blob: e2df3265f6f7d261fd7e0f4ba93e46fefcd1b2d8 [file] [log] [blame]
use std::ptr;
use rustc_ast::expand::autodiff_attrs::{AutoDiffAttrs, DiffActivity, DiffMode};
use rustc_codegen_ssa::common::TypeKind;
use rustc_codegen_ssa::traits::{BaseTypeCodegenMethods, BuilderMethods};
use rustc_middle::ty::{PseudoCanonicalInput, Ty, TyCtxt, TypingEnv};
use rustc_middle::{bug, ty};
use tracing::debug;
use crate::builder::{Builder, PlaceRef, UNNAMED};
use crate::context::SimpleCx;
use crate::declare::declare_simple_fn;
use crate::llvm;
use crate::llvm::{Metadata, True, Type};
use crate::value::Value;
pub(crate) fn adjust_activity_to_abi<'tcx>(
tcx: TyCtxt<'tcx>,
fn_ty: Ty<'tcx>,
da: &mut Vec<DiffActivity>,
) {
if !matches!(fn_ty.kind(), ty::FnDef(..)) {
bug!("expected fn def for autodiff, got {:?}", fn_ty);
}
// We don't actually pass the types back into the type system.
// All we do is decide how to handle the arguments.
let sig = fn_ty.fn_sig(tcx).skip_binder();
let mut new_activities = vec![];
let mut new_positions = vec![];
for (i, ty) in sig.inputs().iter().enumerate() {
if let Some(inner_ty) = ty.builtin_deref(true) {
if inner_ty.is_slice() {
// Now we need to figure out the size of each slice element in memory to allow
// safety checks and usability improvements in the backend.
let sty = match inner_ty.builtin_index() {
Some(sty) => sty,
None => {
panic!("slice element type unknown");
}
};
let pci = PseudoCanonicalInput {
typing_env: TypingEnv::fully_monomorphized(),
value: sty,
};
let layout = tcx.layout_of(pci);
let elem_size = match layout {
Ok(layout) => layout.size,
Err(_) => {
bug!("autodiff failed to compute slice element size");
}
};
let elem_size: u32 = elem_size.bytes() as u32;
// We know that the length will be passed as extra arg.
if !da.is_empty() {
// We are looking at a slice. The length of that slice will become an
// extra integer on llvm level. Integers are always const.
// However, if the slice get's duplicated, we want to know to later check the
// size. So we mark the new size argument as FakeActivitySize.
// There is one FakeActivitySize per slice, so for convenience we store the
// slice element size in bytes in it. We will use the size in the backend.
let activity = match da[i] {
DiffActivity::DualOnly
| DiffActivity::Dual
| DiffActivity::Dualv
| DiffActivity::DuplicatedOnly
| DiffActivity::Duplicated => {
DiffActivity::FakeActivitySize(Some(elem_size))
}
DiffActivity::Const => DiffActivity::Const,
_ => bug!("unexpected activity for ptr/ref"),
};
new_activities.push(activity);
new_positions.push(i + 1);
}
continue;
}
}
}
// now add the extra activities coming from slices
// Reverse order to not invalidate the indices
for _ in 0..new_activities.len() {
let pos = new_positions.pop().unwrap();
let activity = new_activities.pop().unwrap();
da.insert(pos, activity);
}
}
// When we call the `__enzyme_autodiff` or `__enzyme_fwddiff` function, we need to pass all the
// original inputs, as well as metadata and the additional shadow arguments.
// This function matches the arguments from the outer function to the inner enzyme call.
//
// This function also considers that Rust level arguments not always match the llvm-ir level
// arguments. A slice, `&[f32]`, for example, is represented as a pointer and a length on
// llvm-ir level. The number of activities matches the number of Rust level arguments, so we
// need to match those.
// FIXME(ZuseZ4): This logic is a bit more complicated than it should be, can we simplify it
// using iterators and peek()?
fn match_args_from_caller_to_enzyme<'ll, 'tcx>(
cx: &SimpleCx<'ll>,
builder: &mut Builder<'_, 'll, 'tcx>,
width: u32,
args: &mut Vec<&'ll llvm::Value>,
inputs: &[DiffActivity],
outer_args: &[&'ll llvm::Value],
) {
debug!("matching autodiff arguments");
// We now handle the issue that Rust level arguments not always match the llvm-ir level
// arguments. A slice, `&[f32]`, for example, is represented as a pointer and a length on
// llvm-ir level. The number of activities matches the number of Rust level arguments, so we
// need to match those.
// FIXME(ZuseZ4): This logic is a bit more complicated than it should be, can we simplify it
// using iterators and peek()?
let mut outer_pos: usize = 0;
let mut activity_pos = 0;
let enzyme_const = cx.create_metadata(b"enzyme_const");
let enzyme_out = cx.create_metadata(b"enzyme_out");
let enzyme_dup = cx.create_metadata(b"enzyme_dup");
let enzyme_dupv = cx.create_metadata(b"enzyme_dupv");
let enzyme_dupnoneed = cx.create_metadata(b"enzyme_dupnoneed");
let enzyme_dupnoneedv = cx.create_metadata(b"enzyme_dupnoneedv");
while activity_pos < inputs.len() {
let diff_activity = inputs[activity_pos as usize];
// Duplicated arguments received a shadow argument, into which enzyme will write the
// gradient.
let (activity, duplicated): (&Metadata, bool) = match diff_activity {
DiffActivity::None => panic!("not a valid input activity"),
DiffActivity::Const => (enzyme_const, false),
DiffActivity::Active => (enzyme_out, false),
DiffActivity::ActiveOnly => (enzyme_out, false),
DiffActivity::Dual => (enzyme_dup, true),
DiffActivity::Dualv => (enzyme_dupv, true),
DiffActivity::DualOnly => (enzyme_dupnoneed, true),
DiffActivity::DualvOnly => (enzyme_dupnoneedv, true),
DiffActivity::Duplicated => (enzyme_dup, true),
DiffActivity::DuplicatedOnly => (enzyme_dupnoneed, true),
DiffActivity::FakeActivitySize(_) => (enzyme_const, false),
};
let outer_arg = outer_args[outer_pos];
args.push(cx.get_metadata_value(activity));
if matches!(diff_activity, DiffActivity::Dualv) {
let next_outer_arg = outer_args[outer_pos + 1];
let elem_bytes_size: u64 = match inputs[activity_pos + 1] {
DiffActivity::FakeActivitySize(Some(s)) => s.into(),
_ => bug!("incorrect Dualv handling recognized."),
};
// stride: sizeof(T) * n_elems.
// n_elems is the next integer.
// Now we multiply `4 * next_outer_arg` to get the stride.
let mul = unsafe {
llvm::LLVMBuildMul(
builder.llbuilder,
cx.get_const_int(cx.type_i64(), elem_bytes_size),
next_outer_arg,
UNNAMED,
)
};
args.push(mul);
}
args.push(outer_arg);
if duplicated {
// We know that duplicated args by construction have a following argument,
// so this can not be out of bounds.
let next_outer_arg = outer_args[outer_pos + 1];
let next_outer_ty = cx.val_ty(next_outer_arg);
// FIXME(ZuseZ4): We should add support for Vec here too, but it's less urgent since
// vectors behind references (&Vec<T>) are already supported. Users can not pass a
// Vec by value for reverse mode, so this would only help forward mode autodiff.
let slice = {
if activity_pos + 1 >= inputs.len() {
// If there is no arg following our ptr, it also can't be a slice,
// since that would lead to a ptr, int pair.
false
} else {
let next_activity = inputs[activity_pos + 1];
// We analyze the MIR types and add this dummy activity if we visit a slice.
matches!(next_activity, DiffActivity::FakeActivitySize(_))
}
};
if slice {
// A duplicated slice will have the following two outer_fn arguments:
// (..., ptr1, int1, ptr2, int2, ...). We add the following llvm-ir to our __enzyme call:
// (..., metadata! enzyme_dup, ptr, ptr, int1, ...).
// FIXME(ZuseZ4): We will upstream a safety check later which asserts that
// int2 >= int1, which means the shadow vector is large enough to store the gradient.
assert_eq!(cx.type_kind(next_outer_ty), TypeKind::Integer);
let iterations =
if matches!(diff_activity, DiffActivity::Dualv) { 1 } else { width as usize };
for i in 0..iterations {
let next_outer_arg2 = outer_args[outer_pos + 2 * (i + 1)];
let next_outer_ty2 = cx.val_ty(next_outer_arg2);
assert_eq!(cx.type_kind(next_outer_ty2), TypeKind::Pointer);
let next_outer_arg3 = outer_args[outer_pos + 2 * (i + 1) + 1];
let next_outer_ty3 = cx.val_ty(next_outer_arg3);
assert_eq!(cx.type_kind(next_outer_ty3), TypeKind::Integer);
args.push(next_outer_arg2);
}
args.push(cx.get_metadata_value(enzyme_const));
args.push(next_outer_arg);
outer_pos += 2 + 2 * iterations;
activity_pos += 2;
} else {
// A duplicated pointer will have the following two outer_fn arguments:
// (..., ptr, ptr, ...). We add the following llvm-ir to our __enzyme call:
// (..., metadata! enzyme_dup, ptr, ptr, ...).
if matches!(diff_activity, DiffActivity::Duplicated | DiffActivity::DuplicatedOnly)
{
assert_eq!(cx.type_kind(next_outer_ty), TypeKind::Pointer);
}
// In the case of Dual we don't have assumptions, e.g. f32 would be valid.
args.push(next_outer_arg);
outer_pos += 2;
activity_pos += 1;
// Now, if width > 1, we need to account for that
for _ in 1..width {
let next_outer_arg = outer_args[outer_pos];
args.push(next_outer_arg);
outer_pos += 1;
}
}
} else {
// We do not differentiate with resprect to this argument.
// We already added the metadata and argument above, so just increase the counters.
outer_pos += 1;
activity_pos += 1;
}
}
}
/// When differentiating `fn_to_diff`, take a `outer_fn` and generate another
/// function with expected naming and calling conventions[^1] which will be
/// discovered by the enzyme LLVM pass and its body populated with the differentiated
/// `fn_to_diff`. `outer_fn` is then modified to have a call to the generated
/// function and handle the differences between the Rust calling convention and
/// Enzyme.
/// [^1]: <https://enzyme.mit.edu/getting_started/CallingConvention/>
// FIXME(ZuseZ4): `outer_fn` should include upstream safety checks to
// cover some assumptions of enzyme/autodiff, which could lead to UB otherwise.
pub(crate) fn generate_enzyme_call<'ll, 'tcx>(
builder: &mut Builder<'_, 'll, 'tcx>,
cx: &SimpleCx<'ll>,
fn_to_diff: &'ll Value,
outer_name: &str,
ret_ty: &'ll Type,
fn_args: &[&'ll Value],
attrs: AutoDiffAttrs,
dest: PlaceRef<'tcx, &'ll Value>,
) {
// We have to pick the name depending on whether we want forward or reverse mode autodiff.
let mut ad_name: String = match attrs.mode {
DiffMode::Forward => "__enzyme_fwddiff",
DiffMode::Reverse => "__enzyme_autodiff",
_ => panic!("logic bug in autodiff, unrecognized mode"),
}
.to_string();
// add outer_name to ad_name to make it unique, in case users apply autodiff to multiple
// functions. Unwrap will only panic, if LLVM gave us an invalid string.
ad_name.push_str(outer_name);
// Let us assume the user wrote the following function square:
//
// ```llvm
// define double @square(double %x) {
// entry:
// %0 = fmul double %x, %x
// ret double %0
// }
//
// define double @dsquare(double %x) {
// return 0.0;
// }
// ```
//
// so our `outer_fn` will be `dsquare`. The unsafe code section below now removes the placeholder
// code and inserts an autodiff call. We also add a declaration for the __enzyme_autodiff call.
// Again, the arguments to all functions are slightly simplified.
// ```llvm
// declare double @__enzyme_autodiff_square(...)
//
// define double @dsquare(double %x) {
// entry:
// %0 = tail call double (...) @__enzyme_autodiff_square(double (double)* nonnull @square, double %x)
// ret double %0
// }
// ```
let enzyme_ty = unsafe { llvm::LLVMFunctionType(ret_ty, ptr::null(), 0, True) };
// FIXME(ZuseZ4): the CC/Addr/Vis values are best effort guesses, we should look at tests and
// think a bit more about what should go here.
let cc = unsafe { llvm::LLVMGetFunctionCallConv(fn_to_diff) };
let ad_fn = declare_simple_fn(
cx,
&ad_name,
llvm::CallConv::try_from(cc).expect("invalid callconv"),
llvm::UnnamedAddr::No,
llvm::Visibility::Default,
enzyme_ty,
);
let num_args = llvm::LLVMCountParams(&fn_to_diff);
let mut args = Vec::with_capacity(num_args as usize + 1);
args.push(fn_to_diff);
let enzyme_primal_ret = cx.create_metadata(b"enzyme_primal_return");
if matches!(attrs.ret_activity, DiffActivity::Dual | DiffActivity::Active) {
args.push(cx.get_metadata_value(enzyme_primal_ret));
}
if attrs.width > 1 {
let enzyme_width = cx.create_metadata(b"enzyme_width");
args.push(cx.get_metadata_value(enzyme_width));
args.push(cx.get_const_int(cx.type_i64(), attrs.width as u64));
}
match_args_from_caller_to_enzyme(
&cx,
builder,
attrs.width,
&mut args,
&attrs.input_activity,
fn_args,
);
let call = builder.call(enzyme_ty, None, None, ad_fn, &args, None, None);
builder.store_to_place(call, dest.val);
}