| use rustc_abi::{ |
| AddressSpace, Align, BackendRepr, HasDataLayout, Primitive, Reg, RegKind, TyAbiInterface, |
| TyAndLayout, |
| }; |
| |
| use crate::callconv::{ArgAttribute, FnAbi, PassMode}; |
| use crate::spec::{HasTargetSpec, RustcAbi}; |
| |
| #[derive(PartialEq)] |
| pub(crate) enum Flavor { |
| General, |
| FastcallOrVectorcall, |
| } |
| |
| pub(crate) struct X86Options { |
| pub flavor: Flavor, |
| pub regparm: Option<u32>, |
| pub reg_struct_return: bool, |
| } |
| |
| pub(crate) fn compute_abi_info<'a, Ty, C>(cx: &C, fn_abi: &mut FnAbi<'a, Ty>, opts: X86Options) |
| where |
| Ty: TyAbiInterface<'a, C> + Copy, |
| C: HasDataLayout + HasTargetSpec, |
| { |
| if !fn_abi.ret.is_ignore() { |
| if fn_abi.ret.layout.is_aggregate() && fn_abi.ret.layout.is_sized() { |
| // Returning a structure. Most often, this will use |
| // a hidden first argument. On some platforms, though, |
| // small structs are returned as integers. |
| // |
| // Some links: |
| // https://www.angelcode.com/dev/callconv/callconv.html |
| // Clang's ABI handling is in lib/CodeGen/TargetInfo.cpp |
| let t = cx.target_spec(); |
| if t.abi_return_struct_as_int || opts.reg_struct_return { |
| // According to Clang, everyone but MSVC returns single-element |
| // float aggregates directly in a floating-point register. |
| if fn_abi.ret.layout.is_single_fp_element(cx) { |
| match fn_abi.ret.layout.size.bytes() { |
| 4 => fn_abi.ret.cast_to(Reg::f32()), |
| 8 => fn_abi.ret.cast_to(Reg::f64()), |
| _ => fn_abi.ret.make_indirect(), |
| } |
| } else { |
| match fn_abi.ret.layout.size.bytes() { |
| 1 => fn_abi.ret.cast_to(Reg::i8()), |
| 2 => fn_abi.ret.cast_to(Reg::i16()), |
| 4 => fn_abi.ret.cast_to(Reg::i32()), |
| 8 => fn_abi.ret.cast_to(Reg::i64()), |
| _ => fn_abi.ret.make_indirect(), |
| } |
| } |
| } else { |
| fn_abi.ret.make_indirect(); |
| } |
| } else { |
| fn_abi.ret.extend_integer_width_to(32); |
| } |
| } |
| |
| for arg in fn_abi.args.iter_mut() { |
| if arg.is_ignore() || !arg.layout.is_sized() { |
| continue; |
| } |
| |
| let t = cx.target_spec(); |
| let align_4 = Align::from_bytes(4).unwrap(); |
| let align_16 = Align::from_bytes(16).unwrap(); |
| |
| if arg.layout.is_aggregate() { |
| // We need to compute the alignment of the `byval` argument. The rules can be found in |
| // `X86_32ABIInfo::getTypeStackAlignInBytes` in Clang's `TargetInfo.cpp`. Summarized |
| // here, they are: |
| // |
| // 1. If the natural alignment of the type is <= 4, the alignment is 4. |
| // |
| // 2. Otherwise, on Linux, the alignment of any vector type is the natural alignment. |
| // This doesn't matter here because we only pass aggregates via `byval`, not vectors. |
| // |
| // 3. Otherwise, on Apple platforms, the alignment of anything that contains a vector |
| // type is 16. |
| // |
| // 4. If none of these conditions are true, the alignment is 4. |
| |
| fn contains_vector<'a, Ty, C>(cx: &C, layout: TyAndLayout<'a, Ty>) -> bool |
| where |
| Ty: TyAbiInterface<'a, C> + Copy, |
| { |
| match layout.backend_repr { |
| BackendRepr::Scalar(_) | BackendRepr::ScalarPair(..) => false, |
| BackendRepr::SimdVector { .. } => true, |
| BackendRepr::Memory { .. } => { |
| for i in 0..layout.fields.count() { |
| if contains_vector(cx, layout.field(cx, i)) { |
| return true; |
| } |
| } |
| false |
| } |
| } |
| } |
| |
| let byval_align = if arg.layout.align.abi < align_4 { |
| // (1.) |
| align_4 |
| } else if t.is_like_darwin && contains_vector(cx, arg.layout) { |
| // (3.) |
| align_16 |
| } else { |
| // (4.) |
| align_4 |
| }; |
| |
| arg.pass_by_stack_offset(Some(byval_align)); |
| } else { |
| arg.extend_integer_width_to(32); |
| } |
| } |
| |
| fill_inregs(cx, fn_abi, opts, false); |
| } |
| |
| pub(crate) fn fill_inregs<'a, Ty, C>( |
| cx: &C, |
| fn_abi: &mut FnAbi<'a, Ty>, |
| opts: X86Options, |
| rust_abi: bool, |
| ) where |
| Ty: TyAbiInterface<'a, C> + Copy, |
| { |
| if opts.flavor != Flavor::FastcallOrVectorcall && opts.regparm.is_none_or(|x| x == 0) { |
| return; |
| } |
| // Mark arguments as InReg like clang does it, |
| // so our fastcall/vectorcall is compatible with C/C++ fastcall/vectorcall. |
| |
| // Clang reference: lib/CodeGen/TargetInfo.cpp |
| // See X86_32ABIInfo::shouldPrimitiveUseInReg(), X86_32ABIInfo::updateFreeRegs() |
| |
| // IsSoftFloatABI is only set to true on ARM platforms, |
| // which in turn can't be x86? |
| |
| // 2 for fastcall/vectorcall, regparm limited by 3 otherwise |
| let mut free_regs = opts.regparm.unwrap_or(2).into(); |
| |
| // For types generating PassMode::Cast, InRegs will not be set. |
| // Maybe, this is a FIXME |
| let has_casts = fn_abi.args.iter().any(|arg| matches!(arg.mode, PassMode::Cast { .. })); |
| if has_casts && rust_abi { |
| return; |
| } |
| |
| for arg in fn_abi.args.iter_mut() { |
| let attrs = match arg.mode { |
| PassMode::Ignore | PassMode::Indirect { attrs: _, meta_attrs: None, on_stack: _ } => { |
| continue; |
| } |
| PassMode::Direct(ref mut attrs) => attrs, |
| PassMode::Pair(..) |
| | PassMode::Indirect { attrs: _, meta_attrs: Some(_), on_stack: _ } |
| | PassMode::Cast { .. } => { |
| unreachable!("x86 shouldn't be passing arguments by {:?}", arg.mode) |
| } |
| }; |
| |
| // At this point we know this must be a primitive of sorts. |
| let unit = arg.layout.homogeneous_aggregate(cx).unwrap().unit().unwrap(); |
| assert_eq!(unit.size, arg.layout.size); |
| if matches!(unit.kind, RegKind::Float | RegKind::Vector) { |
| continue; |
| } |
| |
| let size_in_regs = arg.layout.size.bits().div_ceil(32); |
| |
| if size_in_regs == 0 { |
| continue; |
| } |
| |
| if size_in_regs > free_regs { |
| break; |
| } |
| |
| free_regs -= size_in_regs; |
| |
| if arg.layout.size.bits() <= 32 && unit.kind == RegKind::Integer { |
| attrs.set(ArgAttribute::InReg); |
| } |
| |
| if free_regs == 0 { |
| break; |
| } |
| } |
| } |
| |
| pub(crate) fn compute_rust_abi_info<'a, Ty, C>(cx: &C, fn_abi: &mut FnAbi<'a, Ty>) |
| where |
| Ty: TyAbiInterface<'a, C> + Copy, |
| C: HasDataLayout + HasTargetSpec, |
| { |
| // Avoid returning floats in x87 registers on x86 as loading and storing from x87 |
| // registers will quiet signalling NaNs. Also avoid using SSE registers since they |
| // are not always available (depending on target features). |
| if !fn_abi.ret.is_ignore() { |
| let has_float = match fn_abi.ret.layout.backend_repr { |
| BackendRepr::Scalar(s) => matches!(s.primitive(), Primitive::Float(_)), |
| BackendRepr::ScalarPair(s1, s2) => { |
| matches!(s1.primitive(), Primitive::Float(_)) |
| || matches!(s2.primitive(), Primitive::Float(_)) |
| } |
| _ => false, // anyway not passed via registers on x86 |
| }; |
| if has_float { |
| if cx.target_spec().rustc_abi == Some(RustcAbi::X86Sse2) |
| && fn_abi.ret.layout.backend_repr.is_scalar() |
| && fn_abi.ret.layout.size.bits() <= 128 |
| { |
| // This is a single scalar that fits into an SSE register, and the target uses the |
| // SSE ABI. We prefer this over integer registers as float scalars need to be in SSE |
| // registers for float operations, so that's the best place to pass them around. |
| fn_abi.ret.cast_to(Reg { kind: RegKind::Vector, size: fn_abi.ret.layout.size }); |
| } else if fn_abi.ret.layout.size <= Primitive::Pointer(AddressSpace::ZERO).size(cx) { |
| // Same size or smaller than pointer, return in an integer register. |
| fn_abi.ret.cast_to(Reg { kind: RegKind::Integer, size: fn_abi.ret.layout.size }); |
| } else { |
| // Larger than a pointer, return indirectly. |
| fn_abi.ret.make_indirect(); |
| } |
| return; |
| } |
| } |
| } |