2 as _, e3 as _);
assert_eq_m128i(r, e);
}
#[simd_test(enable = "sm4,avx")]
unsafe fn test_mm256_sm4rnds4_epi32() {
let a_low = _mm_loadu_si128(DATA_32.as_ptr().cast());
let a_high = _mm_loadu_si128(DATA_32[4..].as_ptr().cast());
let b_low = _mm_loadu_si128(DATA_32[8..].as_ptr().cast());
let b_high = _mm_loadu_si128(DATA_32[12..].as_ptr().cast());
let a = _mm256_set_m128i(a_high, a_low);
let b = _mm256_set_m128i(b_high, b_low);
let r = _mm256_sm4rnds4_epi32(a, b);
let e_low = _mm_sm4rnds4_epi32(a_low, b_low);
let e_high = _mm_sm4rnds4_epi32(a_high, b_high);
let e = _mm256_set_m128i(e_high, e_low);
assert_eq_m256i(r, e);
}
}