blob: 200f1381960292593717527aab7694e60702d9bb [file] [log] [blame]
//! This module defines traits for attribute parsers, little state machines that recognize and parse
//! attributes out of a longer list of attributes. The main trait is called [`AttributeParser`].
//! You can find more docs about [`AttributeParser`]s on the trait itself.
//! However, for many types of attributes, implementing [`AttributeParser`] is not necessary.
//! It allows for a lot of flexibility you might not want.
//!
//! Specifically, you might not care about managing the state of your [`AttributeParser`]
//! state machine yourself. In this case you can choose to implement:
//!
//! - [`SingleAttributeParser`]: makes it easy to implement an attribute which should error if it
//! appears more than once in a list of attributes
//! - [`CombineAttributeParser`]: makes it easy to implement an attribute which should combine the
//! contents of attributes, if an attribute appear multiple times in a list
//!
//! Attributes should be added to `crate::context::ATTRIBUTE_PARSERS` to be parsed.
use std::marker::PhantomData;
use rustc_attr_data_structures::AttributeKind;
use rustc_feature::{AttributeTemplate, template};
use rustc_span::{Span, Symbol};
use thin_vec::ThinVec;
use crate::context::{AcceptContext, FinalizeContext, Stage};
use crate::parser::ArgParser;
use crate::session_diagnostics::UnusedMultiple;
pub(crate) mod allow_unstable;
pub(crate) mod cfg;
pub(crate) mod cfg_old;
pub(crate) mod codegen_attrs;
pub(crate) mod confusables;
pub(crate) mod deprecation;
pub(crate) mod dummy;
pub(crate) mod inline;
pub(crate) mod link_attrs;
pub(crate) mod lint_helpers;
pub(crate) mod loop_match;
pub(crate) mod must_use;
pub(crate) mod no_implicit_prelude;
pub(crate) mod non_exhaustive;
pub(crate) mod path;
pub(crate) mod repr;
pub(crate) mod rustc_internal;
pub(crate) mod semantics;
pub(crate) mod stability;
pub(crate) mod test_attrs;
pub(crate) mod traits;
pub(crate) mod transparency;
pub(crate) mod util;
type AcceptFn<T, S> = for<'sess> fn(&mut T, &mut AcceptContext<'_, 'sess, S>, &ArgParser<'_>);
type AcceptMapping<T, S> = &'static [(&'static [Symbol], AttributeTemplate, AcceptFn<T, S>)];
/// An [`AttributeParser`] is a type which searches for syntactic attributes.
///
/// Parsers are often tiny state machines that gets to see all syntactical attributes on an item.
/// [`Default::default`] creates a fresh instance that sits in some kind of initial state, usually that the
/// attribute it is looking for was not yet seen.
///
/// Then, it defines what paths this group will accept in [`AttributeParser::ATTRIBUTES`].
/// These are listed as pairs, of symbols and function pointers. The function pointer will
/// be called when that attribute is found on an item, which can influence the state of the little
/// state machine.
///
/// Finally, after all attributes on an item have been seen, and possibly been accepted,
/// the [`finalize`](AttributeParser::finalize) functions for all attribute parsers are called. Each can then report
/// whether it has seen the attribute it has been looking for.
///
/// The state machine is automatically reset to parse attributes on the next item.
///
/// For a simpler attribute parsing interface, consider using [`SingleAttributeParser`]
/// or [`CombineAttributeParser`] instead.
pub(crate) trait AttributeParser<S: Stage>: Default + 'static {
/// The symbols for the attributes that this parser is interested in.
///
/// If an attribute has this symbol, the `accept` function will be called on it.
const ATTRIBUTES: AcceptMapping<Self, S>;
/// The parser has gotten a chance to accept the attributes on an item,
/// here it can produce an attribute.
///
/// All finalize methods of all parsers are unconditionally called.
/// This means you can't unconditionally return `Some` here,
/// that'd be equivalent to unconditionally applying an attribute to
/// every single syntax item that could have attributes applied to it.
/// Your accept mappings should determine whether this returns something.
fn finalize(self, cx: &FinalizeContext<'_, '_, S>) -> Option<AttributeKind>;
}
/// Alternative to [`AttributeParser`] that automatically handles state management.
/// A slightly simpler and more restricted way to convert attributes.
/// Assumes that an attribute can only appear a single time on an item,
/// and errors when it sees more.
///
/// [`Single<T> where T: SingleAttributeParser`](Single) implements [`AttributeParser`].
///
/// [`SingleAttributeParser`] can only convert attributes one-to-one, and cannot combine multiple
/// attributes together like is necessary for `#[stable()]` and `#[unstable()]` for example.
pub(crate) trait SingleAttributeParser<S: Stage>: 'static {
/// The single path of the attribute this parser accepts.
///
/// If you need the parser to accept more than one path, use [`AttributeParser`] instead
const PATH: &[Symbol];
/// Configures the precedence of attributes with the same `PATH` on a syntax node.
const ATTRIBUTE_ORDER: AttributeOrder;
/// Configures what to do when when the same attribute is
/// applied more than once on the same syntax node.
///
/// [`ATTRIBUTE_ORDER`](Self::ATTRIBUTE_ORDER) specified which one is assumed to be correct,
/// and this specified whether to, for example, warn or error on the other one.
const ON_DUPLICATE: OnDuplicate<S>;
/// The template this attribute parser should implement. Used for diagnostics.
const TEMPLATE: AttributeTemplate;
/// Converts a single syntactical attribute to a single semantic attribute, or [`AttributeKind`]
fn convert(cx: &mut AcceptContext<'_, '_, S>, args: &ArgParser<'_>) -> Option<AttributeKind>;
}
/// Use in combination with [`SingleAttributeParser`].
/// `Single<T: SingleAttributeParser>` implements [`AttributeParser`].
pub(crate) struct Single<T: SingleAttributeParser<S>, S: Stage>(
PhantomData<(S, T)>,
Option<(AttributeKind, Span)>,
);
impl<T: SingleAttributeParser<S>, S: Stage> Default for Single<T, S> {
fn default() -> Self {
Self(Default::default(), Default::default())
}
}
impl<T: SingleAttributeParser<S>, S: Stage> AttributeParser<S> for Single<T, S> {
const ATTRIBUTES: AcceptMapping<Self, S> = &[(
T::PATH,
<T as SingleAttributeParser<S>>::TEMPLATE,
|group: &mut Single<T, S>, cx, args| {
if let Some(pa) = T::convert(cx, args) {
match T::ATTRIBUTE_ORDER {
// keep the first and report immediately. ignore this attribute
AttributeOrder::KeepInnermost => {
if let Some((_, unused)) = group.1 {
T::ON_DUPLICATE.exec::<T>(cx, cx.attr_span, unused);
return;
}
}
// keep the new one and warn about the previous,
// then replace
AttributeOrder::KeepOutermost => {
if let Some((_, used)) = group.1 {
T::ON_DUPLICATE.exec::<T>(cx, used, cx.attr_span);
}
}
}
group.1 = Some((pa, cx.attr_span));
}
},
)];
fn finalize(self, _cx: &FinalizeContext<'_, '_, S>) -> Option<AttributeKind> {
Some(self.1?.0)
}
}
pub(crate) enum OnDuplicate<S: Stage> {
/// Give a default warning
Warn,
/// Duplicates will be a warning, with a note that this will be an error in the future.
WarnButFutureError,
/// Give a default error
Error,
/// Ignore duplicates
Ignore,
/// Custom function called when a duplicate attribute is found.
///
/// - `unused` is the span of the attribute that was unused or bad because of some
/// duplicate reason (see [`AttributeOrder`])
/// - `used` is the span of the attribute that was used in favor of the unused attribute
Custom(fn(cx: &AcceptContext<'_, '_, S>, used: Span, unused: Span)),
}
impl<S: Stage> OnDuplicate<S> {
fn exec<P: SingleAttributeParser<S>>(
&self,
cx: &mut AcceptContext<'_, '_, S>,
used: Span,
unused: Span,
) {
match self {
OnDuplicate::Warn => cx.warn_unused_duplicate(used, unused),
OnDuplicate::WarnButFutureError => cx.warn_unused_duplicate_future_error(used, unused),
OnDuplicate::Error => {
cx.emit_err(UnusedMultiple {
this: used,
other: unused,
name: Symbol::intern(
&P::PATH.into_iter().map(|i| i.to_string()).collect::<Vec<_>>().join(".."),
),
});
}
OnDuplicate::Ignore => {}
OnDuplicate::Custom(f) => f(cx, used, unused),
}
}
}
pub(crate) enum AttributeOrder {
/// Duplicates after the innermost instance of the attribute will be an error/warning.
/// Only keep the lowest attribute.
///
/// Attributes are processed from bottom to top, so this raises a warning/error on all the attributes
/// further above the lowest one:
/// ```
/// #[stable(since="1.0")] //~ WARNING duplicated attribute
/// #[stable(since="2.0")]
/// ```
KeepInnermost,
/// Duplicates before the outermost instance of the attribute will be an error/warning.
/// Only keep the highest attribute.
///
/// Attributes are processed from bottom to top, so this raises a warning/error on all the attributes
/// below the highest one:
/// ```
/// #[path="foo.rs"]
/// #[path="bar.rs"] //~ WARNING duplicated attribute
/// ```
KeepOutermost,
}
/// An even simpler version of [`SingleAttributeParser`]:
/// now automatically check that there are no arguments provided to the attribute.
///
/// [`WithoutArgs<T> where T: NoArgsAttributeParser`](WithoutArgs) implements [`SingleAttributeParser`].
//
pub(crate) trait NoArgsAttributeParser<S: Stage>: 'static {
const PATH: &[Symbol];
const ON_DUPLICATE: OnDuplicate<S>;
/// Create the [`AttributeKind`] given attribute's [`Span`].
const CREATE: fn(Span) -> AttributeKind;
}
pub(crate) struct WithoutArgs<T: NoArgsAttributeParser<S>, S: Stage>(PhantomData<(S, T)>);
impl<T: NoArgsAttributeParser<S>, S: Stage> Default for WithoutArgs<T, S> {
fn default() -> Self {
Self(Default::default())
}
}
impl<T: NoArgsAttributeParser<S>, S: Stage> SingleAttributeParser<S> for WithoutArgs<T, S> {
const PATH: &[Symbol] = T::PATH;
const ATTRIBUTE_ORDER: AttributeOrder = AttributeOrder::KeepOutermost;
const ON_DUPLICATE: OnDuplicate<S> = T::ON_DUPLICATE;
const TEMPLATE: AttributeTemplate = template!(Word);
fn convert(cx: &mut AcceptContext<'_, '_, S>, args: &ArgParser<'_>) -> Option<AttributeKind> {
if let Err(span) = args.no_args() {
cx.expected_no_args(span);
}
Some(T::CREATE(cx.attr_span))
}
}
type ConvertFn<E> = fn(ThinVec<E>, Span) -> AttributeKind;
/// Alternative to [`AttributeParser`] that automatically handles state management.
/// If multiple attributes appear on an element, combines the values of each into a
/// [`ThinVec`].
/// [`Combine<T> where T: CombineAttributeParser`](Combine) implements [`AttributeParser`].
///
/// [`CombineAttributeParser`] can only convert a single kind of attribute, and cannot combine multiple
/// attributes together like is necessary for `#[stable()]` and `#[unstable()]` for example.
pub(crate) trait CombineAttributeParser<S: Stage>: 'static {
const PATH: &[rustc_span::Symbol];
type Item;
/// A function that converts individual items (of type [`Item`](Self::Item)) into the final attribute.
///
/// For example, individual representations fomr `#[repr(...)]` attributes into an `AttributeKind::Repr(x)`,
/// where `x` is a vec of these individual reprs.
const CONVERT: ConvertFn<Self::Item>;
/// The template this attribute parser should implement. Used for diagnostics.
const TEMPLATE: AttributeTemplate;
/// Converts a single syntactical attribute to a number of elements of the semantic attribute, or [`AttributeKind`]
fn extend<'c>(
cx: &'c mut AcceptContext<'_, '_, S>,
args: &'c ArgParser<'_>,
) -> impl IntoIterator<Item = Self::Item> + 'c;
}
/// Use in combination with [`CombineAttributeParser`].
/// `Combine<T: CombineAttributeParser>` implements [`AttributeParser`].
pub(crate) struct Combine<T: CombineAttributeParser<S>, S: Stage> {
phantom: PhantomData<(S, T)>,
/// A list of all items produced by parsing attributes so far. One attribute can produce any amount of items.
items: ThinVec<<T as CombineAttributeParser<S>>::Item>,
/// The full span of the first attribute that was encountered.
first_span: Option<Span>,
}
impl<T: CombineAttributeParser<S>, S: Stage> Default for Combine<T, S> {
fn default() -> Self {
Self {
phantom: Default::default(),
items: Default::default(),
first_span: Default::default(),
}
}
}
impl<T: CombineAttributeParser<S>, S: Stage> AttributeParser<S> for Combine<T, S> {
const ATTRIBUTES: AcceptMapping<Self, S> = &[(
T::PATH,
<T as CombineAttributeParser<S>>::TEMPLATE,
|group: &mut Combine<T, S>, cx, args| {
// Keep track of the span of the first attribute, for diagnostics
group.first_span.get_or_insert(cx.attr_span);
group.items.extend(T::extend(cx, args))
},
)];
fn finalize(self, _cx: &FinalizeContext<'_, '_, S>) -> Option<AttributeKind> {
if let Some(first_span) = self.first_span {
Some(T::CONVERT(self.items, first_span))
} else {
None
}
}
}