| //! |
| //! # The rustc Query System: Query Definitions and Modifiers |
| //! |
| //! The core processes in rustc are shipped as queries. Each query is a demand-driven function from some key to a value. |
| //! The execution result of the function is cached and directly read during the next request, thereby improving compilation efficiency. |
| //! Some results are saved locally and directly read during the next compilation, which are core of incremental compilation. |
| //! |
| //! ## How to Read This Module |
| //! |
| //! Each `query` block in this file defines a single query, specifying its key and value types, along with various modifiers. |
| //! These query definitions are processed by the [`rustc_macros`], which expands them into the necessary boilerplate code |
| //! for the query system—including the [`Providers`] struct (a function table for all query implementations, where each field is |
| //! a function pointer to the actual provider), caching, and dependency graph integration. |
| //! **Note:** The `Providers` struct is not a Rust trait, but a struct generated by the `rustc_macros` to hold all provider functions. |
| //! The `rustc_macros` also supports a set of **query modifiers** (see below) that control the behavior of each query. |
| //! |
| //! The actual provider functions are implemented in various modules and registered into the `Providers` struct |
| //! during compiler initialization (see [`rustc_interface::passes::DEFAULT_QUERY_PROVIDERS`]). |
| //! |
| //! [`rustc_macros`]: https://doc.rust-lang.org/nightly/nightly-rustc/rustc_macros/index.html |
| //! [`rustc_interface::passes::DEFAULT_QUERY_PROVIDERS`]: ../../rustc_interface/passes/static.DEFAULT_QUERY_PROVIDERS.html |
| //! |
| //! ## Query Modifiers |
| //! |
| //! Query modifiers are special flags that alter the behavior of a query. They are parsed and processed by the `rustc_macros` |
| //! The main modifiers are: |
| //! |
| //! - `desc { ... }`: Sets the human-readable description for diagnostics and profiling. Required for every query. |
| //! - `arena_cache`: Use an arena for in-memory caching of the query result. |
| //! - `cache_on_disk_if { ... }`: Cache the query result to disk if the provided block evaluates to true. |
| //! - `fatal_cycle`: If a dependency cycle is detected, abort compilation with a fatal error. |
| //! - `cycle_delay_bug`: If a dependency cycle is detected, emit a delayed bug instead of aborting immediately. |
| //! - `cycle_stash`: If a dependency cycle is detected, stash the error for later handling. |
| //! - `no_hash`: Do not hash the query result for incremental compilation; just mark as dirty if recomputed. |
| //! - `anon`: Make the query anonymous in the dependency graph (no dep node is created). |
| //! - `eval_always`: Always evaluate the query, ignoring its dependencies and cached results. |
| //! - `depth_limit`: Impose a recursion depth limit on the query to prevent stack overflows. |
| //! - `separate_provide_extern`: Use separate provider functions for local and external crates. |
| //! - `feedable`: Allow the query result to be set from another query ("fed" externally). |
| //! - `return_result_from_ensure_ok`: When called via `tcx.ensure_ok()`, return `Result<(), ErrorGuaranteed>` instead of `()`. |
| //! If the query needs to be executed and returns an error, the error is returned to the caller. |
| //! Only valid for queries returning `Result<_, ErrorGuaranteed>`. |
| //! |
| //! For the up-to-date list, see the `QueryModifiers` struct in |
| //! [`rustc_macros/src/query.rs`](https://github.com/rust-lang/rust/blob/master/compiler/rustc_macros/src/query.rs) |
| //! and for more details in incremental compilation, see the |
| //! [Query modifiers in incremental compilation](https://rustc-dev-guide.rust-lang.org/queries/incremental-compilation-in-detail.html#query-modifiers) section of the rustc-dev-guide. |
| //! |
| //! ## Query Expansion and Code Generation |
| //! |
| //! The [`rustc_macros::rustc_queries`] macro expands each query definition into: |
| //! - A method on [`TyCtxt`] (and [`TyCtxtAt`]) for invoking the query. |
| //! - Provider traits and structs for supplying the query's value. |
| //! - Caching and dependency graph integration. |
| //! - Support for incremental compilation, disk caching, and arena allocation as controlled by the modifiers. |
| //! |
| //! [`rustc_macros::rustc_queries`]: ../../rustc_macros/macro.rustc_queries.html |
| //! |
| //! The macro-based approach allows the query system to be highly flexible and maintainable, while minimizing boilerplate. |
| //! |
| //! For more details, see the [rustc-dev-guide](https://rustc-dev-guide.rust-lang.org/query.html). |
| |
| #![allow(unused_parens)] |
| |
| use std::ffi::OsStr; |
| use std::mem; |
| use std::path::PathBuf; |
| use std::sync::Arc; |
| |
| use rustc_abi::Align; |
| use rustc_arena::TypedArena; |
| use rustc_ast::expand::allocator::AllocatorKind; |
| use rustc_data_structures::fingerprint::Fingerprint; |
| use rustc_data_structures::fx::{FxIndexMap, FxIndexSet}; |
| use rustc_data_structures::sorted_map::SortedMap; |
| use rustc_data_structures::steal::Steal; |
| use rustc_data_structures::svh::Svh; |
| use rustc_data_structures::unord::{UnordMap, UnordSet}; |
| use rustc_errors::ErrorGuaranteed; |
| use rustc_hir::attrs::StrippedCfgItem; |
| use rustc_hir::def::{DefKind, DocLinkResMap}; |
| use rustc_hir::def_id::{ |
| CrateNum, DefId, DefIdMap, LocalDefId, LocalDefIdMap, LocalDefIdSet, LocalModDefId, |
| }; |
| use rustc_hir::lang_items::{LangItem, LanguageItems}; |
| use rustc_hir::{Crate, ItemLocalId, ItemLocalMap, PreciseCapturingArgKind, TraitCandidate}; |
| use rustc_index::IndexVec; |
| use rustc_lint_defs::LintId; |
| use rustc_macros::rustc_queries; |
| use rustc_query_system::ich::StableHashingContext; |
| use rustc_query_system::query::{ |
| QueryCache, QueryMode, QueryStackDeferred, QueryState, try_get_cached, |
| }; |
| use rustc_session::Limits; |
| use rustc_session::config::{EntryFnType, OptLevel, OutputFilenames, SymbolManglingVersion}; |
| use rustc_session::cstore::{ |
| CrateDepKind, CrateSource, ExternCrate, ForeignModule, LinkagePreference, NativeLib, |
| }; |
| use rustc_session::lint::LintExpectationId; |
| use rustc_span::def_id::LOCAL_CRATE; |
| use rustc_span::source_map::Spanned; |
| use rustc_span::{DUMMY_SP, Span, Symbol}; |
| use rustc_target::spec::{PanicStrategy, SanitizerSet}; |
| use {rustc_abi as abi, rustc_ast as ast, rustc_hir as hir}; |
| |
| use crate::infer::canonical::{self, Canonical}; |
| use crate::lint::LintExpectation; |
| use crate::metadata::ModChild; |
| use crate::middle::codegen_fn_attrs::CodegenFnAttrs; |
| use crate::middle::debugger_visualizer::DebuggerVisualizerFile; |
| use crate::middle::exported_symbols::{ExportedSymbol, SymbolExportInfo}; |
| use crate::middle::lib_features::LibFeatures; |
| use crate::middle::privacy::EffectiveVisibilities; |
| use crate::middle::resolve_bound_vars::{ObjectLifetimeDefault, ResolveBoundVars, ResolvedArg}; |
| use crate::middle::stability::DeprecationEntry; |
| use crate::mir::interpret::{ |
| EvalStaticInitializerRawResult, EvalToAllocationRawResult, EvalToConstValueResult, |
| EvalToValTreeResult, GlobalId, LitToConstInput, |
| }; |
| use crate::mir::mono::{CodegenUnit, CollectionMode, MonoItem, MonoItemPartitions}; |
| use crate::query::erase::{Erase, erase, restore}; |
| use crate::query::plumbing::{ |
| CyclePlaceholder, DynamicQuery, query_ensure, query_ensure_error_guaranteed, query_get_at, |
| }; |
| use crate::traits::query::{ |
| CanonicalAliasGoal, CanonicalDropckOutlivesGoal, CanonicalImpliedOutlivesBoundsGoal, |
| CanonicalPredicateGoal, CanonicalTyGoal, CanonicalTypeOpAscribeUserTypeGoal, |
| CanonicalTypeOpNormalizeGoal, CanonicalTypeOpProvePredicateGoal, DropckConstraint, |
| DropckOutlivesResult, MethodAutoderefStepsResult, NoSolution, NormalizationResult, |
| OutlivesBound, |
| }; |
| use crate::traits::{ |
| CodegenObligationError, DynCompatibilityViolation, EvaluationResult, ImplSource, |
| ObligationCause, OverflowError, WellFormedLoc, specialization_graph, |
| }; |
| use crate::ty::fast_reject::SimplifiedType; |
| use crate::ty::layout::ValidityRequirement; |
| use crate::ty::print::{PrintTraitRefExt, describe_as_module}; |
| use crate::ty::util::AlwaysRequiresDrop; |
| use crate::ty::{ |
| self, CrateInherentImpls, GenericArg, GenericArgsRef, PseudoCanonicalInput, SizedTraitKind, Ty, |
| TyCtxt, TyCtxtFeed, |
| }; |
| use crate::{dep_graph, mir, thir}; |
| |
| mod arena_cached; |
| pub mod erase; |
| mod keys; |
| pub use keys::{AsLocalKey, Key, LocalCrate}; |
| pub mod on_disk_cache; |
| #[macro_use] |
| pub mod plumbing; |
| pub use plumbing::{IntoQueryParam, TyCtxtAt, TyCtxtEnsureDone, TyCtxtEnsureOk}; |
| |
| // Each of these queries corresponds to a function pointer field in the |
| // `Providers` struct for requesting a value of that type, and a method |
| // on `tcx: TyCtxt` (and `tcx.at(span)`) for doing that request in a way |
| // which memoizes and does dep-graph tracking, wrapping around the actual |
| // `Providers` that the driver creates (using several `rustc_*` crates). |
| // |
| // The result type of each query must implement `Clone`, and additionally |
| // `ty::query::values::Value`, which produces an appropriate placeholder |
| // (error) value if the query resulted in a query cycle. |
| // Queries marked with `fatal_cycle` do not need the latter implementation, |
| // as they will raise an fatal error on query cycles instead. |
| rustc_queries! { |
| /// This exists purely for testing the interactions between delayed bugs and incremental. |
| query trigger_delayed_bug(key: DefId) { |
| desc { "triggering a delayed bug for testing incremental" } |
| } |
| |
| /// Collects the list of all tools registered using `#![register_tool]`. |
| query registered_tools(_: ()) -> &'tcx ty::RegisteredTools { |
| arena_cache |
| desc { "compute registered tools for crate" } |
| } |
| |
| query early_lint_checks(_: ()) { |
| desc { "perform lints prior to AST lowering" } |
| } |
| |
| /// Tracked access to environment variables. |
| /// |
| /// Useful for the implementation of `std::env!`, `proc-macro`s change |
| /// detection and other changes in the compiler's behaviour that is easier |
| /// to control with an environment variable than a flag. |
| /// |
| /// NOTE: This currently does not work with dependency info in the |
| /// analysis, codegen and linking passes, place extra code at the top of |
| /// `rustc_interface::passes::write_dep_info` to make that work. |
| query env_var_os(key: &'tcx OsStr) -> Option<&'tcx OsStr> { |
| // Environment variables are global state |
| eval_always |
| desc { "get the value of an environment variable" } |
| } |
| |
| query resolutions(_: ()) -> &'tcx ty::ResolverGlobalCtxt { |
| desc { "getting the resolver outputs" } |
| } |
| |
| query resolver_for_lowering_raw(_: ()) -> (&'tcx Steal<(ty::ResolverAstLowering, Arc<ast::Crate>)>, &'tcx ty::ResolverGlobalCtxt) { |
| eval_always |
| no_hash |
| desc { "getting the resolver for lowering" } |
| } |
| |
| /// Return the span for a definition. |
| /// |
| /// Contrary to `def_span` below, this query returns the full absolute span of the definition. |
| /// This span is meant for dep-tracking rather than diagnostics. It should not be used outside |
| /// of rustc_middle::hir::source_map. |
| query source_span(key: LocalDefId) -> Span { |
| // Accesses untracked data |
| eval_always |
| desc { "getting the source span" } |
| } |
| |
| /// Represents crate as a whole (as distinct from the top-level crate module). |
| /// |
| /// If you call `tcx.hir_crate(())` we will have to assume that any change |
| /// means that you need to be recompiled. This is because the `hir_crate` |
| /// query gives you access to all other items. To avoid this fate, do not |
| /// call `tcx.hir_crate(())`; instead, prefer wrappers like |
| /// [`TyCtxt::hir_visit_all_item_likes_in_crate`]. |
| query hir_crate(key: ()) -> &'tcx Crate<'tcx> { |
| arena_cache |
| eval_always |
| desc { "getting the crate HIR" } |
| } |
| |
| /// All items in the crate. |
| query hir_crate_items(_: ()) -> &'tcx rustc_middle::hir::ModuleItems { |
| arena_cache |
| eval_always |
| desc { "getting HIR crate items" } |
| } |
| |
| /// The items in a module. |
| /// |
| /// This can be conveniently accessed by `tcx.hir_visit_item_likes_in_module`. |
| /// Avoid calling this query directly. |
| query hir_module_items(key: LocalModDefId) -> &'tcx rustc_middle::hir::ModuleItems { |
| arena_cache |
| desc { |tcx| "getting HIR module items in `{}`", tcx.def_path_str(key) } |
| cache_on_disk_if { true } |
| } |
| |
| /// Returns HIR ID for the given `LocalDefId`. |
| query local_def_id_to_hir_id(key: LocalDefId) -> hir::HirId { |
| desc { |tcx| "getting HIR ID of `{}`", tcx.def_path_str(key) } |
| feedable |
| } |
| |
| /// Gives access to the HIR node's parent for the HIR owner `key`. |
| /// |
| /// This can be conveniently accessed by `tcx.hir_*` methods. |
| /// Avoid calling this query directly. |
| query hir_owner_parent(key: hir::OwnerId) -> hir::HirId { |
| desc { |tcx| "getting HIR parent of `{}`", tcx.def_path_str(key) } |
| } |
| |
| /// Gives access to the HIR nodes and bodies inside `key` if it's a HIR owner. |
| /// |
| /// This can be conveniently accessed by `tcx.hir_*` methods. |
| /// Avoid calling this query directly. |
| query opt_hir_owner_nodes(key: LocalDefId) -> Option<&'tcx hir::OwnerNodes<'tcx>> { |
| desc { |tcx| "getting HIR owner items in `{}`", tcx.def_path_str(key) } |
| feedable |
| } |
| |
| /// Gives access to the HIR attributes inside the HIR owner `key`. |
| /// |
| /// This can be conveniently accessed by `tcx.hir_*` methods. |
| /// Avoid calling this query directly. |
| query hir_attr_map(key: hir::OwnerId) -> &'tcx hir::AttributeMap<'tcx> { |
| desc { |tcx| "getting HIR owner attributes in `{}`", tcx.def_path_str(key) } |
| feedable |
| } |
| |
| /// Gives access to lints emitted during ast lowering. |
| /// |
| /// This can be conveniently accessed by `tcx.hir_*` methods. |
| /// Avoid calling this query directly. |
| query opt_ast_lowering_delayed_lints(key: hir::OwnerId) -> Option<&'tcx hir::lints::DelayedLints> { |
| desc { |tcx| "getting AST lowering delayed lints in `{}`", tcx.def_path_str(key) } |
| } |
| |
| /// Returns the *default* of the const pararameter given by `DefId`. |
| /// |
| /// E.g., given `struct Ty<const N: usize = 3>;` this returns `3` for `N`. |
| query const_param_default(param: DefId) -> ty::EarlyBinder<'tcx, ty::Const<'tcx>> { |
| desc { |tcx| "computing the default for const parameter `{}`", tcx.def_path_str(param) } |
| cache_on_disk_if { param.is_local() } |
| separate_provide_extern |
| } |
| |
| /// Returns the *type* of the definition given by `DefId`. |
| /// |
| /// For type aliases (whether eager or lazy) and associated types, this returns |
| /// the underlying aliased type (not the corresponding [alias type]). |
| /// |
| /// For opaque types, this returns and thus reveals the hidden type! If you |
| /// want to detect cycle errors use `type_of_opaque` instead. |
| /// |
| /// To clarify, for type definitions, this does *not* return the "type of a type" |
| /// (aka *kind* or *sort*) in the type-theoretical sense! It merely returns |
| /// the type primarily *associated with* it. |
| /// |
| /// # Panics |
| /// |
| /// This query will panic if the given definition doesn't (and can't |
| /// conceptually) have an (underlying) type. |
| /// |
| /// [alias type]: rustc_middle::ty::AliasTy |
| query type_of(key: DefId) -> ty::EarlyBinder<'tcx, Ty<'tcx>> { |
| desc { |tcx| |
| "{action} `{path}`", |
| action = match tcx.def_kind(key) { |
| DefKind::TyAlias => "expanding type alias", |
| DefKind::TraitAlias => "expanding trait alias", |
| _ => "computing type of", |
| }, |
| path = tcx.def_path_str(key), |
| } |
| cache_on_disk_if { key.is_local() } |
| separate_provide_extern |
| feedable |
| } |
| |
| /// Returns the *hidden type* of the opaque type given by `DefId` unless a cycle occurred. |
| /// |
| /// This is a specialized instance of [`Self::type_of`] that detects query cycles. |
| /// Unless `CyclePlaceholder` needs to be handled separately, call [`Self::type_of`] instead. |
| /// This is used to improve the error message in cases where revealing the hidden type |
| /// for auto-trait leakage cycles. |
| /// |
| /// # Panics |
| /// |
| /// This query will panic if the given definition is not an opaque type. |
| query type_of_opaque(key: DefId) -> Result<ty::EarlyBinder<'tcx, Ty<'tcx>>, CyclePlaceholder> { |
| desc { |tcx| |
| "computing type of opaque `{path}`", |
| path = tcx.def_path_str(key), |
| } |
| cycle_stash |
| } |
| query type_of_opaque_hir_typeck(key: LocalDefId) -> ty::EarlyBinder<'tcx, Ty<'tcx>> { |
| desc { |tcx| |
| "computing type of opaque `{path}` via HIR typeck", |
| path = tcx.def_path_str(key), |
| } |
| } |
| |
| /// Returns whether the type alias given by `DefId` is lazy. |
| /// |
| /// I.e., if the type alias expands / ought to expand to a [free] [alias type] |
| /// instead of the underlying aliased type. |
| /// |
| /// Relevant for features `lazy_type_alias` and `type_alias_impl_trait`. |
| /// |
| /// # Panics |
| /// |
| /// This query *may* panic if the given definition is not a type alias. |
| /// |
| /// [free]: rustc_middle::ty::Free |
| /// [alias type]: rustc_middle::ty::AliasTy |
| query type_alias_is_lazy(key: DefId) -> bool { |
| desc { |tcx| |
| "computing whether the type alias `{path}` is lazy", |
| path = tcx.def_path_str(key), |
| } |
| separate_provide_extern |
| } |
| |
| query collect_return_position_impl_trait_in_trait_tys(key: DefId) |
| -> Result<&'tcx DefIdMap<ty::EarlyBinder<'tcx, Ty<'tcx>>>, ErrorGuaranteed> |
| { |
| desc { "comparing an impl and trait method signature, inferring any hidden `impl Trait` types in the process" } |
| cache_on_disk_if { key.is_local() } |
| separate_provide_extern |
| } |
| |
| query opaque_ty_origin(key: DefId) -> hir::OpaqueTyOrigin<DefId> |
| { |
| desc { "determine where the opaque originates from" } |
| separate_provide_extern |
| } |
| |
| query unsizing_params_for_adt(key: DefId) -> &'tcx rustc_index::bit_set::DenseBitSet<u32> |
| { |
| arena_cache |
| desc { |tcx| |
| "determining what parameters of `{}` can participate in unsizing", |
| tcx.def_path_str(key), |
| } |
| } |
| |
| /// The root query triggering all analysis passes like typeck or borrowck. |
| query analysis(key: ()) { |
| eval_always |
| desc { "running analysis passes on this crate" } |
| } |
| |
| /// This query checks the fulfillment of collected lint expectations. |
| /// All lint emitting queries have to be done before this is executed |
| /// to ensure that all expectations can be fulfilled. |
| /// |
| /// This is an extra query to enable other drivers (like rustdoc) to |
| /// only execute a small subset of the `analysis` query, while allowing |
| /// lints to be expected. In rustc, this query will be executed as part of |
| /// the `analysis` query and doesn't have to be called a second time. |
| /// |
| /// Tools can additionally pass in a tool filter. That will restrict the |
| /// expectations to only trigger for lints starting with the listed tool |
| /// name. This is useful for cases were not all linting code from rustc |
| /// was called. With the default `None` all registered lints will also |
| /// be checked for expectation fulfillment. |
| query check_expectations(key: Option<Symbol>) { |
| eval_always |
| desc { "checking lint expectations (RFC 2383)" } |
| } |
| |
| /// Returns the *generics* of the definition given by `DefId`. |
| query generics_of(key: DefId) -> &'tcx ty::Generics { |
| desc { |tcx| "computing generics of `{}`", tcx.def_path_str(key) } |
| arena_cache |
| cache_on_disk_if { key.is_local() } |
| separate_provide_extern |
| feedable |
| } |
| |
| /// Returns the (elaborated) *predicates* of the definition given by `DefId` |
| /// that must be proven true at usage sites (and which can be assumed at definition site). |
| /// |
| /// This is almost always *the* "predicates query" that you want. |
| /// |
| /// **Tip**: You can use `#[rustc_dump_predicates]` on an item to basically print |
| /// the result of this query for use in UI tests or for debugging purposes. |
| query predicates_of(key: DefId) -> ty::GenericPredicates<'tcx> { |
| desc { |tcx| "computing predicates of `{}`", tcx.def_path_str(key) } |
| cache_on_disk_if { key.is_local() } |
| } |
| |
| query opaque_types_defined_by( |
| key: LocalDefId |
| ) -> &'tcx ty::List<LocalDefId> { |
| desc { |
| |tcx| "computing the opaque types defined by `{}`", |
| tcx.def_path_str(key.to_def_id()) |
| } |
| } |
| |
| query nested_bodies_within( |
| key: LocalDefId |
| ) -> &'tcx ty::List<LocalDefId> { |
| desc { |
| |tcx| "computing the coroutines defined within `{}`", |
| tcx.def_path_str(key.to_def_id()) |
| } |
| } |
| |
| /// Returns the explicitly user-written *bounds* on the associated or opaque type given by `DefId` |
| /// that must be proven true at definition site (and which can be assumed at usage sites). |
| /// |
| /// For associated types, these must be satisfied for an implementation |
| /// to be well-formed, and for opaque types, these are required to be |
| /// satisfied by the hidden type of the opaque. |
| /// |
| /// Bounds from the parent (e.g. with nested `impl Trait`) are not included. |
| /// |
| /// Syntactially, these are the bounds written on associated types in trait |
| /// definitions, or those after the `impl` keyword for an opaque: |
| /// |
| /// ```ignore (illustrative) |
| /// trait Trait { type X: Bound + 'lt; } |
| /// // ^^^^^^^^^^^ |
| /// fn function() -> impl Debug + Display { /*...*/ } |
| /// // ^^^^^^^^^^^^^^^ |
| /// ``` |
| query explicit_item_bounds(key: DefId) -> ty::EarlyBinder<'tcx, &'tcx [(ty::Clause<'tcx>, Span)]> { |
| desc { |tcx| "finding item bounds for `{}`", tcx.def_path_str(key) } |
| cache_on_disk_if { key.is_local() } |
| separate_provide_extern |
| feedable |
| } |
| |
| /// Returns the explicitly user-written *bounds* that share the `Self` type of the item. |
| /// |
| /// These are a subset of the [explicit item bounds] that may explicitly be used for things |
| /// like closure signature deduction. |
| /// |
| /// [explicit item bounds]: Self::explicit_item_bounds |
| query explicit_item_self_bounds(key: DefId) -> ty::EarlyBinder<'tcx, &'tcx [(ty::Clause<'tcx>, Span)]> { |
| desc { |tcx| "finding item bounds for `{}`", tcx.def_path_str(key) } |
| cache_on_disk_if { key.is_local() } |
| separate_provide_extern |
| feedable |
| } |
| |
| /// Returns the (elaborated) *bounds* on the associated or opaque type given by `DefId` |
| /// that must be proven true at definition site (and which can be assumed at usage sites). |
| /// |
| /// Bounds from the parent (e.g. with nested `impl Trait`) are not included. |
| /// |
| /// **Tip**: You can use `#[rustc_dump_item_bounds]` on an item to basically print |
| /// the result of this query for use in UI tests or for debugging purposes. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// trait Trait { type Assoc: Eq + ?Sized; } |
| /// ``` |
| /// |
| /// While [`Self::explicit_item_bounds`] returns `[<Self as Trait>::Assoc: Eq]` |
| /// here, `item_bounds` returns: |
| /// |
| /// ```text |
| /// [ |
| /// <Self as Trait>::Assoc: Eq, |
| /// <Self as Trait>::Assoc: PartialEq<<Self as Trait>::Assoc> |
| /// ] |
| /// ``` |
| query item_bounds(key: DefId) -> ty::EarlyBinder<'tcx, ty::Clauses<'tcx>> { |
| desc { |tcx| "elaborating item bounds for `{}`", tcx.def_path_str(key) } |
| } |
| |
| query item_self_bounds(key: DefId) -> ty::EarlyBinder<'tcx, ty::Clauses<'tcx>> { |
| desc { |tcx| "elaborating item assumptions for `{}`", tcx.def_path_str(key) } |
| } |
| |
| query item_non_self_bounds(key: DefId) -> ty::EarlyBinder<'tcx, ty::Clauses<'tcx>> { |
| desc { |tcx| "elaborating item assumptions for `{}`", tcx.def_path_str(key) } |
| } |
| |
| query impl_super_outlives(key: DefId) -> ty::EarlyBinder<'tcx, ty::Clauses<'tcx>> { |
| desc { |tcx| "elaborating supertrait outlives for trait of `{}`", tcx.def_path_str(key) } |
| } |
| |
| /// Look up all native libraries this crate depends on. |
| /// These are assembled from the following places: |
| /// - `extern` blocks (depending on their `link` attributes) |
| /// - the `libs` (`-l`) option |
| query native_libraries(_: CrateNum) -> &'tcx Vec<NativeLib> { |
| arena_cache |
| desc { "looking up the native libraries of a linked crate" } |
| separate_provide_extern |
| } |
| |
| query shallow_lint_levels_on(key: hir::OwnerId) -> &'tcx rustc_middle::lint::ShallowLintLevelMap { |
| arena_cache |
| desc { |tcx| "looking up lint levels for `{}`", tcx.def_path_str(key) } |
| } |
| |
| query lint_expectations(_: ()) -> &'tcx Vec<(LintExpectationId, LintExpectation)> { |
| arena_cache |
| desc { "computing `#[expect]`ed lints in this crate" } |
| } |
| |
| query lints_that_dont_need_to_run(_: ()) -> &'tcx UnordSet<LintId> { |
| arena_cache |
| desc { "Computing all lints that are explicitly enabled or with a default level greater than Allow" } |
| } |
| |
| query expn_that_defined(key: DefId) -> rustc_span::ExpnId { |
| desc { |tcx| "getting the expansion that defined `{}`", tcx.def_path_str(key) } |
| separate_provide_extern |
| } |
| |
| query is_panic_runtime(_: CrateNum) -> bool { |
| fatal_cycle |
| desc { "checking if the crate is_panic_runtime" } |
| separate_provide_extern |
| } |
| |
| /// Checks whether a type is representable or infinitely sized |
| query representability(_: LocalDefId) -> rustc_middle::ty::Representability { |
| desc { "checking if `{}` is representable", tcx.def_path_str(key) } |
| // infinitely sized types will cause a cycle |
| cycle_delay_bug |
| // we don't want recursive representability calls to be forced with |
| // incremental compilation because, if a cycle occurs, we need the |
| // entire cycle to be in memory for diagnostics |
| anon |
| } |
| |
| /// An implementation detail for the `representability` query |
| query representability_adt_ty(_: Ty<'tcx>) -> rustc_middle::ty::Representability { |
| desc { "checking if `{}` is representable", key } |
| cycle_delay_bug |
| anon |
| } |
| |
| /// Set of param indexes for type params that are in the type's representation |
| query params_in_repr(key: DefId) -> &'tcx rustc_index::bit_set::DenseBitSet<u32> { |
| desc { "finding type parameters in the representation" } |
| arena_cache |
| no_hash |
| separate_provide_extern |
| } |
| |
| /// Fetch the THIR for a given body. The THIR body gets stolen by unsafety checking unless |
| /// `-Zno-steal-thir` is on. |
| query thir_body(key: LocalDefId) -> Result<(&'tcx Steal<thir::Thir<'tcx>>, thir::ExprId), ErrorGuaranteed> { |
| // Perf tests revealed that hashing THIR is inefficient (see #85729). |
| no_hash |
| desc { |tcx| "building THIR for `{}`", tcx.def_path_str(key) } |
| } |
| |
| /// Set of all the `DefId`s in this crate that have MIR associated with |
| /// them. This includes all the body owners, but also things like struct |
| /// constructors. |
| query mir_keys(_: ()) -> &'tcx rustc_data_structures::fx::FxIndexSet<LocalDefId> { |
| arena_cache |
| desc { "getting a list of all mir_keys" } |
| } |
| |
| /// Maps DefId's that have an associated `mir::Body` to the result |
| /// of the MIR const-checking pass. This is the set of qualifs in |
| /// the final value of a `const`. |
| query mir_const_qualif(key: DefId) -> mir::ConstQualifs { |
| desc { |tcx| "const checking `{}`", tcx.def_path_str(key) } |
| cache_on_disk_if { key.is_local() } |
| separate_provide_extern |
| } |
| |
| /// Build the MIR for a given `DefId` and prepare it for const qualification. |
| /// |
| /// See the [rustc dev guide] for more info. |
| /// |
| /// [rustc dev guide]: https://rustc-dev-guide.rust-lang.org/mir/construction.html |
| query mir_built(key: LocalDefId) -> &'tcx Steal<mir::Body<'tcx>> { |
| desc { |tcx| "building MIR for `{}`", tcx.def_path_str(key) } |
| feedable |
| } |
| |
| /// Try to build an abstract representation of the given constant. |
| query thir_abstract_const( |
| key: DefId |
| ) -> Result<Option<ty::EarlyBinder<'tcx, ty::Const<'tcx>>>, ErrorGuaranteed> { |
| desc { |
| |tcx| "building an abstract representation for `{}`", tcx.def_path_str(key), |
| } |
| separate_provide_extern |
| } |
| |
| query mir_drops_elaborated_and_const_checked(key: LocalDefId) -> &'tcx Steal<mir::Body<'tcx>> { |
| no_hash |
| desc { |tcx| "elaborating drops for `{}`", tcx.def_path_str(key) } |
| } |
| |
| query mir_for_ctfe( |
| key: DefId |
| ) -> &'tcx mir::Body<'tcx> { |
| desc { |tcx| "caching mir of `{}` for CTFE", tcx.def_path_str(key) } |
| cache_on_disk_if { key.is_local() } |
| separate_provide_extern |
| } |
| |
| query mir_promoted(key: LocalDefId) -> ( |
| &'tcx Steal<mir::Body<'tcx>>, |
| &'tcx Steal<IndexVec<mir::Promoted, mir::Body<'tcx>>> |
| ) { |
| no_hash |
| desc { |tcx| "promoting constants in MIR for `{}`", tcx.def_path_str(key) } |
| } |
| |
| query closure_typeinfo(key: LocalDefId) -> ty::ClosureTypeInfo<'tcx> { |
| desc { |
| |tcx| "finding symbols for captures of closure `{}`", |
| tcx.def_path_str(key) |
| } |
| } |
| |
| /// Returns names of captured upvars for closures and coroutines. |
| /// |
| /// Here are some examples: |
| /// - `name__field1__field2` when the upvar is captured by value. |
| /// - `_ref__name__field` when the upvar is captured by reference. |
| /// |
| /// For coroutines this only contains upvars that are shared by all states. |
| query closure_saved_names_of_captured_variables(def_id: DefId) -> &'tcx IndexVec<abi::FieldIdx, Symbol> { |
| arena_cache |
| desc { |tcx| "computing debuginfo for closure `{}`", tcx.def_path_str(def_id) } |
| separate_provide_extern |
| } |
| |
| query mir_coroutine_witnesses(key: DefId) -> Option<&'tcx mir::CoroutineLayout<'tcx>> { |
| arena_cache |
| desc { |tcx| "coroutine witness types for `{}`", tcx.def_path_str(key) } |
| cache_on_disk_if { key.is_local() } |
| separate_provide_extern |
| } |
| |
| query check_coroutine_obligations(key: LocalDefId) -> Result<(), ErrorGuaranteed> { |
| desc { |tcx| "verify auto trait bounds for coroutine interior type `{}`", tcx.def_path_str(key) } |
| return_result_from_ensure_ok |
| } |
| |
| /// MIR after our optimization passes have run. This is MIR that is ready |
| /// for codegen. This is also the only query that can fetch non-local MIR, at present. |
| query optimized_mir(key: DefId) -> &'tcx mir::Body<'tcx> { |
| desc { |tcx| "optimizing MIR for `{}`", tcx.def_path_str(key) } |
| cache_on_disk_if { key.is_local() } |
| separate_provide_extern |
| } |
| |
| /// Checks for the nearest `#[coverage(off)]` or `#[coverage(on)]` on |
| /// this def and any enclosing defs, up to the crate root. |
| /// |
| /// Returns `false` if `#[coverage(off)]` was found, or `true` if |
| /// either `#[coverage(on)]` or no coverage attribute was found. |
| query coverage_attr_on(key: LocalDefId) -> bool { |
| desc { |tcx| "checking for `#[coverage(..)]` on `{}`", tcx.def_path_str(key) } |
| feedable |
| } |
| |
| /// Scans through a function's MIR after MIR optimizations, to prepare the |
| /// information needed by codegen when `-Cinstrument-coverage` is active. |
| /// |
| /// This includes the details of where to insert `llvm.instrprof.increment` |
| /// intrinsics, and the expression tables to be embedded in the function's |
| /// coverage metadata. |
| /// |
| /// FIXME(Zalathar): This query's purpose has drifted a bit and should |
| /// probably be renamed, but that can wait until after the potential |
| /// follow-ups to #136053 have settled down. |
| /// |
| /// Returns `None` for functions that were not instrumented. |
| query coverage_ids_info(key: ty::InstanceKind<'tcx>) -> Option<&'tcx mir::coverage::CoverageIdsInfo> { |
| desc { |tcx| "retrieving coverage IDs info from MIR for `{}`", tcx.def_path_str(key.def_id()) } |
| arena_cache |
| } |
| |
| /// The `DefId` is the `DefId` of the containing MIR body. Promoteds do not have their own |
| /// `DefId`. This function returns all promoteds in the specified body. The body references |
| /// promoteds by the `DefId` and the `mir::Promoted` index. This is necessary, because |
| /// after inlining a body may refer to promoteds from other bodies. In that case you still |
| /// need to use the `DefId` of the original body. |
| query promoted_mir(key: DefId) -> &'tcx IndexVec<mir::Promoted, mir::Body<'tcx>> { |
| desc { |tcx| "optimizing promoted MIR for `{}`", tcx.def_path_str(key) } |
| cache_on_disk_if { key.is_local() } |
| separate_provide_extern |
| } |
| |
| /// Erases regions from `ty` to yield a new type. |
| /// Normally you would just use `tcx.erase_regions(value)`, |
| /// however, which uses this query as a kind of cache. |
| query erase_regions_ty(ty: Ty<'tcx>) -> Ty<'tcx> { |
| // This query is not expected to have input -- as a result, it |
| // is not a good candidates for "replay" because it is essentially a |
| // pure function of its input (and hence the expectation is that |
| // no caller would be green **apart** from just these |
| // queries). Making it anonymous avoids hashing the result, which |
| // may save a bit of time. |
| anon |
| desc { "erasing regions from `{}`", ty } |
| } |
| |
| query wasm_import_module_map(_: CrateNum) -> &'tcx DefIdMap<String> { |
| arena_cache |
| desc { "getting wasm import module map" } |
| } |
| |
| /// Returns the explicitly user-written *predicates and bounds* of the trait given by `DefId`. |
| /// |
| /// Traits are unusual, because predicates on associated types are |
| /// converted into bounds on that type for backwards compatibility: |
| /// |
| /// ``` |
| /// trait X where Self::U: Copy { type U; } |
| /// ``` |
| /// |
| /// becomes |
| /// |
| /// ``` |
| /// trait X { type U: Copy; } |
| /// ``` |
| /// |
| /// [`Self::explicit_predicates_of`] and [`Self::explicit_item_bounds`] will |
| /// then take the appropriate subsets of the predicates here. |
| /// |
| /// # Panics |
| /// |
| /// This query will panic if the given definition is not a trait. |
| query trait_explicit_predicates_and_bounds(key: LocalDefId) -> ty::GenericPredicates<'tcx> { |
| desc { |tcx| "computing explicit predicates of trait `{}`", tcx.def_path_str(key) } |
| } |
| |
| /// Returns the explicitly user-written *predicates* of the definition given by `DefId` |
| /// that must be proven true at usage sites (and which can be assumed at definition site). |
| /// |
| /// You should probably use [`Self::predicates_of`] unless you're looking for |
| /// predicates with explicit spans for diagnostics purposes. |
| query explicit_predicates_of(key: DefId) -> ty::GenericPredicates<'tcx> { |
| desc { |tcx| "computing explicit predicates of `{}`", tcx.def_path_str(key) } |
| cache_on_disk_if { key.is_local() } |
| separate_provide_extern |
| feedable |
| } |
| |
| /// Returns the *inferred outlives-predicates* of the item given by `DefId`. |
| /// |
| /// E.g., for `struct Foo<'a, T> { x: &'a T }`, this would return `[T: 'a]`. |
| /// |
| /// **Tip**: You can use `#[rustc_outlives]` on an item to basically print the |
| /// result of this query for use in UI tests or for debugging purposes. |
| query inferred_outlives_of(key: DefId) -> &'tcx [(ty::Clause<'tcx>, Span)] { |
| desc { |tcx| "computing inferred outlives-predicates of `{}`", tcx.def_path_str(key) } |
| cache_on_disk_if { key.is_local() } |
| separate_provide_extern |
| feedable |
| } |
| |
| /// Returns the explicitly user-written *super-predicates* of the trait given by `DefId`. |
| /// |
| /// These predicates are unelaborated and consequently don't contain transitive super-predicates. |
| /// |
| /// This is a subset of the full list of predicates. We store these in a separate map |
| /// because we must evaluate them even during type conversion, often before the full |
| /// predicates are available (note that super-predicates must not be cyclic). |
| query explicit_super_predicates_of(key: DefId) -> ty::EarlyBinder<'tcx, &'tcx [(ty::Clause<'tcx>, Span)]> { |
| desc { |tcx| "computing the super predicates of `{}`", tcx.def_path_str(key) } |
| cache_on_disk_if { key.is_local() } |
| separate_provide_extern |
| } |
| |
| /// The predicates of the trait that are implied during elaboration. |
| /// |
| /// This is a superset of the super-predicates of the trait, but a subset of the predicates |
| /// of the trait. For regular traits, this includes all super-predicates and their |
| /// associated type bounds. For trait aliases, currently, this includes all of the |
| /// predicates of the trait alias. |
| query explicit_implied_predicates_of(key: DefId) -> ty::EarlyBinder<'tcx, &'tcx [(ty::Clause<'tcx>, Span)]> { |
| desc { |tcx| "computing the implied predicates of `{}`", tcx.def_path_str(key) } |
| cache_on_disk_if { key.is_local() } |
| separate_provide_extern |
| } |
| |
| /// The Ident is the name of an associated type.The query returns only the subset |
| /// of supertraits that define the given associated type. This is used to avoid |
| /// cycles in resolving type-dependent associated item paths like `T::Item`. |
| query explicit_supertraits_containing_assoc_item( |
| key: (DefId, rustc_span::Ident) |
| ) -> ty::EarlyBinder<'tcx, &'tcx [(ty::Clause<'tcx>, Span)]> { |
| desc { |tcx| "computing the super traits of `{}` with associated type name `{}`", |
| tcx.def_path_str(key.0), |
| key.1 |
| } |
| } |
| |
| /// Compute the conditions that need to hold for a conditionally-const item to be const. |
| /// That is, compute the set of `[const]` where clauses for a given item. |
| /// |
| /// This can be thought of as the `[const]` equivalent of `predicates_of`. These are the |
| /// predicates that need to be proven at usage sites, and can be assumed at definition. |
| /// |
| /// This query also computes the `[const]` where clauses for associated types, which are |
| /// not "const", but which have item bounds which may be `[const]`. These must hold for |
| /// the `[const]` item bound to hold. |
| query const_conditions( |
| key: DefId |
| ) -> ty::ConstConditions<'tcx> { |
| desc { |tcx| "computing the conditions for `{}` to be considered const", |
| tcx.def_path_str(key) |
| } |
| separate_provide_extern |
| } |
| |
| /// Compute the const bounds that are implied for a conditionally-const item. |
| /// |
| /// This can be though of as the `[const]` equivalent of `explicit_item_bounds`. These |
| /// are the predicates that need to proven at definition sites, and can be assumed at |
| /// usage sites. |
| query explicit_implied_const_bounds( |
| key: DefId |
| ) -> ty::EarlyBinder<'tcx, &'tcx [(ty::PolyTraitRef<'tcx>, Span)]> { |
| desc { |tcx| "computing the implied `[const]` bounds for `{}`", |
| tcx.def_path_str(key) |
| } |
| separate_provide_extern |
| } |
| |
| /// To avoid cycles within the predicates of a single item we compute |
| /// per-type-parameter predicates for resolving `T::AssocTy`. |
| query type_param_predicates( |
| key: (LocalDefId, LocalDefId, rustc_span::Ident) |
| ) -> ty::EarlyBinder<'tcx, &'tcx [(ty::Clause<'tcx>, Span)]> { |
| desc { |tcx| "computing the bounds for type parameter `{}`", tcx.hir_ty_param_name(key.1) } |
| } |
| |
| query trait_def(key: DefId) -> &'tcx ty::TraitDef { |
| desc { |tcx| "computing trait definition for `{}`", tcx.def_path_str(key) } |
| arena_cache |
| cache_on_disk_if { key.is_local() } |
| separate_provide_extern |
| } |
| query adt_def(key: DefId) -> ty::AdtDef<'tcx> { |
| desc { |tcx| "computing ADT definition for `{}`", tcx.def_path_str(key) } |
| cache_on_disk_if { key.is_local() } |
| separate_provide_extern |
| } |
| query adt_destructor(key: DefId) -> Option<ty::Destructor> { |
| desc { |tcx| "computing `Drop` impl for `{}`", tcx.def_path_str(key) } |
| cache_on_disk_if { key.is_local() } |
| separate_provide_extern |
| } |
| query adt_async_destructor(key: DefId) -> Option<ty::AsyncDestructor> { |
| desc { |tcx| "computing `AsyncDrop` impl for `{}`", tcx.def_path_str(key) } |
| cache_on_disk_if { key.is_local() } |
| separate_provide_extern |
| } |
| query adt_sizedness_constraint( |
| key: (DefId, SizedTraitKind) |
| ) -> Option<ty::EarlyBinder<'tcx, Ty<'tcx>>> { |
| desc { |tcx| "computing the sizedness constraint for `{}`", tcx.def_path_str(key.0) } |
| } |
| |
| query adt_dtorck_constraint( |
| key: DefId |
| ) -> &'tcx DropckConstraint<'tcx> { |
| desc { |tcx| "computing drop-check constraints for `{}`", tcx.def_path_str(key) } |
| } |
| |
| /// Returns the constness of the function-like[^1] definition given by `DefId`. |
| /// |
| /// Tuple struct/variant constructors are *always* const, foreign functions are |
| /// *never* const. The rest is const iff marked with keyword `const` (or rather |
| /// its parent in the case of associated functions). |
| /// |
| /// <div class="warning"> |
| /// |
| /// **Do not call this query** directly. It is only meant to cache the base data for the |
| /// higher-level functions. Consider using `is_const_fn` or `is_const_trait_impl` instead. |
| /// |
| /// Also note that neither of them takes into account feature gates, stability and |
| /// const predicates/conditions! |
| /// |
| /// </div> |
| /// |
| /// # Panics |
| /// |
| /// This query will panic if the given definition is not function-like[^1]. |
| /// |
| /// [^1]: Tuple struct/variant constructors, closures and free, associated and foreign functions. |
| query constness(key: DefId) -> hir::Constness { |
| desc { |tcx| "checking if item is const: `{}`", tcx.def_path_str(key) } |
| separate_provide_extern |
| feedable |
| } |
| |
| query asyncness(key: DefId) -> ty::Asyncness { |
| desc { |tcx| "checking if the function is async: `{}`", tcx.def_path_str(key) } |
| separate_provide_extern |
| } |
| |
| /// Returns `true` if calls to the function may be promoted. |
| /// |
| /// This is either because the function is e.g., a tuple-struct or tuple-variant |
| /// constructor, or because it has the `#[rustc_promotable]` attribute. The attribute should |
| /// be removed in the future in favour of some form of check which figures out whether the |
| /// function does not inspect the bits of any of its arguments (so is essentially just a |
| /// constructor function). |
| query is_promotable_const_fn(key: DefId) -> bool { |
| desc { |tcx| "checking if item is promotable: `{}`", tcx.def_path_str(key) } |
| } |
| |
| /// The body of the coroutine, modified to take its upvars by move rather than by ref. |
| /// |
| /// This is used by coroutine-closures, which must return a different flavor of coroutine |
| /// when called using `AsyncFnOnce::call_once`. It is produced by the `ByMoveBody` pass which |
| /// is run right after building the initial MIR, and will only be populated for coroutines |
| /// which come out of the async closure desugaring. |
| query coroutine_by_move_body_def_id(def_id: DefId) -> DefId { |
| desc { |tcx| "looking up the coroutine by-move body for `{}`", tcx.def_path_str(def_id) } |
| separate_provide_extern |
| } |
| |
| /// Returns `Some(coroutine_kind)` if the node pointed to by `def_id` is a coroutine. |
| query coroutine_kind(def_id: DefId) -> Option<hir::CoroutineKind> { |
| desc { |tcx| "looking up coroutine kind of `{}`", tcx.def_path_str(def_id) } |
| separate_provide_extern |
| feedable |
| } |
| |
| query coroutine_for_closure(def_id: DefId) -> DefId { |
| desc { |_tcx| "Given a coroutine-closure def id, return the def id of the coroutine returned by it" } |
| separate_provide_extern |
| } |
| |
| query coroutine_hidden_types( |
| def_id: DefId, |
| ) -> ty::EarlyBinder<'tcx, ty::Binder<'tcx, ty::CoroutineWitnessTypes<TyCtxt<'tcx>>>> { |
| desc { "looking up the hidden types stored across await points in a coroutine" } |
| } |
| |
| /// Gets a map with the variances of every item in the local crate. |
| /// |
| /// <div class="warning"> |
| /// |
| /// **Do not call this query** directly, use [`Self::variances_of`] instead. |
| /// |
| /// </div> |
| query crate_variances(_: ()) -> &'tcx ty::CrateVariancesMap<'tcx> { |
| arena_cache |
| desc { "computing the variances for items in this crate" } |
| } |
| |
| /// Returns the (inferred) variances of the item given by `DefId`. |
| /// |
| /// The list of variances corresponds to the list of (early-bound) generic |
| /// parameters of the item (including its parents). |
| /// |
| /// **Tip**: You can use `#[rustc_variance]` on an item to basically print the |
| /// result of this query for use in UI tests or for debugging purposes. |
| query variances_of(def_id: DefId) -> &'tcx [ty::Variance] { |
| desc { |tcx| "computing the variances of `{}`", tcx.def_path_str(def_id) } |
| cache_on_disk_if { def_id.is_local() } |
| separate_provide_extern |
| cycle_delay_bug |
| } |
| |
| /// Gets a map with the inferred outlives-predicates of every item in the local crate. |
| /// |
| /// <div class="warning"> |
| /// |
| /// **Do not call this query** directly, use [`Self::inferred_outlives_of`] instead. |
| /// |
| /// </div> |
| query inferred_outlives_crate(_: ()) -> &'tcx ty::CratePredicatesMap<'tcx> { |
| arena_cache |
| desc { "computing the inferred outlives-predicates for items in this crate" } |
| } |
| |
| /// Maps from an impl/trait or struct/variant `DefId` |
| /// to a list of the `DefId`s of its associated items or fields. |
| query associated_item_def_ids(key: DefId) -> &'tcx [DefId] { |
| desc { |tcx| "collecting associated items or fields of `{}`", tcx.def_path_str(key) } |
| cache_on_disk_if { key.is_local() } |
| separate_provide_extern |
| } |
| |
| /// Maps from a trait/impl item to the trait/impl item "descriptor". |
| query associated_item(key: DefId) -> ty::AssocItem { |
| desc { |tcx| "computing associated item data for `{}`", tcx.def_path_str(key) } |
| cache_on_disk_if { key.is_local() } |
| separate_provide_extern |
| feedable |
| } |
| |
| /// Collects the associated items defined on a trait or impl. |
| query associated_items(key: DefId) -> &'tcx ty::AssocItems { |
| arena_cache |
| desc { |tcx| "collecting associated items of `{}`", tcx.def_path_str(key) } |
| } |
| |
| /// Maps from associated items on a trait to the corresponding associated |
| /// item on the impl specified by `impl_id`. |
| /// |
| /// For example, with the following code |
| /// |
| /// ``` |
| /// struct Type {} |
| /// // DefId |
| /// trait Trait { // trait_id |
| /// fn f(); // trait_f |
| /// fn g() {} // trait_g |
| /// } |
| /// |
| /// impl Trait for Type { // impl_id |
| /// fn f() {} // impl_f |
| /// fn g() {} // impl_g |
| /// } |
| /// ``` |
| /// |
| /// The map returned for `tcx.impl_item_implementor_ids(impl_id)` would be |
| ///`{ trait_f: impl_f, trait_g: impl_g }` |
| query impl_item_implementor_ids(impl_id: DefId) -> &'tcx DefIdMap<DefId> { |
| arena_cache |
| desc { |tcx| "comparing impl items against trait for `{}`", tcx.def_path_str(impl_id) } |
| } |
| |
| /// Given the `item_def_id` of a trait or impl, return a mapping from associated fn def id |
| /// to its associated type items that correspond to the RPITITs in its signature. |
| query associated_types_for_impl_traits_in_trait_or_impl(item_def_id: DefId) -> &'tcx DefIdMap<Vec<DefId>> { |
| arena_cache |
| desc { |tcx| "synthesizing RPITIT items for the opaque types for methods in `{}`", tcx.def_path_str(item_def_id) } |
| separate_provide_extern |
| } |
| |
| /// Given an `impl_id`, return the trait it implements along with some header information. |
| /// Return `None` if this is an inherent impl. |
| query impl_trait_header(impl_id: DefId) -> Option<ty::ImplTraitHeader<'tcx>> { |
| desc { |tcx| "computing trait implemented by `{}`", tcx.def_path_str(impl_id) } |
| cache_on_disk_if { impl_id.is_local() } |
| separate_provide_extern |
| } |
| |
| /// Given an `impl_def_id`, return true if the self type is guaranteed to be unsized due |
| /// to either being one of the built-in unsized types (str/slice/dyn) or to be a struct |
| /// whose tail is one of those types. |
| query impl_self_is_guaranteed_unsized(impl_def_id: DefId) -> bool { |
| desc { |tcx| "computing whether `{}` has a guaranteed unsized self type", tcx.def_path_str(impl_def_id) } |
| } |
| |
| /// Maps a `DefId` of a type to a list of its inherent impls. |
| /// Contains implementations of methods that are inherent to a type. |
| /// Methods in these implementations don't need to be exported. |
| query inherent_impls(key: DefId) -> &'tcx [DefId] { |
| desc { |tcx| "collecting inherent impls for `{}`", tcx.def_path_str(key) } |
| cache_on_disk_if { key.is_local() } |
| separate_provide_extern |
| } |
| |
| query incoherent_impls(key: SimplifiedType) -> &'tcx [DefId] { |
| desc { |tcx| "collecting all inherent impls for `{:?}`", key } |
| } |
| |
| /// Unsafety-check this `LocalDefId`. |
| query check_transmutes(key: LocalDefId) { |
| desc { |tcx| "check transmute calls inside `{}`", tcx.def_path_str(key) } |
| } |
| |
| /// Unsafety-check this `LocalDefId`. |
| query check_unsafety(key: LocalDefId) { |
| desc { |tcx| "unsafety-checking `{}`", tcx.def_path_str(key) } |
| } |
| |
| /// Checks well-formedness of tail calls (`become f()`). |
| query check_tail_calls(key: LocalDefId) -> Result<(), rustc_errors::ErrorGuaranteed> { |
| desc { |tcx| "tail-call-checking `{}`", tcx.def_path_str(key) } |
| return_result_from_ensure_ok |
| } |
| |
| /// Returns the types assumed to be well formed while "inside" of the given item. |
| /// |
| /// Note that we've liberated the late bound regions of function signatures, so |
| /// this can not be used to check whether these types are well formed. |
| query assumed_wf_types(key: LocalDefId) -> &'tcx [(Ty<'tcx>, Span)] { |
| desc { |tcx| "computing the implied bounds of `{}`", tcx.def_path_str(key) } |
| } |
| |
| /// We need to store the assumed_wf_types for an RPITIT so that impls of foreign |
| /// traits with return-position impl trait in traits can inherit the right wf types. |
| query assumed_wf_types_for_rpitit(key: DefId) -> &'tcx [(Ty<'tcx>, Span)] { |
| desc { |tcx| "computing the implied bounds of `{}`", tcx.def_path_str(key) } |
| separate_provide_extern |
| } |
| |
| /// Computes the signature of the function. |
| query fn_sig(key: DefId) -> ty::EarlyBinder<'tcx, ty::PolyFnSig<'tcx>> { |
| desc { |tcx| "computing function signature of `{}`", tcx.def_path_str(key) } |
| cache_on_disk_if { key.is_local() } |
| separate_provide_extern |
| cycle_delay_bug |
| } |
| |
| /// Performs lint checking for the module. |
| query lint_mod(key: LocalModDefId) { |
| desc { |tcx| "linting {}", describe_as_module(key, tcx) } |
| } |
| |
| query check_unused_traits(_: ()) { |
| desc { "checking unused trait imports in crate" } |
| } |
| |
| /// Checks the attributes in the module. |
| query check_mod_attrs(key: LocalModDefId) { |
| desc { |tcx| "checking attributes in {}", describe_as_module(key, tcx) } |
| } |
| |
| /// Checks for uses of unstable APIs in the module. |
| query check_mod_unstable_api_usage(key: LocalModDefId) { |
| desc { |tcx| "checking for unstable API usage in {}", describe_as_module(key, tcx) } |
| } |
| |
| query check_mod_privacy(key: LocalModDefId) { |
| desc { |tcx| "checking privacy in {}", describe_as_module(key.to_local_def_id(), tcx) } |
| } |
| |
| query check_liveness(key: LocalDefId) { |
| desc { |tcx| "checking liveness of variables in `{}`", tcx.def_path_str(key) } |
| } |
| |
| /// Return the live symbols in the crate for dead code check. |
| /// |
| /// The second return value maps from ADTs to ignored derived traits (e.g. Debug and Clone). |
| query live_symbols_and_ignored_derived_traits(_: ()) -> &'tcx ( |
| LocalDefIdSet, |
| LocalDefIdMap<FxIndexSet<DefId>>, |
| ) { |
| arena_cache |
| desc { "finding live symbols in crate" } |
| } |
| |
| query check_mod_deathness(key: LocalModDefId) { |
| desc { |tcx| "checking deathness of variables in {}", describe_as_module(key, tcx) } |
| } |
| |
| query check_type_wf(key: ()) -> Result<(), ErrorGuaranteed> { |
| desc { "checking that types are well-formed" } |
| return_result_from_ensure_ok |
| } |
| |
| /// Caches `CoerceUnsized` kinds for impls on custom types. |
| query coerce_unsized_info(key: DefId) -> Result<ty::adjustment::CoerceUnsizedInfo, ErrorGuaranteed> { |
| desc { |tcx| "computing CoerceUnsized info for `{}`", tcx.def_path_str(key) } |
| cache_on_disk_if { key.is_local() } |
| separate_provide_extern |
| return_result_from_ensure_ok |
| } |
| |
| query typeck(key: LocalDefId) -> &'tcx ty::TypeckResults<'tcx> { |
| desc { |tcx| "type-checking `{}`", tcx.def_path_str(key) } |
| cache_on_disk_if(tcx) { !tcx.is_typeck_child(key.to_def_id()) } |
| } |
| |
| query used_trait_imports(key: LocalDefId) -> &'tcx UnordSet<LocalDefId> { |
| desc { |tcx| "finding used_trait_imports `{}`", tcx.def_path_str(key) } |
| cache_on_disk_if { true } |
| } |
| |
| query coherent_trait(def_id: DefId) -> Result<(), ErrorGuaranteed> { |
| desc { |tcx| "coherence checking all impls of trait `{}`", tcx.def_path_str(def_id) } |
| return_result_from_ensure_ok |
| } |
| |
| /// Borrow-checks the given typeck root, e.g. functions, const/static items, |
| /// and its children, e.g. closures, inline consts. |
| query mir_borrowck(key: LocalDefId) -> Result<&'tcx mir::ConcreteOpaqueTypes<'tcx>, ErrorGuaranteed> { |
| desc { |tcx| "borrow-checking `{}`", tcx.def_path_str(key) } |
| } |
| |
| /// Gets a complete map from all types to their inherent impls. |
| /// |
| /// <div class="warning"> |
| /// |
| /// **Not meant to be used** directly outside of coherence. |
| /// |
| /// </div> |
| query crate_inherent_impls(k: ()) -> (&'tcx CrateInherentImpls, Result<(), ErrorGuaranteed>) { |
| desc { "finding all inherent impls defined in crate" } |
| } |
| |
| /// Checks all types in the crate for overlap in their inherent impls. Reports errors. |
| /// |
| /// <div class="warning"> |
| /// |
| /// **Not meant to be used** directly outside of coherence. |
| /// |
| /// </div> |
| query crate_inherent_impls_validity_check(_: ()) -> Result<(), ErrorGuaranteed> { |
| desc { "check for inherent impls that should not be defined in crate" } |
| return_result_from_ensure_ok |
| } |
| |
| /// Checks all types in the crate for overlap in their inherent impls. Reports errors. |
| /// |
| /// <div class="warning"> |
| /// |
| /// **Not meant to be used** directly outside of coherence. |
| /// |
| /// </div> |
| query crate_inherent_impls_overlap_check(_: ()) -> Result<(), ErrorGuaranteed> { |
| desc { "check for overlap between inherent impls defined in this crate" } |
| return_result_from_ensure_ok |
| } |
| |
| /// Checks whether all impls in the crate pass the overlap check, returning |
| /// which impls fail it. If all impls are correct, the returned slice is empty. |
| query orphan_check_impl(key: LocalDefId) -> Result<(), ErrorGuaranteed> { |
| desc { |tcx| |
| "checking whether impl `{}` follows the orphan rules", |
| tcx.def_path_str(key), |
| } |
| return_result_from_ensure_ok |
| } |
| |
| /// Return the set of (transitive) callees that may result in a recursive call to `key`. |
| query mir_callgraph_cyclic(key: LocalDefId) -> &'tcx UnordSet<LocalDefId> { |
| fatal_cycle |
| arena_cache |
| desc { |tcx| |
| "computing (transitive) callees of `{}` that may recurse", |
| tcx.def_path_str(key), |
| } |
| cache_on_disk_if { true } |
| } |
| |
| /// Obtain all the calls into other local functions |
| query mir_inliner_callees(key: ty::InstanceKind<'tcx>) -> &'tcx [(DefId, GenericArgsRef<'tcx>)] { |
| fatal_cycle |
| desc { |tcx| |
| "computing all local function calls in `{}`", |
| tcx.def_path_str(key.def_id()), |
| } |
| } |
| |
| /// Computes the tag (if any) for a given type and variant. |
| /// |
| /// `None` means that the variant doesn't need a tag (because it is niched). |
| /// |
| /// # Panics |
| /// |
| /// This query will panic for uninhabited variants and if the passed type is not an enum. |
| query tag_for_variant( |
| key: PseudoCanonicalInput<'tcx, (Ty<'tcx>, abi::VariantIdx)>, |
| ) -> Option<ty::ScalarInt> { |
| desc { "computing variant tag for enum" } |
| } |
| |
| /// Evaluates a constant and returns the computed allocation. |
| /// |
| /// <div class="warning"> |
| /// |
| /// **Do not call this query** directly, use [`Self::eval_to_const_value_raw`] or |
| /// [`Self::eval_to_valtree`] instead. |
| /// |
| /// </div> |
| query eval_to_allocation_raw(key: ty::PseudoCanonicalInput<'tcx, GlobalId<'tcx>>) |
| -> EvalToAllocationRawResult<'tcx> { |
| desc { |tcx| |
| "const-evaluating + checking `{}`", |
| key.value.display(tcx) |
| } |
| cache_on_disk_if { true } |
| } |
| |
| /// Evaluate a static's initializer, returning the allocation of the initializer's memory. |
| query eval_static_initializer(key: DefId) -> EvalStaticInitializerRawResult<'tcx> { |
| desc { |tcx| |
| "evaluating initializer of static `{}`", |
| tcx.def_path_str(key) |
| } |
| cache_on_disk_if { key.is_local() } |
| separate_provide_extern |
| feedable |
| } |
| |
| /// Evaluates const items or anonymous constants[^1] into a representation |
| /// suitable for the type system and const generics. |
| /// |
| /// <div class="warning"> |
| /// |
| /// **Do not call this** directly, use one of the following wrappers: |
| /// [`TyCtxt::const_eval_poly`], [`TyCtxt::const_eval_resolve`], |
| /// [`TyCtxt::const_eval_instance`], or [`TyCtxt::const_eval_global_id`]. |
| /// |
| /// </div> |
| /// |
| /// [^1]: Such as enum variant explicit discriminants or array lengths. |
| query eval_to_const_value_raw(key: ty::PseudoCanonicalInput<'tcx, GlobalId<'tcx>>) |
| -> EvalToConstValueResult<'tcx> { |
| desc { |tcx| |
| "simplifying constant for the type system `{}`", |
| key.value.display(tcx) |
| } |
| depth_limit |
| cache_on_disk_if { true } |
| } |
| |
| /// Evaluate a constant and convert it to a type level constant or |
| /// return `None` if that is not possible. |
| query eval_to_valtree( |
| key: ty::PseudoCanonicalInput<'tcx, GlobalId<'tcx>> |
| ) -> EvalToValTreeResult<'tcx> { |
| desc { "evaluating type-level constant" } |
| } |
| |
| /// Converts a type-level constant value into a MIR constant value. |
| query valtree_to_const_val(key: ty::Value<'tcx>) -> mir::ConstValue { |
| desc { "converting type-level constant value to MIR constant value"} |
| } |
| |
| /// Destructures array, ADT or tuple constants into the constants |
| /// of their fields. |
| query destructure_const(key: ty::Const<'tcx>) -> ty::DestructuredConst<'tcx> { |
| desc { "destructuring type level constant"} |
| } |
| |
| // FIXME get rid of this with valtrees |
| query lit_to_const( |
| key: LitToConstInput<'tcx> |
| ) -> ty::Const<'tcx> { |
| desc { "converting literal to const" } |
| } |
| |
| query check_match(key: LocalDefId) -> Result<(), rustc_errors::ErrorGuaranteed> { |
| desc { |tcx| "match-checking `{}`", tcx.def_path_str(key) } |
| return_result_from_ensure_ok |
| } |
| |
| /// Performs part of the privacy check and computes effective visibilities. |
| query effective_visibilities(_: ()) -> &'tcx EffectiveVisibilities { |
| eval_always |
| desc { "checking effective visibilities" } |
| } |
| query check_private_in_public(module_def_id: LocalModDefId) { |
| desc { |tcx| |
| "checking for private elements in public interfaces for {}", |
| describe_as_module(module_def_id, tcx) |
| } |
| } |
| |
| query reachable_set(_: ()) -> &'tcx LocalDefIdSet { |
| arena_cache |
| desc { "reachability" } |
| cache_on_disk_if { true } |
| } |
| |
| /// Per-body `region::ScopeTree`. The `DefId` should be the owner `DefId` for the body; |
| /// in the case of closures, this will be redirected to the enclosing function. |
| query region_scope_tree(def_id: DefId) -> &'tcx crate::middle::region::ScopeTree { |
| desc { |tcx| "computing drop scopes for `{}`", tcx.def_path_str(def_id) } |
| } |
| |
| /// Generates a MIR body for the shim. |
| query mir_shims(key: ty::InstanceKind<'tcx>) -> &'tcx mir::Body<'tcx> { |
| arena_cache |
| desc { |
| |tcx| "generating MIR shim for `{}`, instance={:?}", |
| tcx.def_path_str(key.def_id()), |
| key |
| } |
| } |
| |
| /// The `symbol_name` query provides the symbol name for calling a |
| /// given instance from the local crate. In particular, it will also |
| /// look up the correct symbol name of instances from upstream crates. |
| query symbol_name(key: ty::Instance<'tcx>) -> ty::SymbolName<'tcx> { |
| desc { "computing the symbol for `{}`", key } |
| cache_on_disk_if { true } |
| } |
| |
| query def_kind(def_id: DefId) -> DefKind { |
| desc { |tcx| "looking up definition kind of `{}`", tcx.def_path_str(def_id) } |
| cache_on_disk_if { def_id.is_local() } |
| separate_provide_extern |
| feedable |
| } |
| |
| /// Gets the span for the definition. |
| query def_span(def_id: DefId) -> Span { |
| desc { |tcx| "looking up span for `{}`", tcx.def_path_str(def_id) } |
| cache_on_disk_if { def_id.is_local() } |
| separate_provide_extern |
| feedable |
| } |
| |
| /// Gets the span for the identifier of the definition. |
| query def_ident_span(def_id: DefId) -> Option<Span> { |
| desc { |tcx| "looking up span for `{}`'s identifier", tcx.def_path_str(def_id) } |
| cache_on_disk_if { def_id.is_local() } |
| separate_provide_extern |
| feedable |
| } |
| |
| /// Gets the span for the type of the definition. |
| /// Panics if it is not a definition that has a single type. |
| query ty_span(def_id: LocalDefId) -> Span { |
| desc { |tcx| "looking up span for `{}`'s type", tcx.def_path_str(def_id) } |
| cache_on_disk_if { true } |
| } |
| |
| query lookup_stability(def_id: DefId) -> Option<hir::Stability> { |
| desc { |tcx| "looking up stability of `{}`", tcx.def_path_str(def_id) } |
| cache_on_disk_if { def_id.is_local() } |
| separate_provide_extern |
| } |
| |
| query lookup_const_stability(def_id: DefId) -> Option<hir::ConstStability> { |
| desc { |tcx| "looking up const stability of `{}`", tcx.def_path_str(def_id) } |
| cache_on_disk_if { def_id.is_local() } |
| separate_provide_extern |
| } |
| |
| query lookup_default_body_stability(def_id: DefId) -> Option<hir::DefaultBodyStability> { |
| desc { |tcx| "looking up default body stability of `{}`", tcx.def_path_str(def_id) } |
| separate_provide_extern |
| } |
| |
| query should_inherit_track_caller(def_id: DefId) -> bool { |
| desc { |tcx| "computing should_inherit_track_caller of `{}`", tcx.def_path_str(def_id) } |
| } |
| |
| query inherited_align(def_id: DefId) -> Option<Align> { |
| desc { |tcx| "computing inherited_align of `{}`", tcx.def_path_str(def_id) } |
| } |
| |
| query lookup_deprecation_entry(def_id: DefId) -> Option<DeprecationEntry> { |
| desc { |tcx| "checking whether `{}` is deprecated", tcx.def_path_str(def_id) } |
| cache_on_disk_if { def_id.is_local() } |
| separate_provide_extern |
| } |
| |
| /// Determines whether an item is annotated with `#[doc(hidden)]`. |
| query is_doc_hidden(def_id: DefId) -> bool { |
| desc { |tcx| "checking whether `{}` is `doc(hidden)`", tcx.def_path_str(def_id) } |
| separate_provide_extern |
| } |
| |
| /// Determines whether an item is annotated with `#[doc(notable_trait)]`. |
| query is_doc_notable_trait(def_id: DefId) -> bool { |
| desc { |tcx| "checking whether `{}` is `doc(notable_trait)`", tcx.def_path_str(def_id) } |
| } |
| |
| /// Returns the attributes on the item at `def_id`. |
| /// |
| /// Do not use this directly, use `tcx.get_attrs` instead. |
| query attrs_for_def(def_id: DefId) -> &'tcx [hir::Attribute] { |
| desc { |tcx| "collecting attributes of `{}`", tcx.def_path_str(def_id) } |
| separate_provide_extern |
| } |
| |
| /// Returns the `CodegenFnAttrs` for the item at `def_id`. |
| /// |
| /// If possible, use `tcx.codegen_instance_attrs` instead. That function takes the |
| /// instance kind into account. |
| /// |
| /// For example, the `#[naked]` attribute should be applied for `InstanceKind::Item`, |
| /// but should not be applied if the instance kind is `InstanceKind::ReifyShim`. |
| /// Using this query would include the attribute regardless of the actual instance |
| /// kind at the call site. |
| query codegen_fn_attrs(def_id: DefId) -> &'tcx CodegenFnAttrs { |
| desc { |tcx| "computing codegen attributes of `{}`", tcx.def_path_str(def_id) } |
| arena_cache |
| cache_on_disk_if { def_id.is_local() } |
| separate_provide_extern |
| feedable |
| } |
| |
| query asm_target_features(def_id: DefId) -> &'tcx FxIndexSet<Symbol> { |
| desc { |tcx| "computing target features for inline asm of `{}`", tcx.def_path_str(def_id) } |
| } |
| |
| query fn_arg_idents(def_id: DefId) -> &'tcx [Option<rustc_span::Ident>] { |
| desc { |tcx| "looking up function parameter identifiers for `{}`", tcx.def_path_str(def_id) } |
| separate_provide_extern |
| } |
| |
| /// Gets the rendered value of the specified constant or associated constant. |
| /// Used by rustdoc. |
| query rendered_const(def_id: DefId) -> &'tcx String { |
| arena_cache |
| desc { |tcx| "rendering constant initializer of `{}`", tcx.def_path_str(def_id) } |
| separate_provide_extern |
| } |
| |
| /// Gets the rendered precise capturing args for an opaque for use in rustdoc. |
| query rendered_precise_capturing_args(def_id: DefId) -> Option<&'tcx [PreciseCapturingArgKind<Symbol, Symbol>]> { |
| desc { |tcx| "rendering precise capturing args for `{}`", tcx.def_path_str(def_id) } |
| separate_provide_extern |
| } |
| |
| query impl_parent(def_id: DefId) -> Option<DefId> { |
| desc { |tcx| "computing specialization parent impl of `{}`", tcx.def_path_str(def_id) } |
| separate_provide_extern |
| } |
| |
| query is_ctfe_mir_available(key: DefId) -> bool { |
| desc { |tcx| "checking if item has CTFE MIR available: `{}`", tcx.def_path_str(key) } |
| cache_on_disk_if { key.is_local() } |
| separate_provide_extern |
| } |
| query is_mir_available(key: DefId) -> bool { |
| desc { |tcx| "checking if item has MIR available: `{}`", tcx.def_path_str(key) } |
| cache_on_disk_if { key.is_local() } |
| separate_provide_extern |
| } |
| |
| query own_existential_vtable_entries( |
| key: DefId |
| ) -> &'tcx [DefId] { |
| desc { |tcx| "finding all existential vtable entries for trait `{}`", tcx.def_path_str(key) } |
| } |
| |
| query vtable_entries(key: ty::TraitRef<'tcx>) |
| -> &'tcx [ty::VtblEntry<'tcx>] { |
| desc { |tcx| "finding all vtable entries for trait `{}`", tcx.def_path_str(key.def_id) } |
| } |
| |
| query first_method_vtable_slot(key: ty::TraitRef<'tcx>) -> usize { |
| desc { |tcx| "finding the slot within the vtable of `{}` for the implementation of `{}`", key.self_ty(), key.print_only_trait_name() } |
| } |
| |
| query supertrait_vtable_slot(key: (Ty<'tcx>, Ty<'tcx>)) -> Option<usize> { |
| desc { |tcx| "finding the slot within vtable for trait object `{}` vtable ptr during trait upcasting coercion from `{}` vtable", |
| key.1, key.0 } |
| } |
| |
| query vtable_allocation(key: (Ty<'tcx>, Option<ty::ExistentialTraitRef<'tcx>>)) -> mir::interpret::AllocId { |
| desc { |tcx| "vtable const allocation for <{} as {}>", |
| key.0, |
| key.1.map(|trait_ref| format!("{trait_ref}")).unwrap_or_else(|| "_".to_owned()) |
| } |
| } |
| |
| query codegen_select_candidate( |
| key: PseudoCanonicalInput<'tcx, ty::TraitRef<'tcx>> |
| ) -> Result<&'tcx ImplSource<'tcx, ()>, CodegenObligationError> { |
| cache_on_disk_if { true } |
| desc { |tcx| "computing candidate for `{}`", key.value } |
| } |
| |
| /// Return all `impl` blocks in the current crate. |
| query all_local_trait_impls(_: ()) -> &'tcx rustc_data_structures::fx::FxIndexMap<DefId, Vec<LocalDefId>> { |
| desc { "finding local trait impls" } |
| } |
| |
| /// Return all `impl` blocks of the given trait in the current crate. |
| query local_trait_impls(trait_id: DefId) -> &'tcx [LocalDefId] { |
| desc { "finding local trait impls of `{}`", tcx.def_path_str(trait_id) } |
| } |
| |
| /// Given a trait `trait_id`, return all known `impl` blocks. |
| query trait_impls_of(trait_id: DefId) -> &'tcx ty::trait_def::TraitImpls { |
| arena_cache |
| desc { |tcx| "finding trait impls of `{}`", tcx.def_path_str(trait_id) } |
| } |
| |
| query specialization_graph_of(trait_id: DefId) -> Result<&'tcx specialization_graph::Graph, ErrorGuaranteed> { |
| desc { |tcx| "building specialization graph of trait `{}`", tcx.def_path_str(trait_id) } |
| cache_on_disk_if { true } |
| return_result_from_ensure_ok |
| } |
| query dyn_compatibility_violations(trait_id: DefId) -> &'tcx [DynCompatibilityViolation] { |
| desc { |tcx| "determining dyn-compatibility of trait `{}`", tcx.def_path_str(trait_id) } |
| } |
| query is_dyn_compatible(trait_id: DefId) -> bool { |
| desc { |tcx| "checking if trait `{}` is dyn-compatible", tcx.def_path_str(trait_id) } |
| } |
| |
| /// Gets the ParameterEnvironment for a given item; this environment |
| /// will be in "user-facing" mode, meaning that it is suitable for |
| /// type-checking etc, and it does not normalize specializable |
| /// associated types. |
| /// |
| /// You should almost certainly not use this. If you already have an InferCtxt, then |
| /// you should also probably have a `ParamEnv` from when it was built. If you don't, |
| /// then you should take a `TypingEnv` to ensure that you handle opaque types correctly. |
| query param_env(def_id: DefId) -> ty::ParamEnv<'tcx> { |
| desc { |tcx| "computing normalized predicates of `{}`", tcx.def_path_str(def_id) } |
| feedable |
| } |
| |
| /// Like `param_env`, but returns the `ParamEnv` after all opaque types have been |
| /// replaced with their hidden type. This is used in the old trait solver |
| /// when in `PostAnalysis` mode and should not be called directly. |
| query typing_env_normalized_for_post_analysis(def_id: DefId) -> ty::TypingEnv<'tcx> { |
| desc { |tcx| "computing revealed normalized predicates of `{}`", tcx.def_path_str(def_id) } |
| } |
| |
| /// Trait selection queries. These are best used by invoking `ty.is_copy_modulo_regions()`, |
| /// `ty.is_copy()`, etc, since that will prune the environment where possible. |
| query is_copy_raw(env: ty::PseudoCanonicalInput<'tcx, Ty<'tcx>>) -> bool { |
| desc { "computing whether `{}` is `Copy`", env.value } |
| } |
| /// Trait selection queries. These are best used by invoking `ty.is_use_cloned_modulo_regions()`, |
| /// `ty.is_use_cloned()`, etc, since that will prune the environment where possible. |
| query is_use_cloned_raw(env: ty::PseudoCanonicalInput<'tcx, Ty<'tcx>>) -> bool { |
| desc { "computing whether `{}` is `UseCloned`", env.value } |
| } |
| /// Query backing `Ty::is_sized`. |
| query is_sized_raw(env: ty::PseudoCanonicalInput<'tcx, Ty<'tcx>>) -> bool { |
| desc { "computing whether `{}` is `Sized`", env.value } |
| } |
| /// Query backing `Ty::is_freeze`. |
| query is_freeze_raw(env: ty::PseudoCanonicalInput<'tcx, Ty<'tcx>>) -> bool { |
| desc { "computing whether `{}` is freeze", env.value } |
| } |
| /// Query backing `Ty::is_unpin`. |
| query is_unpin_raw(env: ty::PseudoCanonicalInput<'tcx, Ty<'tcx>>) -> bool { |
| desc { "computing whether `{}` is `Unpin`", env.value } |
| } |
| /// Query backing `Ty::is_async_drop`. |
| query is_async_drop_raw(env: ty::PseudoCanonicalInput<'tcx, Ty<'tcx>>) -> bool { |
| desc { "computing whether `{}` is `AsyncDrop`", env.value } |
| } |
| /// Query backing `Ty::needs_drop`. |
| query needs_drop_raw(env: ty::PseudoCanonicalInput<'tcx, Ty<'tcx>>) -> bool { |
| desc { "computing whether `{}` needs drop", env.value } |
| } |
| /// Query backing `Ty::needs_async_drop`. |
| query needs_async_drop_raw(env: ty::PseudoCanonicalInput<'tcx, Ty<'tcx>>) -> bool { |
| desc { "computing whether `{}` needs async drop", env.value } |
| } |
| /// Query backing `Ty::has_significant_drop_raw`. |
| query has_significant_drop_raw(env: ty::PseudoCanonicalInput<'tcx, Ty<'tcx>>) -> bool { |
| desc { "computing whether `{}` has a significant drop", env.value } |
| } |
| |
| /// Query backing `Ty::is_structural_eq_shallow`. |
| /// |
| /// This is only correct for ADTs. Call `is_structural_eq_shallow` to handle all types |
| /// correctly. |
| query has_structural_eq_impl(ty: Ty<'tcx>) -> bool { |
| desc { |
| "computing whether `{}` implements `StructuralPartialEq`", |
| ty |
| } |
| } |
| |
| /// A list of types where the ADT requires drop if and only if any of |
| /// those types require drop. If the ADT is known to always need drop |
| /// then `Err(AlwaysRequiresDrop)` is returned. |
| query adt_drop_tys(def_id: DefId) -> Result<&'tcx ty::List<Ty<'tcx>>, AlwaysRequiresDrop> { |
| desc { |tcx| "computing when `{}` needs drop", tcx.def_path_str(def_id) } |
| cache_on_disk_if { true } |
| } |
| |
| /// A list of types where the ADT requires async drop if and only if any of |
| /// those types require async drop. If the ADT is known to always need async drop |
| /// then `Err(AlwaysRequiresDrop)` is returned. |
| query adt_async_drop_tys(def_id: DefId) -> Result<&'tcx ty::List<Ty<'tcx>>, AlwaysRequiresDrop> { |
| desc { |tcx| "computing when `{}` needs async drop", tcx.def_path_str(def_id) } |
| cache_on_disk_if { true } |
| } |
| |
| /// A list of types where the ADT requires drop if and only if any of those types |
| /// has significant drop. A type marked with the attribute `rustc_insignificant_dtor` |
| /// is considered to not be significant. A drop is significant if it is implemented |
| /// by the user or does anything that will have any observable behavior (other than |
| /// freeing up memory). If the ADT is known to have a significant destructor then |
| /// `Err(AlwaysRequiresDrop)` is returned. |
| query adt_significant_drop_tys(def_id: DefId) -> Result<&'tcx ty::List<Ty<'tcx>>, AlwaysRequiresDrop> { |
| desc { |tcx| "computing when `{}` has a significant destructor", tcx.def_path_str(def_id) } |
| } |
| |
| /// Returns a list of types which (a) have a potentially significant destructor |
| /// and (b) may be dropped as a result of dropping a value of some type `ty` |
| /// (in the given environment). |
| /// |
| /// The idea of "significant" drop is somewhat informal and is used only for |
| /// diagnostics and edition migrations. The idea is that a significant drop may have |
| /// some visible side-effect on execution; freeing memory is NOT considered a side-effect. |
| /// The rules are as follows: |
| /// * Type with no explicit drop impl do not have significant drop. |
| /// * Types with a drop impl are assumed to have significant drop unless they have a `#[rustc_insignificant_dtor]` annotation. |
| /// |
| /// Note that insignificant drop is a "shallow" property. A type like `Vec<LockGuard>` does not |
| /// have significant drop but the type `LockGuard` does, and so if `ty = Vec<LockGuard>` |
| /// then the return value would be `&[LockGuard]`. |
| /// *IMPORTANT*: *DO NOT* run this query before promoted MIR body is constructed, |
| /// because this query partially depends on that query. |
| /// Otherwise, there is a risk of query cycles. |
| query list_significant_drop_tys(ty: ty::PseudoCanonicalInput<'tcx, Ty<'tcx>>) -> &'tcx ty::List<Ty<'tcx>> { |
| desc { |tcx| "computing when `{}` has a significant destructor", ty.value } |
| } |
| |
| /// Computes the layout of a type. Note that this implicitly |
| /// executes in `TypingMode::PostAnalysis`, and will normalize the input type. |
| query layout_of( |
| key: ty::PseudoCanonicalInput<'tcx, Ty<'tcx>> |
| ) -> Result<ty::layout::TyAndLayout<'tcx>, &'tcx ty::layout::LayoutError<'tcx>> { |
| depth_limit |
| desc { "computing layout of `{}`", key.value } |
| // we emit our own error during query cycle handling |
| cycle_delay_bug |
| } |
| |
| /// Compute a `FnAbi` suitable for indirect calls, i.e. to `fn` pointers. |
| /// |
| /// NB: this doesn't handle virtual calls - those should use `fn_abi_of_instance` |
| /// instead, where the instance is an `InstanceKind::Virtual`. |
| query fn_abi_of_fn_ptr( |
| key: ty::PseudoCanonicalInput<'tcx, (ty::PolyFnSig<'tcx>, &'tcx ty::List<Ty<'tcx>>)> |
| ) -> Result<&'tcx rustc_target::callconv::FnAbi<'tcx, Ty<'tcx>>, &'tcx ty::layout::FnAbiError<'tcx>> { |
| desc { "computing call ABI of `{}` function pointers", key.value.0 } |
| } |
| |
| /// Compute a `FnAbi` suitable for declaring/defining an `fn` instance, and for |
| /// direct calls to an `fn`. |
| /// |
| /// NB: that includes virtual calls, which are represented by "direct calls" |
| /// to an `InstanceKind::Virtual` instance (of `<dyn Trait as Trait>::fn`). |
| query fn_abi_of_instance( |
| key: ty::PseudoCanonicalInput<'tcx, (ty::Instance<'tcx>, &'tcx ty::List<Ty<'tcx>>)> |
| ) -> Result<&'tcx rustc_target::callconv::FnAbi<'tcx, Ty<'tcx>>, &'tcx ty::layout::FnAbiError<'tcx>> { |
| desc { "computing call ABI of `{}`", key.value.0 } |
| } |
| |
| query dylib_dependency_formats(_: CrateNum) |
| -> &'tcx [(CrateNum, LinkagePreference)] { |
| desc { "getting dylib dependency formats of crate" } |
| separate_provide_extern |
| } |
| |
| query dependency_formats(_: ()) -> &'tcx Arc<crate::middle::dependency_format::Dependencies> { |
| arena_cache |
| desc { "getting the linkage format of all dependencies" } |
| } |
| |
| query is_compiler_builtins(_: CrateNum) -> bool { |
| fatal_cycle |
| desc { "checking if the crate is_compiler_builtins" } |
| separate_provide_extern |
| } |
| query has_global_allocator(_: CrateNum) -> bool { |
| // This query depends on untracked global state in CStore |
| eval_always |
| fatal_cycle |
| desc { "checking if the crate has_global_allocator" } |
| separate_provide_extern |
| } |
| query has_alloc_error_handler(_: CrateNum) -> bool { |
| // This query depends on untracked global state in CStore |
| eval_always |
| fatal_cycle |
| desc { "checking if the crate has_alloc_error_handler" } |
| separate_provide_extern |
| } |
| query has_panic_handler(_: CrateNum) -> bool { |
| fatal_cycle |
| desc { "checking if the crate has_panic_handler" } |
| separate_provide_extern |
| } |
| query is_profiler_runtime(_: CrateNum) -> bool { |
| fatal_cycle |
| desc { "checking if a crate is `#![profiler_runtime]`" } |
| separate_provide_extern |
| } |
| query has_ffi_unwind_calls(key: LocalDefId) -> bool { |
| desc { |tcx| "checking if `{}` contains FFI-unwind calls", tcx.def_path_str(key) } |
| cache_on_disk_if { true } |
| } |
| query required_panic_strategy(_: CrateNum) -> Option<PanicStrategy> { |
| fatal_cycle |
| desc { "getting a crate's required panic strategy" } |
| separate_provide_extern |
| } |
| query panic_in_drop_strategy(_: CrateNum) -> PanicStrategy { |
| fatal_cycle |
| desc { "getting a crate's configured panic-in-drop strategy" } |
| separate_provide_extern |
| } |
| query is_no_builtins(_: CrateNum) -> bool { |
| fatal_cycle |
| desc { "getting whether a crate has `#![no_builtins]`" } |
| separate_provide_extern |
| } |
| query symbol_mangling_version(_: CrateNum) -> SymbolManglingVersion { |
| fatal_cycle |
| desc { "getting a crate's symbol mangling version" } |
| separate_provide_extern |
| } |
| |
| query extern_crate(def_id: CrateNum) -> Option<&'tcx ExternCrate> { |
| eval_always |
| desc { "getting crate's ExternCrateData" } |
| separate_provide_extern |
| } |
| |
| query specialization_enabled_in(cnum: CrateNum) -> bool { |
| desc { "checking whether the crate enabled `specialization`/`min_specialization`" } |
| separate_provide_extern |
| } |
| |
| query specializes(_: (DefId, DefId)) -> bool { |
| desc { "computing whether impls specialize one another" } |
| } |
| query in_scope_traits_map(_: hir::OwnerId) |
| -> Option<&'tcx ItemLocalMap<Box<[TraitCandidate]>>> { |
| desc { "getting traits in scope at a block" } |
| } |
| |
| /// Returns whether the impl or associated function has the `default` keyword. |
| query defaultness(def_id: DefId) -> hir::Defaultness { |
| desc { |tcx| "looking up whether `{}` has `default`", tcx.def_path_str(def_id) } |
| separate_provide_extern |
| feedable |
| } |
| |
| /// Returns whether the field corresponding to the `DefId` has a default field value. |
| query default_field(def_id: DefId) -> Option<DefId> { |
| desc { |tcx| "looking up the `const` corresponding to the default for `{}`", tcx.def_path_str(def_id) } |
| separate_provide_extern |
| } |
| |
| query check_well_formed(key: LocalDefId) -> Result<(), ErrorGuaranteed> { |
| desc { |tcx| "checking that `{}` is well-formed", tcx.def_path_str(key) } |
| return_result_from_ensure_ok |
| } |
| |
| query enforce_impl_non_lifetime_params_are_constrained(key: LocalDefId) -> Result<(), ErrorGuaranteed> { |
| desc { |tcx| "checking that `{}`'s generics are constrained by the impl header", tcx.def_path_str(key) } |
| return_result_from_ensure_ok |
| } |
| |
| // The `DefId`s of all non-generic functions and statics in the given crate |
| // that can be reached from outside the crate. |
| // |
| // We expect this items to be available for being linked to. |
| // |
| // This query can also be called for `LOCAL_CRATE`. In this case it will |
| // compute which items will be reachable to other crates, taking into account |
| // the kind of crate that is currently compiled. Crates with only a |
| // C interface have fewer reachable things. |
| // |
| // Does not include external symbols that don't have a corresponding DefId, |
| // like the compiler-generated `main` function and so on. |
| query reachable_non_generics(_: CrateNum) |
| -> &'tcx DefIdMap<SymbolExportInfo> { |
| arena_cache |
| desc { "looking up the exported symbols of a crate" } |
| separate_provide_extern |
| } |
| query is_reachable_non_generic(def_id: DefId) -> bool { |
| desc { |tcx| "checking whether `{}` is an exported symbol", tcx.def_path_str(def_id) } |
| cache_on_disk_if { def_id.is_local() } |
| separate_provide_extern |
| } |
| query is_unreachable_local_definition(def_id: LocalDefId) -> bool { |
| desc { |tcx| |
| "checking whether `{}` is reachable from outside the crate", |
| tcx.def_path_str(def_id), |
| } |
| } |
| |
| /// The entire set of monomorphizations the local crate can safely |
| /// link to because they are exported from upstream crates. Do |
| /// not depend on this directly, as its value changes anytime |
| /// a monomorphization gets added or removed in any upstream |
| /// crate. Instead use the narrower `upstream_monomorphizations_for`, |
| /// `upstream_drop_glue_for`, `upstream_async_drop_glue_for`, or, |
| /// even better, `Instance::upstream_monomorphization()`. |
| query upstream_monomorphizations(_: ()) -> &'tcx DefIdMap<UnordMap<GenericArgsRef<'tcx>, CrateNum>> { |
| arena_cache |
| desc { "collecting available upstream monomorphizations" } |
| } |
| |
| /// Returns the set of upstream monomorphizations available for the |
| /// generic function identified by the given `def_id`. The query makes |
| /// sure to make a stable selection if the same monomorphization is |
| /// available in multiple upstream crates. |
| /// |
| /// You likely want to call `Instance::upstream_monomorphization()` |
| /// instead of invoking this query directly. |
| query upstream_monomorphizations_for(def_id: DefId) |
| -> Option<&'tcx UnordMap<GenericArgsRef<'tcx>, CrateNum>> |
| { |
| desc { |tcx| |
| "collecting available upstream monomorphizations for `{}`", |
| tcx.def_path_str(def_id), |
| } |
| separate_provide_extern |
| } |
| |
| /// Returns the upstream crate that exports drop-glue for the given |
| /// type (`args` is expected to be a single-item list containing the |
| /// type one wants drop-glue for). |
| /// |
| /// This is a subset of `upstream_monomorphizations_for` in order to |
| /// increase dep-tracking granularity. Otherwise adding or removing any |
| /// type with drop-glue in any upstream crate would invalidate all |
| /// functions calling drop-glue of an upstream type. |
| /// |
| /// You likely want to call `Instance::upstream_monomorphization()` |
| /// instead of invoking this query directly. |
| /// |
| /// NOTE: This query could easily be extended to also support other |
| /// common functions that have are large set of monomorphizations |
| /// (like `Clone::clone` for example). |
| query upstream_drop_glue_for(args: GenericArgsRef<'tcx>) -> Option<CrateNum> { |
| desc { "available upstream drop-glue for `{:?}`", args } |
| } |
| |
| /// Returns the upstream crate that exports async-drop-glue for |
| /// the given type (`args` is expected to be a single-item list |
| /// containing the type one wants async-drop-glue for). |
| /// |
| /// This is a subset of `upstream_monomorphizations_for` in order |
| /// to increase dep-tracking granularity. Otherwise adding or |
| /// removing any type with async-drop-glue in any upstream crate |
| /// would invalidate all functions calling async-drop-glue of an |
| /// upstream type. |
| /// |
| /// You likely want to call `Instance::upstream_monomorphization()` |
| /// instead of invoking this query directly. |
| /// |
| /// NOTE: This query could easily be extended to also support other |
| /// common functions that have are large set of monomorphizations |
| /// (like `Clone::clone` for example). |
| query upstream_async_drop_glue_for(args: GenericArgsRef<'tcx>) -> Option<CrateNum> { |
| desc { "available upstream async-drop-glue for `{:?}`", args } |
| } |
| |
| /// Returns a list of all `extern` blocks of a crate. |
| query foreign_modules(_: CrateNum) -> &'tcx FxIndexMap<DefId, ForeignModule> { |
| arena_cache |
| desc { "looking up the foreign modules of a linked crate" } |
| separate_provide_extern |
| } |
| |
| /// Lint against `extern fn` declarations having incompatible types. |
| query clashing_extern_declarations(_: ()) { |
| desc { "checking `extern fn` declarations are compatible" } |
| } |
| |
| /// Identifies the entry-point (e.g., the `main` function) for a given |
| /// crate, returning `None` if there is no entry point (such as for library crates). |
| query entry_fn(_: ()) -> Option<(DefId, EntryFnType)> { |
| desc { "looking up the entry function of a crate" } |
| } |
| |
| /// Finds the `rustc_proc_macro_decls` item of a crate. |
| query proc_macro_decls_static(_: ()) -> Option<LocalDefId> { |
| desc { "looking up the proc macro declarations for a crate" } |
| } |
| |
| // The macro which defines `rustc_metadata::provide_extern` depends on this query's name. |
| // Changing the name should cause a compiler error, but in case that changes, be aware. |
| // |
| // The hash should not be calculated before the `analysis` pass is complete, specifically |
| // until `tcx.untracked().definitions.freeze()` has been called, otherwise if incremental |
| // compilation is enabled calculating this hash can freeze this structure too early in |
| // compilation and cause subsequent crashes when attempting to write to `definitions` |
| query crate_hash(_: CrateNum) -> Svh { |
| eval_always |
| desc { "looking up the hash a crate" } |
| separate_provide_extern |
| } |
| |
| /// Gets the hash for the host proc macro. Used to support -Z dual-proc-macro. |
| query crate_host_hash(_: CrateNum) -> Option<Svh> { |
| eval_always |
| desc { "looking up the hash of a host version of a crate" } |
| separate_provide_extern |
| } |
| |
| /// Gets the extra data to put in each output filename for a crate. |
| /// For example, compiling the `foo` crate with `extra-filename=-a` creates a `libfoo-b.rlib` file. |
| query extra_filename(_: CrateNum) -> &'tcx String { |
| arena_cache |
| eval_always |
| desc { "looking up the extra filename for a crate" } |
| separate_provide_extern |
| } |
| |
| /// Gets the paths where the crate came from in the file system. |
| query crate_extern_paths(_: CrateNum) -> &'tcx Vec<PathBuf> { |
| arena_cache |
| eval_always |
| desc { "looking up the paths for extern crates" } |
| separate_provide_extern |
| } |
| |
| /// Given a crate and a trait, look up all impls of that trait in the crate. |
| /// Return `(impl_id, self_ty)`. |
| query implementations_of_trait(_: (CrateNum, DefId)) -> &'tcx [(DefId, Option<SimplifiedType>)] { |
| desc { "looking up implementations of a trait in a crate" } |
| separate_provide_extern |
| } |
| |
| /// Collects all incoherent impls for the given crate and type. |
| /// |
| /// Do not call this directly, but instead use the `incoherent_impls` query. |
| /// This query is only used to get the data necessary for that query. |
| query crate_incoherent_impls(key: (CrateNum, SimplifiedType)) -> &'tcx [DefId] { |
| desc { |tcx| "collecting all impls for a type in a crate" } |
| separate_provide_extern |
| } |
| |
| /// Get the corresponding native library from the `native_libraries` query |
| query native_library(def_id: DefId) -> Option<&'tcx NativeLib> { |
| desc { |tcx| "getting the native library for `{}`", tcx.def_path_str(def_id) } |
| } |
| |
| query inherit_sig_for_delegation_item(def_id: LocalDefId) -> &'tcx [Ty<'tcx>] { |
| desc { "inheriting delegation signature" } |
| } |
| |
| /// Does lifetime resolution on items. Importantly, we can't resolve |
| /// lifetimes directly on things like trait methods, because of trait params. |
| /// See `rustc_resolve::late::lifetimes` for details. |
| query resolve_bound_vars(owner_id: hir::OwnerId) -> &'tcx ResolveBoundVars { |
| arena_cache |
| desc { |tcx| "resolving lifetimes for `{}`", tcx.def_path_str(owner_id) } |
| } |
| query named_variable_map(owner_id: hir::OwnerId) -> &'tcx SortedMap<ItemLocalId, ResolvedArg> { |
| desc { |tcx| "looking up a named region inside `{}`", tcx.def_path_str(owner_id) } |
| } |
| query is_late_bound_map(owner_id: hir::OwnerId) -> Option<&'tcx FxIndexSet<ItemLocalId>> { |
| desc { |tcx| "testing if a region is late bound inside `{}`", tcx.def_path_str(owner_id) } |
| } |
| /// Returns the *default lifetime* to be used if a trait object type were to be passed for |
| /// the type parameter given by `DefId`. |
| /// |
| /// **Tip**: You can use `#[rustc_object_lifetime_default]` on an item to basically |
| /// print the result of this query for use in UI tests or for debugging purposes. |
| /// |
| /// # Examples |
| /// |
| /// - For `T` in `struct Foo<'a, T: 'a>(&'a T);`, this would be `Param('a)` |
| /// - For `T` in `struct Bar<'a, T>(&'a T);`, this would be `Empty` |
| /// |
| /// # Panics |
| /// |
| /// This query will panic if the given definition is not a type parameter. |
| query object_lifetime_default(def_id: DefId) -> ObjectLifetimeDefault { |
| desc { "looking up lifetime defaults for type parameter `{}`", tcx.def_path_str(def_id) } |
| separate_provide_extern |
| } |
| query late_bound_vars_map(owner_id: hir::OwnerId) |
| -> &'tcx SortedMap<ItemLocalId, Vec<ty::BoundVariableKind>> { |
| desc { |tcx| "looking up late bound vars inside `{}`", tcx.def_path_str(owner_id) } |
| } |
| /// For an opaque type, return the list of (captured lifetime, inner generic param). |
| /// ```ignore (illustrative) |
| /// fn foo<'a: 'a, 'b, T>(&'b u8) -> impl Into<Self> + 'b { ... } |
| /// ``` |
| /// |
| /// We would return `[('a, '_a), ('b, '_b)]`, with `'a` early-bound and `'b` late-bound. |
| /// |
| /// After hir_ty_lowering, we get: |
| /// ```ignore (pseudo-code) |
| /// opaque foo::<'a>::opaque<'_a, '_b>: Into<Foo<'_a>> + '_b; |
| /// ^^^^^^^^ inner generic params |
| /// fn foo<'a>: for<'b> fn(&'b u8) -> foo::<'a>::opaque::<'a, 'b> |
| /// ^^^^^^ captured lifetimes |
| /// ``` |
| query opaque_captured_lifetimes(def_id: LocalDefId) -> &'tcx [(ResolvedArg, LocalDefId)] { |
| desc { |tcx| "listing captured lifetimes for opaque `{}`", tcx.def_path_str(def_id) } |
| } |
| |
| /// Computes the visibility of the provided `def_id`. |
| /// |
| /// If the item from the `def_id` doesn't have a visibility, it will panic. For example |
| /// a generic type parameter will panic if you call this method on it: |
| /// |
| /// ``` |
| /// use std::fmt::Debug; |
| /// |
| /// pub trait Foo<T: Debug> {} |
| /// ``` |
| /// |
| /// In here, if you call `visibility` on `T`, it'll panic. |
| query visibility(def_id: DefId) -> ty::Visibility<DefId> { |
| desc { |tcx| "computing visibility of `{}`", tcx.def_path_str(def_id) } |
| separate_provide_extern |
| feedable |
| } |
| |
| query inhabited_predicate_adt(key: DefId) -> ty::inhabitedness::InhabitedPredicate<'tcx> { |
| desc { "computing the uninhabited predicate of `{:?}`", key } |
| } |
| |
| /// Do not call this query directly: invoke `Ty::inhabited_predicate` instead. |
| query inhabited_predicate_type(key: Ty<'tcx>) -> ty::inhabitedness::InhabitedPredicate<'tcx> { |
| desc { "computing the uninhabited predicate of `{}`", key } |
| } |
| |
| query dep_kind(_: CrateNum) -> CrateDepKind { |
| eval_always |
| desc { "fetching what a dependency looks like" } |
| separate_provide_extern |
| } |
| |
| /// Gets the name of the crate. |
| query crate_name(_: CrateNum) -> Symbol { |
| feedable |
| desc { "fetching what a crate is named" } |
| separate_provide_extern |
| } |
| query module_children(def_id: DefId) -> &'tcx [ModChild] { |
| desc { |tcx| "collecting child items of module `{}`", tcx.def_path_str(def_id) } |
| separate_provide_extern |
| } |
| |
| /// Gets the number of definitions in a foreign crate. |
| /// |
| /// This allows external tools to iterate over all definitions in a foreign crate. |
| /// |
| /// This should never be used for the local crate, instead use `iter_local_def_id`. |
| query num_extern_def_ids(_: CrateNum) -> usize { |
| desc { "fetching the number of definitions in a crate" } |
| separate_provide_extern |
| } |
| |
| query lib_features(_: CrateNum) -> &'tcx LibFeatures { |
| desc { "calculating the lib features defined in a crate" } |
| separate_provide_extern |
| arena_cache |
| } |
| /// Mapping from feature name to feature name based on the `implied_by` field of `#[unstable]` |
| /// attributes. If a `#[unstable(feature = "implier", implied_by = "impliee")]` attribute |
| /// exists, then this map will have a `impliee -> implier` entry. |
| /// |
| /// This mapping is necessary unless both the `#[stable]` and `#[unstable]` attributes should |
| /// specify their implications (both `implies` and `implied_by`). If only one of the two |
| /// attributes do (as in the current implementation, `implied_by` in `#[unstable]`), then this |
| /// mapping is necessary for diagnostics. When a "unnecessary feature attribute" error is |
| /// reported, only the `#[stable]` attribute information is available, so the map is necessary |
| /// to know that the feature implies another feature. If it were reversed, and the `#[stable]` |
| /// attribute had an `implies` meta item, then a map would be necessary when avoiding a "use of |
| /// unstable feature" error for a feature that was implied. |
| query stability_implications(_: CrateNum) -> &'tcx UnordMap<Symbol, Symbol> { |
| arena_cache |
| desc { "calculating the implications between `#[unstable]` features defined in a crate" } |
| separate_provide_extern |
| } |
| /// Whether the function is an intrinsic |
| query intrinsic_raw(def_id: DefId) -> Option<rustc_middle::ty::IntrinsicDef> { |
| desc { |tcx| "fetch intrinsic name if `{}` is an intrinsic", tcx.def_path_str(def_id) } |
| separate_provide_extern |
| } |
| /// Returns the lang items defined in another crate by loading it from metadata. |
| query get_lang_items(_: ()) -> &'tcx LanguageItems { |
| arena_cache |
| eval_always |
| desc { "calculating the lang items map" } |
| } |
| |
| /// Returns all diagnostic items defined in all crates. |
| query all_diagnostic_items(_: ()) -> &'tcx rustc_hir::diagnostic_items::DiagnosticItems { |
| arena_cache |
| eval_always |
| desc { "calculating the diagnostic items map" } |
| } |
| |
| /// Returns the lang items defined in another crate by loading it from metadata. |
| query defined_lang_items(_: CrateNum) -> &'tcx [(DefId, LangItem)] { |
| desc { "calculating the lang items defined in a crate" } |
| separate_provide_extern |
| } |
| |
| /// Returns the diagnostic items defined in a crate. |
| query diagnostic_items(_: CrateNum) -> &'tcx rustc_hir::diagnostic_items::DiagnosticItems { |
| arena_cache |
| desc { "calculating the diagnostic items map in a crate" } |
| separate_provide_extern |
| } |
| |
| query missing_lang_items(_: CrateNum) -> &'tcx [LangItem] { |
| desc { "calculating the missing lang items in a crate" } |
| separate_provide_extern |
| } |
| |
| /// The visible parent map is a map from every item to a visible parent. |
| /// It prefers the shortest visible path to an item. |
| /// Used for diagnostics, for example path trimming. |
| /// The parents are modules, enums or traits. |
| query visible_parent_map(_: ()) -> &'tcx DefIdMap<DefId> { |
| arena_cache |
| desc { "calculating the visible parent map" } |
| } |
| /// Collects the "trimmed", shortest accessible paths to all items for diagnostics. |
| /// See the [provider docs](`rustc_middle::ty::print::trimmed_def_paths`) for more info. |
| query trimmed_def_paths(_: ()) -> &'tcx DefIdMap<Symbol> { |
| arena_cache |
| desc { "calculating trimmed def paths" } |
| } |
| query missing_extern_crate_item(_: CrateNum) -> bool { |
| eval_always |
| desc { "seeing if we're missing an `extern crate` item for this crate" } |
| separate_provide_extern |
| } |
| query used_crate_source(_: CrateNum) -> &'tcx Arc<CrateSource> { |
| arena_cache |
| eval_always |
| desc { "looking at the source for a crate" } |
| separate_provide_extern |
| } |
| |
| /// Returns the debugger visualizers defined for this crate. |
| /// NOTE: This query has to be marked `eval_always` because it reads data |
| /// directly from disk that is not tracked anywhere else. I.e. it |
| /// represents a genuine input to the query system. |
| query debugger_visualizers(_: CrateNum) -> &'tcx Vec<DebuggerVisualizerFile> { |
| arena_cache |
| desc { "looking up the debugger visualizers for this crate" } |
| separate_provide_extern |
| eval_always |
| } |
| |
| query postorder_cnums(_: ()) -> &'tcx [CrateNum] { |
| eval_always |
| desc { "generating a postorder list of CrateNums" } |
| } |
| /// Returns whether or not the crate with CrateNum 'cnum' |
| /// is marked as a private dependency |
| query is_private_dep(c: CrateNum) -> bool { |
| eval_always |
| desc { "checking whether crate `{}` is a private dependency", c } |
| separate_provide_extern |
| } |
| query allocator_kind(_: ()) -> Option<AllocatorKind> { |
| eval_always |
| desc { "getting the allocator kind for the current crate" } |
| } |
| query alloc_error_handler_kind(_: ()) -> Option<AllocatorKind> { |
| eval_always |
| desc { "alloc error handler kind for the current crate" } |
| } |
| |
| query upvars_mentioned(def_id: DefId) -> Option<&'tcx FxIndexMap<hir::HirId, hir::Upvar>> { |
| desc { |tcx| "collecting upvars mentioned in `{}`", tcx.def_path_str(def_id) } |
| } |
| |
| /// All available crates in the graph, including those that should not be user-facing |
| /// (such as private crates). |
| query crates(_: ()) -> &'tcx [CrateNum] { |
| eval_always |
| desc { "fetching all foreign CrateNum instances" } |
| } |
| // Crates that are loaded non-speculatively (not for diagnostics or doc links). |
| // FIXME: This is currently only used for collecting lang items, but should be used instead of |
| // `crates` in most other cases too. |
| query used_crates(_: ()) -> &'tcx [CrateNum] { |
| eval_always |
| desc { "fetching `CrateNum`s for all crates loaded non-speculatively" } |
| } |
| |
| /// A list of all traits in a crate, used by rustdoc and error reporting. |
| query traits(_: CrateNum) -> &'tcx [DefId] { |
| desc { "fetching all traits in a crate" } |
| separate_provide_extern |
| } |
| |
| query trait_impls_in_crate(_: CrateNum) -> &'tcx [DefId] { |
| desc { "fetching all trait impls in a crate" } |
| separate_provide_extern |
| } |
| |
| query stable_order_of_exportable_impls(_: CrateNum) -> &'tcx FxIndexMap<DefId, usize> { |
| desc { "fetching the stable impl's order" } |
| separate_provide_extern |
| } |
| |
| query exportable_items(_: CrateNum) -> &'tcx [DefId] { |
| desc { "fetching all exportable items in a crate" } |
| separate_provide_extern |
| } |
| |
| /// The list of non-generic symbols exported from the given crate. |
| /// |
| /// This is separate from exported_generic_symbols to avoid having |
| /// to deserialize all non-generic symbols too for upstream crates |
| /// in the upstream_monomorphizations query. |
| /// |
| /// - All names contained in `exported_non_generic_symbols(cnum)` are |
| /// guaranteed to correspond to a publicly visible symbol in `cnum` |
| /// machine code. |
| /// - The `exported_non_generic_symbols` and `exported_generic_symbols` |
| /// sets of different crates do not intersect. |
| query exported_non_generic_symbols(cnum: CrateNum) -> &'tcx [(ExportedSymbol<'tcx>, SymbolExportInfo)] { |
| desc { "collecting exported non-generic symbols for crate `{}`", cnum} |
| cache_on_disk_if { *cnum == LOCAL_CRATE } |
| separate_provide_extern |
| } |
| |
| /// The list of generic symbols exported from the given crate. |
| /// |
| /// - All names contained in `exported_generic_symbols(cnum)` are |
| /// guaranteed to correspond to a publicly visible symbol in `cnum` |
| /// machine code. |
| /// - The `exported_non_generic_symbols` and `exported_generic_symbols` |
| /// sets of different crates do not intersect. |
| query exported_generic_symbols(cnum: CrateNum) -> &'tcx [(ExportedSymbol<'tcx>, SymbolExportInfo)] { |
| desc { "collecting exported generic symbols for crate `{}`", cnum} |
| cache_on_disk_if { *cnum == LOCAL_CRATE } |
| separate_provide_extern |
| } |
| |
| query collect_and_partition_mono_items(_: ()) -> MonoItemPartitions<'tcx> { |
| eval_always |
| desc { "collect_and_partition_mono_items" } |
| } |
| |
| query is_codegened_item(def_id: DefId) -> bool { |
| desc { |tcx| "determining whether `{}` needs codegen", tcx.def_path_str(def_id) } |
| } |
| |
| query codegen_unit(sym: Symbol) -> &'tcx CodegenUnit<'tcx> { |
| desc { "getting codegen unit `{sym}`" } |
| } |
| |
| query backend_optimization_level(_: ()) -> OptLevel { |
| desc { "optimization level used by backend" } |
| } |
| |
| /// Return the filenames where output artefacts shall be stored. |
| /// |
| /// This query returns an `&Arc` because codegen backends need the value even after the `TyCtxt` |
| /// has been destroyed. |
| query output_filenames(_: ()) -> &'tcx Arc<OutputFilenames> { |
| feedable |
| desc { "getting output filenames" } |
| arena_cache |
| } |
| |
| /// <div class="warning"> |
| /// |
| /// Do not call this query directly: Invoke `normalize` instead. |
| /// |
| /// </div> |
| query normalize_canonicalized_projection_ty( |
| goal: CanonicalAliasGoal<'tcx> |
| ) -> Result< |
| &'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, NormalizationResult<'tcx>>>, |
| NoSolution, |
| > { |
| desc { "normalizing `{}`", goal.canonical.value.value } |
| } |
| |
| /// <div class="warning"> |
| /// |
| /// Do not call this query directly: Invoke `normalize` instead. |
| /// |
| /// </div> |
| query normalize_canonicalized_free_alias( |
| goal: CanonicalAliasGoal<'tcx> |
| ) -> Result< |
| &'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, NormalizationResult<'tcx>>>, |
| NoSolution, |
| > { |
| desc { "normalizing `{}`", goal.canonical.value.value } |
| } |
| |
| /// <div class="warning"> |
| /// |
| /// Do not call this query directly: Invoke `normalize` instead. |
| /// |
| /// </div> |
| query normalize_canonicalized_inherent_projection_ty( |
| goal: CanonicalAliasGoal<'tcx> |
| ) -> Result< |
| &'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, NormalizationResult<'tcx>>>, |
| NoSolution, |
| > { |
| desc { "normalizing `{}`", goal.canonical.value.value } |
| } |
| |
| /// Do not call this query directly: invoke `try_normalize_erasing_regions` instead. |
| query try_normalize_generic_arg_after_erasing_regions( |
| goal: PseudoCanonicalInput<'tcx, GenericArg<'tcx>> |
| ) -> Result<GenericArg<'tcx>, NoSolution> { |
| desc { "normalizing `{}`", goal.value } |
| } |
| |
| query implied_outlives_bounds( |
| key: (CanonicalImpliedOutlivesBoundsGoal<'tcx>, bool) |
| ) -> Result< |
| &'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, Vec<OutlivesBound<'tcx>>>>, |
| NoSolution, |
| > { |
| desc { "computing implied outlives bounds for `{}` (hack disabled = {:?})", key.0.canonical.value.value.ty, key.1 } |
| } |
| |
| /// Do not call this query directly: |
| /// invoke `DropckOutlives::new(dropped_ty)).fully_perform(typeck.infcx)` instead. |
| query dropck_outlives( |
| goal: CanonicalDropckOutlivesGoal<'tcx> |
| ) -> Result< |
| &'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, DropckOutlivesResult<'tcx>>>, |
| NoSolution, |
| > { |
| desc { "computing dropck types for `{}`", goal.canonical.value.value.dropped_ty } |
| } |
| |
| /// Do not call this query directly: invoke `infcx.predicate_may_hold()` or |
| /// `infcx.predicate_must_hold()` instead. |
| query evaluate_obligation( |
| goal: CanonicalPredicateGoal<'tcx> |
| ) -> Result<EvaluationResult, OverflowError> { |
| desc { "evaluating trait selection obligation `{}`", goal.canonical.value.value } |
| } |
| |
| /// Do not call this query directly: part of the `Eq` type-op |
| query type_op_ascribe_user_type( |
| goal: CanonicalTypeOpAscribeUserTypeGoal<'tcx> |
| ) -> Result< |
| &'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, ()>>, |
| NoSolution, |
| > { |
| desc { "evaluating `type_op_ascribe_user_type` `{:?}`", goal.canonical.value.value } |
| } |
| |
| /// Do not call this query directly: part of the `ProvePredicate` type-op |
| query type_op_prove_predicate( |
| goal: CanonicalTypeOpProvePredicateGoal<'tcx> |
| ) -> Result< |
| &'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, ()>>, |
| NoSolution, |
| > { |
| desc { "evaluating `type_op_prove_predicate` `{:?}`", goal.canonical.value.value } |
| } |
| |
| /// Do not call this query directly: part of the `Normalize` type-op |
| query type_op_normalize_ty( |
| goal: CanonicalTypeOpNormalizeGoal<'tcx, Ty<'tcx>> |
| ) -> Result< |
| &'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, Ty<'tcx>>>, |
| NoSolution, |
| > { |
| desc { "normalizing `{}`", goal.canonical.value.value.value } |
| } |
| |
| /// Do not call this query directly: part of the `Normalize` type-op |
| query type_op_normalize_clause( |
| goal: CanonicalTypeOpNormalizeGoal<'tcx, ty::Clause<'tcx>> |
| ) -> Result< |
| &'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, ty::Clause<'tcx>>>, |
| NoSolution, |
| > { |
| desc { "normalizing `{:?}`", goal.canonical.value.value.value } |
| } |
| |
| /// Do not call this query directly: part of the `Normalize` type-op |
| query type_op_normalize_poly_fn_sig( |
| goal: CanonicalTypeOpNormalizeGoal<'tcx, ty::PolyFnSig<'tcx>> |
| ) -> Result< |
| &'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, ty::PolyFnSig<'tcx>>>, |
| NoSolution, |
| > { |
| desc { "normalizing `{:?}`", goal.canonical.value.value.value } |
| } |
| |
| /// Do not call this query directly: part of the `Normalize` type-op |
| query type_op_normalize_fn_sig( |
| goal: CanonicalTypeOpNormalizeGoal<'tcx, ty::FnSig<'tcx>> |
| ) -> Result< |
| &'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, ty::FnSig<'tcx>>>, |
| NoSolution, |
| > { |
| desc { "normalizing `{:?}`", goal.canonical.value.value.value } |
| } |
| |
| query instantiate_and_check_impossible_predicates(key: (DefId, GenericArgsRef<'tcx>)) -> bool { |
| desc { |tcx| |
| "checking impossible instantiated predicates: `{}`", |
| tcx.def_path_str(key.0) |
| } |
| } |
| |
| query is_impossible_associated_item(key: (DefId, DefId)) -> bool { |
| desc { |tcx| |
| "checking if `{}` is impossible to reference within `{}`", |
| tcx.def_path_str(key.1), |
| tcx.def_path_str(key.0), |
| } |
| } |
| |
| query method_autoderef_steps( |
| goal: CanonicalTyGoal<'tcx> |
| ) -> MethodAutoderefStepsResult<'tcx> { |
| desc { "computing autoderef types for `{}`", goal.canonical.value.value } |
| } |
| |
| /// Returns the Rust target features for the current target. These are not always the same as LLVM target features! |
| query rust_target_features(_: CrateNum) -> &'tcx UnordMap<String, rustc_target::target_features::Stability> { |
| arena_cache |
| eval_always |
| desc { "looking up Rust target features" } |
| } |
| |
| query implied_target_features(feature: Symbol) -> &'tcx Vec<Symbol> { |
| arena_cache |
| eval_always |
| desc { "looking up implied target features" } |
| } |
| |
| query features_query(_: ()) -> &'tcx rustc_feature::Features { |
| feedable |
| desc { "looking up enabled feature gates" } |
| } |
| |
| query crate_for_resolver((): ()) -> &'tcx Steal<(rustc_ast::Crate, rustc_ast::AttrVec)> { |
| feedable |
| no_hash |
| desc { "the ast before macro expansion and name resolution" } |
| } |
| |
| /// Attempt to resolve the given `DefId` to an `Instance`, for the |
| /// given generics args (`GenericArgsRef`), returning one of: |
| /// * `Ok(Some(instance))` on success |
| /// * `Ok(None)` when the `GenericArgsRef` are still too generic, |
| /// and therefore don't allow finding the final `Instance` |
| /// * `Err(ErrorGuaranteed)` when the `Instance` resolution process |
| /// couldn't complete due to errors elsewhere - this is distinct |
| /// from `Ok(None)` to avoid misleading diagnostics when an error |
| /// has already been/will be emitted, for the original cause. |
| query resolve_instance_raw( |
| key: ty::PseudoCanonicalInput<'tcx, (DefId, GenericArgsRef<'tcx>)> |
| ) -> Result<Option<ty::Instance<'tcx>>, ErrorGuaranteed> { |
| desc { "resolving instance `{}`", ty::Instance::new_raw(key.value.0, key.value.1) } |
| } |
| |
| query reveal_opaque_types_in_bounds(key: ty::Clauses<'tcx>) -> ty::Clauses<'tcx> { |
| desc { "revealing opaque types in `{:?}`", key } |
| } |
| |
| query limits(key: ()) -> Limits { |
| desc { "looking up limits" } |
| } |
| |
| /// Performs an HIR-based well-formed check on the item with the given `HirId`. If |
| /// we get an `Unimplemented` error that matches the provided `Predicate`, return |
| /// the cause of the newly created obligation. |
| /// |
| /// This is only used by error-reporting code to get a better cause (in particular, a better |
| /// span) for an *existing* error. Therefore, it is best-effort, and may never handle |
| /// all of the cases that the normal `ty::Ty`-based wfcheck does. This is fine, |
| /// because the `ty::Ty`-based wfcheck is always run. |
| query diagnostic_hir_wf_check( |
| key: (ty::Predicate<'tcx>, WellFormedLoc) |
| ) -> Option<&'tcx ObligationCause<'tcx>> { |
| arena_cache |
| eval_always |
| no_hash |
| desc { "performing HIR wf-checking for predicate `{:?}` at item `{:?}`", key.0, key.1 } |
| } |
| |
| /// The list of backend features computed from CLI flags (`-Ctarget-cpu`, `-Ctarget-feature`, |
| /// `--target` and similar). |
| query global_backend_features(_: ()) -> &'tcx Vec<String> { |
| arena_cache |
| eval_always |
| desc { "computing the backend features for CLI flags" } |
| } |
| |
| query check_validity_requirement(key: (ValidityRequirement, ty::PseudoCanonicalInput<'tcx, Ty<'tcx>>)) -> Result<bool, &'tcx ty::layout::LayoutError<'tcx>> { |
| desc { "checking validity requirement for `{}`: {}", key.1.value, key.0 } |
| } |
| |
| /// This takes the def-id of an associated item from a impl of a trait, |
| /// and checks its validity against the trait item it corresponds to. |
| /// |
| /// Any other def id will ICE. |
| query compare_impl_item(key: LocalDefId) -> Result<(), ErrorGuaranteed> { |
| desc { |tcx| "checking assoc item `{}` is compatible with trait definition", tcx.def_path_str(key) } |
| return_result_from_ensure_ok |
| } |
| |
| query deduced_param_attrs(def_id: DefId) -> &'tcx [ty::DeducedParamAttrs] { |
| desc { |tcx| "deducing parameter attributes for {}", tcx.def_path_str(def_id) } |
| separate_provide_extern |
| } |
| |
| query doc_link_resolutions(def_id: DefId) -> &'tcx DocLinkResMap { |
| eval_always |
| desc { "resolutions for documentation links for a module" } |
| separate_provide_extern |
| } |
| |
| query doc_link_traits_in_scope(def_id: DefId) -> &'tcx [DefId] { |
| eval_always |
| desc { "traits in scope for documentation links for a module" } |
| separate_provide_extern |
| } |
| |
| /// Get all item paths that were stripped by a `#[cfg]` in a particular crate. |
| /// Should not be called for the local crate before the resolver outputs are created, as it |
| /// is only fed there. |
| query stripped_cfg_items(cnum: CrateNum) -> &'tcx [StrippedCfgItem] { |
| desc { "getting cfg-ed out item names" } |
| separate_provide_extern |
| } |
| |
| query generics_require_sized_self(def_id: DefId) -> bool { |
| desc { "check whether the item has a `where Self: Sized` bound" } |
| } |
| |
| query cross_crate_inlinable(def_id: DefId) -> bool { |
| desc { "whether the item should be made inlinable across crates" } |
| separate_provide_extern |
| } |
| |
| /// Perform monomorphization-time checking on this item. |
| /// This is used for lints/errors that can only be checked once the instance is fully |
| /// monomorphized. |
| query check_mono_item(key: ty::Instance<'tcx>) { |
| desc { "monomorphization-time checking" } |
| } |
| |
| /// Builds the set of functions that should be skipped for the move-size check. |
| query skip_move_check_fns(_: ()) -> &'tcx FxIndexSet<DefId> { |
| arena_cache |
| desc { "functions to skip for move-size check" } |
| } |
| |
| query items_of_instance(key: (ty::Instance<'tcx>, CollectionMode)) -> (&'tcx [Spanned<MonoItem<'tcx>>], &'tcx [Spanned<MonoItem<'tcx>>]) { |
| desc { "collecting items used by `{}`", key.0 } |
| cache_on_disk_if { true } |
| } |
| |
| query size_estimate(key: ty::Instance<'tcx>) -> usize { |
| desc { "estimating codegen size of `{}`", key } |
| cache_on_disk_if { true } |
| } |
| |
| query anon_const_kind(def_id: DefId) -> ty::AnonConstKind { |
| desc { |tcx| "looking up anon const kind of `{}`", tcx.def_path_str(def_id) } |
| separate_provide_extern |
| } |
| |
| /// Checks for the nearest `#[sanitize(xyz = "off")]` or |
| /// `#[sanitize(xyz = "on")]` on this def and any enclosing defs, up to the |
| /// crate root. |
| /// |
| /// Returns the set of sanitizers that is explicitly disabled for this def. |
| query disabled_sanitizers_for(key: LocalDefId) -> SanitizerSet { |
| desc { |tcx| "checking what set of sanitizers are enabled on `{}`", tcx.def_path_str(key) } |
| feedable |
| } |
| } |
| |
| rustc_with_all_queries! { define_callbacks! } |
| rustc_feedable_queries! { define_feedable! } |