blob: cd4e9683f2d8741097407cf97be7063137ffbdac [file] [log] [blame]
use std::mem;
use std::rc::Rc;
use rustc_abi::FieldIdx;
use rustc_data_structures::fx::{FxHashMap, FxIndexMap};
use rustc_hir::def_id::LocalDefId;
use rustc_middle::mir::ConstraintCategory;
use rustc_middle::ty::{self, TyCtxt};
use rustc_span::ErrorGuaranteed;
use smallvec::SmallVec;
use crate::consumers::BorrowckConsumer;
use crate::nll::compute_closure_requirements_modulo_opaques;
use crate::region_infer::opaque_types::{
apply_computed_concrete_opaque_types, clone_and_resolve_opaque_types,
compute_concrete_opaque_types, detect_opaque_types_added_while_handling_opaque_types,
};
use crate::type_check::{Locations, constraint_conversion};
use crate::{
ClosureRegionRequirements, CollectRegionConstraintsResult, ConcreteOpaqueTypes,
PropagatedBorrowCheckResults, borrowck_check_region_constraints,
borrowck_collect_region_constraints,
};
/// The shared context used by both the root as well as all its nested
/// items.
pub(super) struct BorrowCheckRootCtxt<'tcx> {
pub tcx: TyCtxt<'tcx>,
root_def_id: LocalDefId,
concrete_opaque_types: ConcreteOpaqueTypes<'tcx>,
/// The region constraints computed by [borrowck_collect_region_constraints]. This uses
/// an [FxIndexMap] to guarantee that iterating over it visits nested bodies before
/// their parents.
collect_region_constraints_results:
FxIndexMap<LocalDefId, CollectRegionConstraintsResult<'tcx>>,
propagated_borrowck_results: FxHashMap<LocalDefId, PropagatedBorrowCheckResults<'tcx>>,
tainted_by_errors: Option<ErrorGuaranteed>,
/// This should be `None` during normal compilation. See [`crate::consumers`] for more
/// information on how this is used.
pub consumer: Option<BorrowckConsumer<'tcx>>,
}
impl<'tcx> BorrowCheckRootCtxt<'tcx> {
pub(super) fn new(
tcx: TyCtxt<'tcx>,
root_def_id: LocalDefId,
consumer: Option<BorrowckConsumer<'tcx>>,
) -> BorrowCheckRootCtxt<'tcx> {
BorrowCheckRootCtxt {
tcx,
root_def_id,
concrete_opaque_types: Default::default(),
collect_region_constraints_results: Default::default(),
propagated_borrowck_results: Default::default(),
tainted_by_errors: None,
consumer,
}
}
pub(super) fn root_def_id(&self) -> LocalDefId {
self.root_def_id
}
pub(super) fn set_tainted_by_errors(&mut self, guar: ErrorGuaranteed) {
self.tainted_by_errors = Some(guar);
}
pub(super) fn used_mut_upvars(
&mut self,
nested_body_def_id: LocalDefId,
) -> &SmallVec<[FieldIdx; 8]> {
&self.propagated_borrowck_results[&nested_body_def_id].used_mut_upvars
}
pub(super) fn finalize(self) -> Result<&'tcx ConcreteOpaqueTypes<'tcx>, ErrorGuaranteed> {
if let Some(guar) = self.tainted_by_errors {
Err(guar)
} else {
Ok(self.tcx.arena.alloc(self.concrete_opaque_types))
}
}
fn handle_opaque_type_uses(&mut self) {
let mut per_body_info = Vec::new();
for input in self.collect_region_constraints_results.values_mut() {
let (num_entries, opaque_types) = clone_and_resolve_opaque_types(
&input.infcx,
&input.universal_region_relations,
&mut input.constraints,
);
input.deferred_opaque_type_errors = compute_concrete_opaque_types(
&input.infcx,
&input.universal_region_relations,
&input.constraints,
Rc::clone(&input.location_map),
&mut self.concrete_opaque_types,
&opaque_types,
);
per_body_info.push((num_entries, opaque_types));
}
for (input, (opaque_types_storage_num_entries, opaque_types)) in
self.collect_region_constraints_results.values_mut().zip(per_body_info)
{
if input.deferred_opaque_type_errors.is_empty() {
input.deferred_opaque_type_errors = apply_computed_concrete_opaque_types(
&input.infcx,
&input.body_owned,
&input.universal_region_relations.universal_regions,
&input.region_bound_pairs,
&input.known_type_outlives_obligations,
&mut input.constraints,
&mut self.concrete_opaque_types,
&opaque_types,
);
}
detect_opaque_types_added_while_handling_opaque_types(
&input.infcx,
opaque_types_storage_num_entries,
)
}
}
/// Computing defining uses of opaques may depend on the propagated region
/// requirements of nested bodies, while applying defining uses may introduce
/// additional region requirements we need to propagate.
///
/// This results in cyclic dependency. To compute the defining uses in parent
/// bodies, we need the closure requirements of its nested bodies, but to check
/// non-defining uses in nested bodies, we may rely on the defining uses in the
/// parent.
///
/// We handle this issue by applying closure requirements twice. Once using the
/// region constraints from before we've handled opaque types in the nested body
/// - which is used by the parent to handle its defining uses - and once after.
///
/// As a performance optimization, we also eagerly finish borrowck for bodies
/// which don't depend on opaque types. In this case they get removed from
/// `collect_region_constraints_results` and the final result gets put into
/// `propagated_borrowck_results`.
fn apply_closure_requirements_modulo_opaques(&mut self) {
let mut closure_requirements_modulo_opaques = FxHashMap::default();
// We need to `mem::take` both `self.collect_region_constraints_results` and
// `input.deferred_closure_requirements` as we otherwise can't iterate over
// them while mutably using the containing struct.
let collect_region_constraints_results =
mem::take(&mut self.collect_region_constraints_results);
// We iterate over all bodies here, visiting nested bodies before their parent.
for (def_id, mut input) in collect_region_constraints_results {
// A body depends on opaque types if it either has any opaque type uses itself,
// or it has a nested body which does.
//
// If the current body does not depend on any opaque types, we eagerly compute
// its final result and write it into `self.propagated_borrowck_results`. This
// avoids having to compute its closure requirements modulo regions, as they
// are just the same as its final closure requirements.
let mut depends_on_opaques = input.infcx.has_opaque_types_in_storage();
// Iterate over all nested bodies of `input`. If that nested body depends on
// opaque types, we apply its closure requirements modulo opaques. Otherwise
// we use the closure requirements from its final borrowck result.
//
// In case we've only applied the closure requirements modulo opaques, we have
// to later apply its closure requirements considering opaques, so we put that
// nested body back into `deferred_closure_requirements`.
for (def_id, args, locations) in mem::take(&mut input.deferred_closure_requirements) {
let closure_requirements = match self.propagated_borrowck_results.get(&def_id) {
None => {
depends_on_opaques = true;
input.deferred_closure_requirements.push((def_id, args, locations));
&closure_requirements_modulo_opaques[&def_id]
}
Some(result) => &result.closure_requirements,
};
Self::apply_closure_requirements(
&mut input,
closure_requirements,
def_id,
args,
locations,
);
}
// In case the current body does depend on opaques and is a nested body,
// we need to compute its closure requirements modulo opaques so that
// we're able to use it when visiting its parent later in this function.
//
// If the current body does not depend on opaque types, we finish borrowck
// and write its result into `propagated_borrowck_results`.
if depends_on_opaques {
if def_id != self.root_def_id {
let req = Self::compute_closure_requirements_modulo_opaques(&input);
closure_requirements_modulo_opaques.insert(def_id, req);
}
self.collect_region_constraints_results.insert(def_id, input);
} else {
assert!(input.deferred_closure_requirements.is_empty());
let result = borrowck_check_region_constraints(self, input);
self.propagated_borrowck_results.insert(def_id, result);
}
}
}
fn compute_closure_requirements_modulo_opaques(
input: &CollectRegionConstraintsResult<'tcx>,
) -> Option<ClosureRegionRequirements<'tcx>> {
compute_closure_requirements_modulo_opaques(
&input.infcx,
&input.body_owned,
Rc::clone(&input.location_map),
&input.universal_region_relations,
&input.constraints,
)
}
fn apply_closure_requirements(
input: &mut CollectRegionConstraintsResult<'tcx>,
closure_requirements: &Option<ClosureRegionRequirements<'tcx>>,
closure_def_id: LocalDefId,
args: ty::GenericArgsRef<'tcx>,
locations: Locations,
) {
if let Some(closure_requirements) = closure_requirements {
constraint_conversion::ConstraintConversion::new(
&input.infcx,
&input.universal_region_relations.universal_regions,
&input.region_bound_pairs,
&input.known_type_outlives_obligations,
locations,
input.body_owned.span, // irrelevant; will be overridden.
ConstraintCategory::Boring, // same as above.
&mut input.constraints,
)
.apply_closure_requirements(closure_requirements, closure_def_id, args);
}
}
pub(super) fn do_mir_borrowck(&mut self) {
// The list of all bodies we need to borrowck. This first looks at
// nested bodies, and then their parents. This means accessing e.g.
// `used_mut_upvars` for a closure can assume that we've already
// checked that closure.
let all_bodies = self
.tcx
.nested_bodies_within(self.root_def_id)
.iter()
.chain(std::iter::once(self.root_def_id));
for def_id in all_bodies {
let result = borrowck_collect_region_constraints(self, def_id);
self.collect_region_constraints_results.insert(def_id, result);
}
// We now apply the closure requirements of nested bodies modulo
// regions. In case a body does not depend on opaque types, we
// eagerly check its region constraints and use the final closure
// requirements.
//
// We eagerly finish borrowck for bodies which don't depend on
// opaques.
self.apply_closure_requirements_modulo_opaques();
// We handle opaque type uses for all bodies together.
self.handle_opaque_type_uses();
// Now walk over all bodies which depend on opaque types and finish borrowck.
//
// We first apply the final closure requirements from nested bodies which also
// depend on opaque types and then finish borrow checking the parent. Bodies
// which don't depend on opaques have already been fully borrowchecked in
// `apply_closure_requirements_modulo_opaques` as an optimization.
for (def_id, mut input) in mem::take(&mut self.collect_region_constraints_results) {
for (def_id, args, locations) in mem::take(&mut input.deferred_closure_requirements) {
// We visit nested bodies before their parent, so we're already
// done with nested bodies at this point.
let closure_requirements =
&self.propagated_borrowck_results[&def_id].closure_requirements;
Self::apply_closure_requirements(
&mut input,
closure_requirements,
def_id,
args,
locations,
);
}
let result = borrowck_check_region_constraints(self, input);
self.propagated_borrowck_results.insert(def_id, result);
}
}
}