blob: 918b71c80c4f0d605f84985f5c860374f50ddf64 [file] [log] [blame]
use rustc_abi::{
AddressSpace, Align, BackendRepr, HasDataLayout, Primitive, Reg, RegKind, TyAbiInterface,
TyAndLayout,
};
use crate::callconv::{ArgAttribute, FnAbi, PassMode};
use crate::spec::{HasTargetSpec, RustcAbi};
#[derive(PartialEq)]
pub(crate) enum Flavor {
General,
FastcallOrVectorcall,
}
pub(crate) struct X86Options {
pub flavor: Flavor,
pub regparm: Option<u32>,
pub reg_struct_return: bool,
}
pub(crate) fn compute_abi_info<'a, Ty, C>(cx: &C, fn_abi: &mut FnAbi<'a, Ty>, opts: X86Options)
where
Ty: TyAbiInterface<'a, C> + Copy,
C: HasDataLayout + HasTargetSpec,
{
if !fn_abi.ret.is_ignore() {
if fn_abi.ret.layout.is_aggregate() && fn_abi.ret.layout.is_sized() {
// Returning a structure. Most often, this will use
// a hidden first argument. On some platforms, though,
// small structs are returned as integers.
//
// Some links:
// https://www.angelcode.com/dev/callconv/callconv.html
// Clang's ABI handling is in lib/CodeGen/TargetInfo.cpp
let t = cx.target_spec();
if t.abi_return_struct_as_int || opts.reg_struct_return {
// According to Clang, everyone but MSVC returns single-element
// float aggregates directly in a floating-point register.
if fn_abi.ret.layout.is_single_fp_element(cx) {
match fn_abi.ret.layout.size.bytes() {
4 => fn_abi.ret.cast_to(Reg::f32()),
8 => fn_abi.ret.cast_to(Reg::f64()),
_ => fn_abi.ret.make_indirect(),
}
} else {
match fn_abi.ret.layout.size.bytes() {
1 => fn_abi.ret.cast_to(Reg::i8()),
2 => fn_abi.ret.cast_to(Reg::i16()),
4 => fn_abi.ret.cast_to(Reg::i32()),
8 => fn_abi.ret.cast_to(Reg::i64()),
_ => fn_abi.ret.make_indirect(),
}
}
} else {
fn_abi.ret.make_indirect();
}
} else {
fn_abi.ret.extend_integer_width_to(32);
}
}
for arg in fn_abi.args.iter_mut() {
if arg.is_ignore() || !arg.layout.is_sized() {
continue;
}
let t = cx.target_spec();
let align_4 = Align::from_bytes(4).unwrap();
let align_16 = Align::from_bytes(16).unwrap();
if arg.layout.is_aggregate() {
// We need to compute the alignment of the `byval` argument. The rules can be found in
// `X86_32ABIInfo::getTypeStackAlignInBytes` in Clang's `TargetInfo.cpp`. Summarized
// here, they are:
//
// 1. If the natural alignment of the type is <= 4, the alignment is 4.
//
// 2. Otherwise, on Linux, the alignment of any vector type is the natural alignment.
// This doesn't matter here because we only pass aggregates via `byval`, not vectors.
//
// 3. Otherwise, on Apple platforms, the alignment of anything that contains a vector
// type is 16.
//
// 4. If none of these conditions are true, the alignment is 4.
fn contains_vector<'a, Ty, C>(cx: &C, layout: TyAndLayout<'a, Ty>) -> bool
where
Ty: TyAbiInterface<'a, C> + Copy,
{
match layout.backend_repr {
BackendRepr::Scalar(_) | BackendRepr::ScalarPair(..) => false,
BackendRepr::SimdVector { .. } => true,
BackendRepr::Memory { .. } => {
for i in 0..layout.fields.count() {
if contains_vector(cx, layout.field(cx, i)) {
return true;
}
}
false
}
}
}
let byval_align = if arg.layout.align.abi < align_4 {
// (1.)
align_4
} else if t.is_like_darwin && contains_vector(cx, arg.layout) {
// (3.)
align_16
} else {
// (4.)
align_4
};
arg.pass_by_stack_offset(Some(byval_align));
} else {
arg.extend_integer_width_to(32);
}
}
fill_inregs(cx, fn_abi, opts, false);
}
pub(crate) fn fill_inregs<'a, Ty, C>(
cx: &C,
fn_abi: &mut FnAbi<'a, Ty>,
opts: X86Options,
rust_abi: bool,
) where
Ty: TyAbiInterface<'a, C> + Copy,
{
if opts.flavor != Flavor::FastcallOrVectorcall && opts.regparm.is_none_or(|x| x == 0) {
return;
}
// Mark arguments as InReg like clang does it,
// so our fastcall/vectorcall is compatible with C/C++ fastcall/vectorcall.
// Clang reference: lib/CodeGen/TargetInfo.cpp
// See X86_32ABIInfo::shouldPrimitiveUseInReg(), X86_32ABIInfo::updateFreeRegs()
// IsSoftFloatABI is only set to true on ARM platforms,
// which in turn can't be x86?
// 2 for fastcall/vectorcall, regparm limited by 3 otherwise
let mut free_regs = opts.regparm.unwrap_or(2).into();
// For types generating PassMode::Cast, InRegs will not be set.
// Maybe, this is a FIXME
let has_casts = fn_abi.args.iter().any(|arg| matches!(arg.mode, PassMode::Cast { .. }));
if has_casts && rust_abi {
return;
}
for arg in fn_abi.args.iter_mut() {
let attrs = match arg.mode {
PassMode::Ignore | PassMode::Indirect { attrs: _, meta_attrs: None, on_stack: _ } => {
continue;
}
PassMode::Direct(ref mut attrs) => attrs,
PassMode::Pair(..)
| PassMode::Indirect { attrs: _, meta_attrs: Some(_), on_stack: _ }
| PassMode::Cast { .. } => {
unreachable!("x86 shouldn't be passing arguments by {:?}", arg.mode)
}
};
// At this point we know this must be a primitive of sorts.
let unit = arg.layout.homogeneous_aggregate(cx).unwrap().unit().unwrap();
assert_eq!(unit.size, arg.layout.size);
if matches!(unit.kind, RegKind::Float | RegKind::Vector) {
continue;
}
let size_in_regs = arg.layout.size.bits().div_ceil(32);
if size_in_regs == 0 {
continue;
}
if size_in_regs > free_regs {
break;
}
free_regs -= size_in_regs;
if arg.layout.size.bits() <= 32 && unit.kind == RegKind::Integer {
attrs.set(ArgAttribute::InReg);
}
if free_regs == 0 {
break;
}
}
}
pub(crate) fn compute_rust_abi_info<'a, Ty, C>(cx: &C, fn_abi: &mut FnAbi<'a, Ty>)
where
Ty: TyAbiInterface<'a, C> + Copy,
C: HasDataLayout + HasTargetSpec,
{
// Avoid returning floats in x87 registers on x86 as loading and storing from x87
// registers will quiet signalling NaNs. Also avoid using SSE registers since they
// are not always available (depending on target features).
if !fn_abi.ret.is_ignore() {
let has_float = match fn_abi.ret.layout.backend_repr {
BackendRepr::Scalar(s) => matches!(s.primitive(), Primitive::Float(_)),
BackendRepr::ScalarPair(s1, s2) => {
matches!(s1.primitive(), Primitive::Float(_))
|| matches!(s2.primitive(), Primitive::Float(_))
}
_ => false, // anyway not passed via registers on x86
};
if has_float {
if cx.target_spec().rustc_abi == Some(RustcAbi::X86Sse2)
&& fn_abi.ret.layout.backend_repr.is_scalar()
&& fn_abi.ret.layout.size.bits() <= 128
{
// This is a single scalar that fits into an SSE register, and the target uses the
// SSE ABI. We prefer this over integer registers as float scalars need to be in SSE
// registers for float operations, so that's the best place to pass them around.
fn_abi.ret.cast_to(Reg { kind: RegKind::Vector, size: fn_abi.ret.layout.size });
} else if fn_abi.ret.layout.size <= Primitive::Pointer(AddressSpace::ZERO).size(cx) {
// Same size or smaller than pointer, return in an integer register.
fn_abi.ret.cast_to(Reg { kind: RegKind::Integer, size: fn_abi.ret.layout.size });
} else {
// Larger than a pointer, return indirectly.
fn_abi.ret.make_indirect();
}
return;
}
}
}