blob: 7686b317d4d49879f5fdf2d71031fa9e3dd6611d [file] [log] [blame]
//! [F16C intrinsics].
//!
//! [F16C intrinsics]: https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=fp16&expand=1769
use crate::core_arch::{simd::*, x86::*};
#[cfg(test)]
use stdarch_test::assert_instr;
#[allow(improper_ctypes)]
unsafe extern "unadjusted" {
#[link_name = "llvm.x86.vcvtph2ps.128"]
fn llvm_vcvtph2ps_128(a: i16x8) -> f32x4;
#[link_name = "llvm.x86.vcvtph2ps.256"]
fn llvm_vcvtph2ps_256(a: i16x8) -> f32x8;
#[link_name = "llvm.x86.vcvtps2ph.128"]
fn llvm_vcvtps2ph_128(a: f32x4, rounding: i32) -> i16x8;
#[link_name = "llvm.x86.vcvtps2ph.256"]
fn llvm_vcvtps2ph_256(a: f32x8, rounding: i32) -> i16x8;
}
/// Converts the 4 x 16-bit half-precision float values in the lowest 64-bit of
/// the 128-bit vector `a` into 4 x 32-bit float values stored in a 128-bit wide
/// vector.
///
/// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtph_ps)
#[inline]
#[target_feature(enable = "f16c")]
#[cfg_attr(test, assert_instr("vcvtph2ps"))]
#[stable(feature = "x86_f16c_intrinsics", since = "1.68.0")]
pub fn _mm_cvtph_ps(a: __m128i) -> __m128 {
unsafe { transmute(llvm_vcvtph2ps_128(transmute(a))) }
}
/// Converts the 8 x 16-bit half-precision float values in the 128-bit vector
/// `a` into 8 x 32-bit float values stored in a 256-bit wide vector.
///
/// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_cvtph_ps)
#[inline]
#[target_feature(enable = "f16c")]
#[cfg_attr(test, assert_instr("vcvtph2ps"))]
#[stable(feature = "x86_f16c_intrinsics", since = "1.68.0")]
pub fn _mm256_cvtph_ps(a: __m128i) -> __m256 {
unsafe { transmute(llvm_vcvtph2ps_256(transmute(a))) }
}
/// Converts the 4 x 32-bit float values in the 128-bit vector `a` into 4 x
/// 16-bit half-precision float values stored in the lowest 64-bit of a 128-bit
/// vector.
///
/// Rounding is done according to the `imm_rounding` parameter, which can be one of:
///
/// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions
/// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions
/// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions
/// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions
/// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`]
///
/// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtps_ph)
#[inline]
#[target_feature(enable = "f16c")]
#[cfg_attr(test, assert_instr("vcvtps2ph", IMM_ROUNDING = 0))]
#[rustc_legacy_const_generics(1)]
#[stable(feature = "x86_f16c_intrinsics", since = "1.68.0")]
pub fn _mm_cvtps_ph<const IMM_ROUNDING: i32>(a: __m128) -> __m128i {
static_assert_uimm_bits!(IMM_ROUNDING, 3);
unsafe {
let a = a.as_f32x4();
let r = llvm_vcvtps2ph_128(a, IMM_ROUNDING);
transmute(r)
}
}
/// Converts the 8 x 32-bit float values in the 256-bit vector `a` into 8 x
/// 16-bit half-precision float values stored in a 128-bit wide vector.
///
/// Rounding is done according to the `imm_rounding` parameter, which can be one of:
///
/// * [`_MM_FROUND_TO_NEAREST_INT`] | [`_MM_FROUND_NO_EXC`] : round to nearest and suppress exceptions
/// * [`_MM_FROUND_TO_NEG_INF`] | [`_MM_FROUND_NO_EXC`] : round down and suppress exceptions
/// * [`_MM_FROUND_TO_POS_INF`] | [`_MM_FROUND_NO_EXC`] : round up and suppress exceptions
/// * [`_MM_FROUND_TO_ZERO`] | [`_MM_FROUND_NO_EXC`] : truncate and suppress exceptions
/// * [`_MM_FROUND_CUR_DIRECTION`] : use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`]
///
/// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_cvtps_ph)
#[inline]
#[target_feature(enable = "f16c")]
#[cfg_attr(test, assert_instr("vcvtps2ph", IMM_ROUNDING = 0))]
#[rustc_legacy_const_generics(1)]
#[stable(feature = "x86_f16c_intrinsics", since = "1.68.0")]
pub fn _mm256_cvtps_ph<const IMM_ROUNDING: i32>(a: __m256) -> __m128i {
static_assert_uimm_bits!(IMM_ROUNDING, 3);
unsafe {
let a = a.as_f32x8();
let r = llvm_vcvtps2ph_256(a, IMM_ROUNDING);
transmute(r)
}
}
#[cfg(test)]
mod tests {
use crate::{core_arch::x86::*, mem::transmute};
use stdarch_test::simd_test;
const F16_ONE: i16 = 0x3c00;
const F16_TWO: i16 = 0x4000;
const F16_THREE: i16 = 0x4200;
const F16_FOUR: i16 = 0x4400;
const F16_FIVE: i16 = 0x4500;
const F16_SIX: i16 = 0x4600;
const F16_SEVEN: i16 = 0x4700;
const F16_EIGHT: i16 = 0x4800;
#[simd_test(enable = "f16c")]
unsafe fn test_mm_cvtph_ps() {
let a = _mm_set_epi16(0, 0, 0, 0, F16_ONE, F16_TWO, F16_THREE, F16_FOUR);
let r = _mm_cvtph_ps(a);
let e = _mm_set_ps(1.0, 2.0, 3.0, 4.0);
assert_eq_m128(r, e);
}
#[simd_test(enable = "f16c")]
unsafe fn test_mm256_cvtph_ps() {
let a = _mm_set_epi16(
F16_ONE, F16_TWO, F16_THREE, F16_FOUR, F16_FIVE, F16_SIX, F16_SEVEN, F16_EIGHT,
);
let r = _mm256_cvtph_ps(a);
let e = _mm256_set_ps(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0);
assert_eq_m256(r, e);
}
#[simd_test(enable = "f16c")]
unsafe fn test_mm_cvtps_ph() {
let a = _mm_set_ps(1.0, 2.0, 3.0, 4.0);
let r = _mm_cvtps_ph::<_MM_FROUND_CUR_DIRECTION>(a);
let e = _mm_set_epi16(0, 0, 0, 0, F16_ONE, F16_TWO, F16_THREE, F16_FOUR);
assert_eq_m128i(r, e);
}
#[simd_test(enable = "f16c")]
unsafe fn test_mm256_cvtps_ph() {
let a = _mm256_set_ps(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0);
let r = _mm256_cvtps_ph::<_MM_FROUND_CUR_DIRECTION>(a);
let e = _mm_set_epi16(
F16_ONE, F16_TWO, F16_THREE, F16_FOUR, F16_FIVE, F16_SIX, F16_SEVEN, F16_EIGHT,
);
assert_eq_m128i(r, e);
}
}