| use std::ptr; |
| |
| use rustc_ast::expand::autodiff_attrs::{AutoDiffAttrs, DiffActivity, DiffMode}; |
| use rustc_codegen_ssa::common::TypeKind; |
| use rustc_codegen_ssa::traits::{BaseTypeCodegenMethods, BuilderMethods}; |
| use rustc_middle::ty::{PseudoCanonicalInput, Ty, TyCtxt, TypingEnv}; |
| use rustc_middle::{bug, ty}; |
| use tracing::debug; |
| |
| use crate::builder::{Builder, PlaceRef, UNNAMED}; |
| use crate::context::SimpleCx; |
| use crate::declare::declare_simple_fn; |
| use crate::llvm; |
| use crate::llvm::{Metadata, True, Type}; |
| use crate::value::Value; |
| |
| pub(crate) fn adjust_activity_to_abi<'tcx>( |
| tcx: TyCtxt<'tcx>, |
| fn_ty: Ty<'tcx>, |
| da: &mut Vec<DiffActivity>, |
| ) { |
| if !matches!(fn_ty.kind(), ty::FnDef(..)) { |
| bug!("expected fn def for autodiff, got {:?}", fn_ty); |
| } |
| |
| // We don't actually pass the types back into the type system. |
| // All we do is decide how to handle the arguments. |
| let sig = fn_ty.fn_sig(tcx).skip_binder(); |
| |
| let mut new_activities = vec![]; |
| let mut new_positions = vec![]; |
| for (i, ty) in sig.inputs().iter().enumerate() { |
| if let Some(inner_ty) = ty.builtin_deref(true) { |
| if inner_ty.is_slice() { |
| // Now we need to figure out the size of each slice element in memory to allow |
| // safety checks and usability improvements in the backend. |
| let sty = match inner_ty.builtin_index() { |
| Some(sty) => sty, |
| None => { |
| panic!("slice element type unknown"); |
| } |
| }; |
| let pci = PseudoCanonicalInput { |
| typing_env: TypingEnv::fully_monomorphized(), |
| value: sty, |
| }; |
| |
| let layout = tcx.layout_of(pci); |
| let elem_size = match layout { |
| Ok(layout) => layout.size, |
| Err(_) => { |
| bug!("autodiff failed to compute slice element size"); |
| } |
| }; |
| let elem_size: u32 = elem_size.bytes() as u32; |
| |
| // We know that the length will be passed as extra arg. |
| if !da.is_empty() { |
| // We are looking at a slice. The length of that slice will become an |
| // extra integer on llvm level. Integers are always const. |
| // However, if the slice get's duplicated, we want to know to later check the |
| // size. So we mark the new size argument as FakeActivitySize. |
| // There is one FakeActivitySize per slice, so for convenience we store the |
| // slice element size in bytes in it. We will use the size in the backend. |
| let activity = match da[i] { |
| DiffActivity::DualOnly |
| | DiffActivity::Dual |
| | DiffActivity::Dualv |
| | DiffActivity::DuplicatedOnly |
| | DiffActivity::Duplicated => { |
| DiffActivity::FakeActivitySize(Some(elem_size)) |
| } |
| DiffActivity::Const => DiffActivity::Const, |
| _ => bug!("unexpected activity for ptr/ref"), |
| }; |
| new_activities.push(activity); |
| new_positions.push(i + 1); |
| } |
| |
| continue; |
| } |
| } |
| } |
| // now add the extra activities coming from slices |
| // Reverse order to not invalidate the indices |
| for _ in 0..new_activities.len() { |
| let pos = new_positions.pop().unwrap(); |
| let activity = new_activities.pop().unwrap(); |
| da.insert(pos, activity); |
| } |
| } |
| |
| // When we call the `__enzyme_autodiff` or `__enzyme_fwddiff` function, we need to pass all the |
| // original inputs, as well as metadata and the additional shadow arguments. |
| // This function matches the arguments from the outer function to the inner enzyme call. |
| // |
| // This function also considers that Rust level arguments not always match the llvm-ir level |
| // arguments. A slice, `&[f32]`, for example, is represented as a pointer and a length on |
| // llvm-ir level. The number of activities matches the number of Rust level arguments, so we |
| // need to match those. |
| // FIXME(ZuseZ4): This logic is a bit more complicated than it should be, can we simplify it |
| // using iterators and peek()? |
| fn match_args_from_caller_to_enzyme<'ll, 'tcx>( |
| cx: &SimpleCx<'ll>, |
| builder: &mut Builder<'_, 'll, 'tcx>, |
| width: u32, |
| args: &mut Vec<&'ll llvm::Value>, |
| inputs: &[DiffActivity], |
| outer_args: &[&'ll llvm::Value], |
| ) { |
| debug!("matching autodiff arguments"); |
| // We now handle the issue that Rust level arguments not always match the llvm-ir level |
| // arguments. A slice, `&[f32]`, for example, is represented as a pointer and a length on |
| // llvm-ir level. The number of activities matches the number of Rust level arguments, so we |
| // need to match those. |
| // FIXME(ZuseZ4): This logic is a bit more complicated than it should be, can we simplify it |
| // using iterators and peek()? |
| let mut outer_pos: usize = 0; |
| let mut activity_pos = 0; |
| |
| let enzyme_const = cx.create_metadata(b"enzyme_const"); |
| let enzyme_out = cx.create_metadata(b"enzyme_out"); |
| let enzyme_dup = cx.create_metadata(b"enzyme_dup"); |
| let enzyme_dupv = cx.create_metadata(b"enzyme_dupv"); |
| let enzyme_dupnoneed = cx.create_metadata(b"enzyme_dupnoneed"); |
| let enzyme_dupnoneedv = cx.create_metadata(b"enzyme_dupnoneedv"); |
| |
| while activity_pos < inputs.len() { |
| let diff_activity = inputs[activity_pos as usize]; |
| // Duplicated arguments received a shadow argument, into which enzyme will write the |
| // gradient. |
| let (activity, duplicated): (&Metadata, bool) = match diff_activity { |
| DiffActivity::None => panic!("not a valid input activity"), |
| DiffActivity::Const => (enzyme_const, false), |
| DiffActivity::Active => (enzyme_out, false), |
| DiffActivity::ActiveOnly => (enzyme_out, false), |
| DiffActivity::Dual => (enzyme_dup, true), |
| DiffActivity::Dualv => (enzyme_dupv, true), |
| DiffActivity::DualOnly => (enzyme_dupnoneed, true), |
| DiffActivity::DualvOnly => (enzyme_dupnoneedv, true), |
| DiffActivity::Duplicated => (enzyme_dup, true), |
| DiffActivity::DuplicatedOnly => (enzyme_dupnoneed, true), |
| DiffActivity::FakeActivitySize(_) => (enzyme_const, false), |
| }; |
| let outer_arg = outer_args[outer_pos]; |
| args.push(cx.get_metadata_value(activity)); |
| if matches!(diff_activity, DiffActivity::Dualv) { |
| let next_outer_arg = outer_args[outer_pos + 1]; |
| let elem_bytes_size: u64 = match inputs[activity_pos + 1] { |
| DiffActivity::FakeActivitySize(Some(s)) => s.into(), |
| _ => bug!("incorrect Dualv handling recognized."), |
| }; |
| // stride: sizeof(T) * n_elems. |
| // n_elems is the next integer. |
| // Now we multiply `4 * next_outer_arg` to get the stride. |
| let mul = unsafe { |
| llvm::LLVMBuildMul( |
| builder.llbuilder, |
| cx.get_const_int(cx.type_i64(), elem_bytes_size), |
| next_outer_arg, |
| UNNAMED, |
| ) |
| }; |
| args.push(mul); |
| } |
| args.push(outer_arg); |
| if duplicated { |
| // We know that duplicated args by construction have a following argument, |
| // so this can not be out of bounds. |
| let next_outer_arg = outer_args[outer_pos + 1]; |
| let next_outer_ty = cx.val_ty(next_outer_arg); |
| // FIXME(ZuseZ4): We should add support for Vec here too, but it's less urgent since |
| // vectors behind references (&Vec<T>) are already supported. Users can not pass a |
| // Vec by value for reverse mode, so this would only help forward mode autodiff. |
| let slice = { |
| if activity_pos + 1 >= inputs.len() { |
| // If there is no arg following our ptr, it also can't be a slice, |
| // since that would lead to a ptr, int pair. |
| false |
| } else { |
| let next_activity = inputs[activity_pos + 1]; |
| // We analyze the MIR types and add this dummy activity if we visit a slice. |
| matches!(next_activity, DiffActivity::FakeActivitySize(_)) |
| } |
| }; |
| if slice { |
| // A duplicated slice will have the following two outer_fn arguments: |
| // (..., ptr1, int1, ptr2, int2, ...). We add the following llvm-ir to our __enzyme call: |
| // (..., metadata! enzyme_dup, ptr, ptr, int1, ...). |
| // FIXME(ZuseZ4): We will upstream a safety check later which asserts that |
| // int2 >= int1, which means the shadow vector is large enough to store the gradient. |
| assert_eq!(cx.type_kind(next_outer_ty), TypeKind::Integer); |
| |
| let iterations = |
| if matches!(diff_activity, DiffActivity::Dualv) { 1 } else { width as usize }; |
| |
| for i in 0..iterations { |
| let next_outer_arg2 = outer_args[outer_pos + 2 * (i + 1)]; |
| let next_outer_ty2 = cx.val_ty(next_outer_arg2); |
| assert_eq!(cx.type_kind(next_outer_ty2), TypeKind::Pointer); |
| let next_outer_arg3 = outer_args[outer_pos + 2 * (i + 1) + 1]; |
| let next_outer_ty3 = cx.val_ty(next_outer_arg3); |
| assert_eq!(cx.type_kind(next_outer_ty3), TypeKind::Integer); |
| args.push(next_outer_arg2); |
| } |
| args.push(cx.get_metadata_value(enzyme_const)); |
| args.push(next_outer_arg); |
| outer_pos += 2 + 2 * iterations; |
| activity_pos += 2; |
| } else { |
| // A duplicated pointer will have the following two outer_fn arguments: |
| // (..., ptr, ptr, ...). We add the following llvm-ir to our __enzyme call: |
| // (..., metadata! enzyme_dup, ptr, ptr, ...). |
| if matches!(diff_activity, DiffActivity::Duplicated | DiffActivity::DuplicatedOnly) |
| { |
| assert_eq!(cx.type_kind(next_outer_ty), TypeKind::Pointer); |
| } |
| // In the case of Dual we don't have assumptions, e.g. f32 would be valid. |
| args.push(next_outer_arg); |
| outer_pos += 2; |
| activity_pos += 1; |
| |
| // Now, if width > 1, we need to account for that |
| for _ in 1..width { |
| let next_outer_arg = outer_args[outer_pos]; |
| args.push(next_outer_arg); |
| outer_pos += 1; |
| } |
| } |
| } else { |
| // We do not differentiate with resprect to this argument. |
| // We already added the metadata and argument above, so just increase the counters. |
| outer_pos += 1; |
| activity_pos += 1; |
| } |
| } |
| } |
| |
| /// When differentiating `fn_to_diff`, take a `outer_fn` and generate another |
| /// function with expected naming and calling conventions[^1] which will be |
| /// discovered by the enzyme LLVM pass and its body populated with the differentiated |
| /// `fn_to_diff`. `outer_fn` is then modified to have a call to the generated |
| /// function and handle the differences between the Rust calling convention and |
| /// Enzyme. |
| /// [^1]: <https://enzyme.mit.edu/getting_started/CallingConvention/> |
| // FIXME(ZuseZ4): `outer_fn` should include upstream safety checks to |
| // cover some assumptions of enzyme/autodiff, which could lead to UB otherwise. |
| pub(crate) fn generate_enzyme_call<'ll, 'tcx>( |
| builder: &mut Builder<'_, 'll, 'tcx>, |
| cx: &SimpleCx<'ll>, |
| fn_to_diff: &'ll Value, |
| outer_name: &str, |
| ret_ty: &'ll Type, |
| fn_args: &[&'ll Value], |
| attrs: AutoDiffAttrs, |
| dest: PlaceRef<'tcx, &'ll Value>, |
| ) { |
| // We have to pick the name depending on whether we want forward or reverse mode autodiff. |
| let mut ad_name: String = match attrs.mode { |
| DiffMode::Forward => "__enzyme_fwddiff", |
| DiffMode::Reverse => "__enzyme_autodiff", |
| _ => panic!("logic bug in autodiff, unrecognized mode"), |
| } |
| .to_string(); |
| |
| // add outer_name to ad_name to make it unique, in case users apply autodiff to multiple |
| // functions. Unwrap will only panic, if LLVM gave us an invalid string. |
| ad_name.push_str(outer_name); |
| |
| // Let us assume the user wrote the following function square: |
| // |
| // ```llvm |
| // define double @square(double %x) { |
| // entry: |
| // %0 = fmul double %x, %x |
| // ret double %0 |
| // } |
| // |
| // define double @dsquare(double %x) { |
| // return 0.0; |
| // } |
| // ``` |
| // |
| // so our `outer_fn` will be `dsquare`. The unsafe code section below now removes the placeholder |
| // code and inserts an autodiff call. We also add a declaration for the __enzyme_autodiff call. |
| // Again, the arguments to all functions are slightly simplified. |
| // ```llvm |
| // declare double @__enzyme_autodiff_square(...) |
| // |
| // define double @dsquare(double %x) { |
| // entry: |
| // %0 = tail call double (...) @__enzyme_autodiff_square(double (double)* nonnull @square, double %x) |
| // ret double %0 |
| // } |
| // ``` |
| let enzyme_ty = unsafe { llvm::LLVMFunctionType(ret_ty, ptr::null(), 0, True) }; |
| |
| // FIXME(ZuseZ4): the CC/Addr/Vis values are best effort guesses, we should look at tests and |
| // think a bit more about what should go here. |
| let cc = unsafe { llvm::LLVMGetFunctionCallConv(fn_to_diff) }; |
| let ad_fn = declare_simple_fn( |
| cx, |
| &ad_name, |
| llvm::CallConv::try_from(cc).expect("invalid callconv"), |
| llvm::UnnamedAddr::No, |
| llvm::Visibility::Default, |
| enzyme_ty, |
| ); |
| |
| let num_args = llvm::LLVMCountParams(&fn_to_diff); |
| let mut args = Vec::with_capacity(num_args as usize + 1); |
| args.push(fn_to_diff); |
| |
| let enzyme_primal_ret = cx.create_metadata(b"enzyme_primal_return"); |
| if matches!(attrs.ret_activity, DiffActivity::Dual | DiffActivity::Active) { |
| args.push(cx.get_metadata_value(enzyme_primal_ret)); |
| } |
| if attrs.width > 1 { |
| let enzyme_width = cx.create_metadata(b"enzyme_width"); |
| args.push(cx.get_metadata_value(enzyme_width)); |
| args.push(cx.get_const_int(cx.type_i64(), attrs.width as u64)); |
| } |
| |
| match_args_from_caller_to_enzyme( |
| &cx, |
| builder, |
| attrs.width, |
| &mut args, |
| &attrs.input_activity, |
| fn_args, |
| ); |
| |
| let call = builder.call(enzyme_ty, None, None, ad_fn, &args, None, None); |
| |
| builder.store_to_place(call, dest.val); |
| } |