blob: 9d2aa92b7b8b6d546a275f1bd36f2767e7d2b410 [file] [log] [blame]
use rustc_attr_data_structures::InstructionSetAttr;
use rustc_data_structures::fx::{FxHashMap, FxHashSet, FxIndexSet};
use rustc_data_structures::unord::{UnordMap, UnordSet};
use rustc_errors::Applicability;
use rustc_hir as hir;
use rustc_hir::def::DefKind;
use rustc_hir::def_id::{DefId, LOCAL_CRATE, LocalDefId};
use rustc_middle::middle::codegen_fn_attrs::TargetFeature;
use rustc_middle::query::Providers;
use rustc_middle::ty::TyCtxt;
use rustc_session::Session;
use rustc_session::lint::builtin::AARCH64_SOFTFLOAT_NEON;
use rustc_session::parse::feature_err;
use rustc_span::{Span, Symbol, sym};
use rustc_target::target_features::{self, RUSTC_SPECIFIC_FEATURES, Stability};
use smallvec::SmallVec;
use crate::errors;
/// Compute the enabled target features from the `#[target_feature]` function attribute.
/// Enabled target features are added to `target_features`.
pub(crate) fn from_target_feature_attr(
tcx: TyCtxt<'_>,
did: LocalDefId,
attr: &hir::Attribute,
rust_target_features: &UnordMap<String, target_features::Stability>,
target_features: &mut Vec<TargetFeature>,
) {
let Some(list) = attr.meta_item_list() else { return };
let bad_item = |span| {
let msg = "malformed `target_feature` attribute input";
let code = "enable = \"..\"";
tcx.dcx()
.struct_span_err(span, msg)
.with_span_suggestion(span, "must be of the form", code, Applicability::HasPlaceholders)
.emit();
};
let rust_features = tcx.features();
let abi_feature_constraints = tcx.sess.target.abi_required_features();
for item in list {
// Only `enable = ...` is accepted in the meta-item list.
if !item.has_name(sym::enable) {
bad_item(item.span());
continue;
}
// Must be of the form `enable = "..."` (a string).
let Some(value) = item.value_str() else {
bad_item(item.span());
continue;
};
// We allow comma separation to enable multiple features.
for feature in value.as_str().split(',') {
let Some(stability) = rust_target_features.get(feature) else {
let msg = format!("the feature named `{feature}` is not valid for this target");
let mut err = tcx.dcx().struct_span_err(item.span(), msg);
err.span_label(item.span(), format!("`{feature}` is not valid for this target"));
if let Some(stripped) = feature.strip_prefix('+') {
let valid = rust_target_features.contains_key(stripped);
if valid {
err.help("consider removing the leading `+` in the feature name");
}
}
err.emit();
continue;
};
// Only allow target features whose feature gates have been enabled
// and which are permitted to be toggled.
if let Err(reason) = stability.toggle_allowed() {
tcx.dcx().emit_err(errors::ForbiddenTargetFeatureAttr {
span: item.span(),
feature,
reason,
});
} else if let Some(nightly_feature) = stability.requires_nightly()
&& !rust_features.enabled(nightly_feature)
{
feature_err(
&tcx.sess,
nightly_feature,
item.span(),
format!("the target feature `{feature}` is currently unstable"),
)
.emit();
} else {
// Add this and the implied features.
let feature_sym = Symbol::intern(feature);
for &name in tcx.implied_target_features(feature_sym) {
// But ensure the ABI does not forbid enabling this.
// Here we do assume that the backend doesn't add even more implied features
// we don't know about, at least no features that would have ABI effects!
// We skip this logic in rustdoc, where we want to allow all target features of
// all targets, so we can't check their ABI compatibility and anyway we are not
// generating code so "it's fine".
if !tcx.sess.opts.actually_rustdoc {
if abi_feature_constraints.incompatible.contains(&name.as_str()) {
// For "neon" specifically, we emit an FCW instead of a hard error.
// See <https://github.com/rust-lang/rust/issues/134375>.
if tcx.sess.target.arch == "aarch64" && name.as_str() == "neon" {
tcx.emit_node_span_lint(
AARCH64_SOFTFLOAT_NEON,
tcx.local_def_id_to_hir_id(did),
item.span(),
errors::Aarch64SoftfloatNeon,
);
} else {
tcx.dcx().emit_err(errors::ForbiddenTargetFeatureAttr {
span: item.span(),
feature: name.as_str(),
reason: "this feature is incompatible with the target ABI",
});
}
}
}
target_features.push(TargetFeature { name, implied: name != feature_sym })
}
}
}
}
}
/// Computes the set of target features used in a function for the purposes of
/// inline assembly.
fn asm_target_features(tcx: TyCtxt<'_>, did: DefId) -> &FxIndexSet<Symbol> {
let mut target_features = tcx.sess.unstable_target_features.clone();
if tcx.def_kind(did).has_codegen_attrs() {
let attrs = tcx.codegen_fn_attrs(did);
target_features.extend(attrs.target_features.iter().map(|feature| feature.name));
match attrs.instruction_set {
None => {}
Some(InstructionSetAttr::ArmA32) => {
// FIXME(#120456) - is `swap_remove` correct?
target_features.swap_remove(&sym::thumb_mode);
}
Some(InstructionSetAttr::ArmT32) => {
target_features.insert(sym::thumb_mode);
}
}
}
tcx.arena.alloc(target_features)
}
/// Checks the function annotated with `#[target_feature]` is not a safe
/// trait method implementation, reporting an error if it is.
pub(crate) fn check_target_feature_trait_unsafe(tcx: TyCtxt<'_>, id: LocalDefId, attr_span: Span) {
if let DefKind::AssocFn = tcx.def_kind(id) {
let parent_id = tcx.local_parent(id);
if let DefKind::Trait | DefKind::Impl { of_trait: true } = tcx.def_kind(parent_id) {
tcx.dcx().emit_err(errors::TargetFeatureSafeTrait {
span: attr_span,
def: tcx.def_span(id),
});
}
}
}
/// Parse the value of `-Ctarget-feature`, also expanding implied features,
/// and call the closure for each (expanded) Rust feature. If the list contains
/// a syntactically invalid item (not starting with `+`/`-`), the error callback is invoked.
fn parse_rust_feature_flag<'a>(
sess: &'a Session,
err_callback: impl Fn(&'a str),
mut callback: impl FnMut(
/* base_feature */ &'a str,
/* with_implied */ FxHashSet<&'a str>,
/* enable */ bool,
),
) {
// A cache for the backwards implication map.
let mut inverse_implied_features: Option<FxHashMap<&str, FxHashSet<&str>>> = None;
for feature in sess.opts.cg.target_feature.split(',') {
if let Some(base_feature) = feature.strip_prefix('+') {
// Skip features that are not target features, but rustc features.
if RUSTC_SPECIFIC_FEATURES.contains(&base_feature) {
continue;
}
callback(base_feature, sess.target.implied_target_features(base_feature), true)
} else if let Some(base_feature) = feature.strip_prefix('-') {
// Skip features that are not target features, but rustc features.
if RUSTC_SPECIFIC_FEATURES.contains(&base_feature) {
continue;
}
// If `f1` implies `f2`, then `!f2` implies `!f1` -- this is standard logical
// contraposition. So we have to find all the reverse implications of `base_feature` and
// disable them, too.
let inverse_implied_features = inverse_implied_features.get_or_insert_with(|| {
let mut set: FxHashMap<&str, FxHashSet<&str>> = FxHashMap::default();
for (f, _, is) in sess.target.rust_target_features() {
for i in is.iter() {
set.entry(i).or_default().insert(f);
}
}
set
});
// Inverse implied target features have their own inverse implied target features, so we
// traverse the map until there are no more features to add.
let mut features = FxHashSet::default();
let mut new_features = vec![base_feature];
while let Some(new_feature) = new_features.pop() {
if features.insert(new_feature) {
if let Some(implied_features) = inverse_implied_features.get(&new_feature) {
new_features.extend(implied_features)
}
}
}
callback(base_feature, features, false)
} else if !feature.is_empty() {
err_callback(feature)
}
}
}
/// Utility function for a codegen backend to compute `cfg(target_feature)`, or more specifically,
/// to populate `sess.unstable_target_features` and `sess.target_features` (these are the first and
/// 2nd component of the return value, respectively).
///
/// `target_base_has_feature` should check whether the given feature (a Rust feature name!) is
/// enabled in the "base" target machine, i.e., without applying `-Ctarget-feature`.
///
/// We do not have to worry about RUSTC_SPECIFIC_FEATURES here, those are handled elsewhere.
pub fn cfg_target_feature(
sess: &Session,
mut target_base_has_feature: impl FnMut(&str) -> bool,
) -> (Vec<Symbol>, Vec<Symbol>) {
// Compute which of the known target features are enabled in the 'base' target machine. We only
// consider "supported" features; "forbidden" features are not reflected in `cfg` as of now.
let mut features: UnordSet<Symbol> = sess
.target
.rust_target_features()
.iter()
.filter(|(feature, _, _)| target_base_has_feature(feature))
.map(|(feature, _, _)| Symbol::intern(feature))
.collect();
// Add enabled and remove disabled features.
parse_rust_feature_flag(
sess,
/* err_callback */
|_| {
// Errors are already emitted in `flag_to_backend_features`; avoid duplicates.
},
|_base_feature, new_features, enabled| {
// Iteration order is irrelevant since this only influences an `UnordSet`.
#[allow(rustc::potential_query_instability)]
if enabled {
features.extend(new_features.into_iter().map(|f| Symbol::intern(f)));
} else {
// Remove `new_features` from `features`.
for new in new_features {
features.remove(&Symbol::intern(new));
}
}
},
);
// Filter enabled features based on feature gates.
let f = |allow_unstable| {
sess.target
.rust_target_features()
.iter()
.filter_map(|(feature, gate, _)| {
// The `allow_unstable` set is used by rustc internally to determine which target
// features are truly available, so we want to return even perma-unstable
// "forbidden" features.
if allow_unstable
|| (gate.in_cfg()
&& (sess.is_nightly_build() || gate.requires_nightly().is_none()))
{
Some(Symbol::intern(feature))
} else {
None
}
})
.filter(|feature| features.contains(&feature))
.collect()
};
(f(true), f(false))
}
/// Given a map from target_features to whether they are enabled or disabled, ensure only valid
/// combinations are allowed.
pub fn check_tied_features(
sess: &Session,
features: &FxHashMap<&str, bool>,
) -> Option<&'static [&'static str]> {
if !features.is_empty() {
for tied in sess.target.tied_target_features() {
// Tied features must be set to the same value, or not set at all
let mut tied_iter = tied.iter();
let enabled = features.get(tied_iter.next().unwrap());
if tied_iter.any(|f| enabled != features.get(f)) {
return Some(tied);
}
}
}
None
}
/// Translates the `-Ctarget-feature` flag into a backend target feature list.
///
/// `to_backend_features` converts a Rust feature name into a list of backend feature names; this is
/// used for diagnostic purposes only.
///
/// `extend_backend_features` extends the set of backend features (assumed to be in mutable state
/// accessible by that closure) to enable/disable the given Rust feature name.
pub fn flag_to_backend_features<'a, const N: usize>(
sess: &'a Session,
diagnostics: bool,
to_backend_features: impl Fn(&'a str) -> SmallVec<[&'a str; N]>,
mut extend_backend_features: impl FnMut(&'a str, /* enable */ bool),
) {
let known_features = sess.target.rust_target_features();
// Compute implied features
let mut rust_features = vec![];
parse_rust_feature_flag(
sess,
/* err_callback */
|feature| {
if diagnostics {
sess.dcx().emit_warn(errors::UnknownCTargetFeaturePrefix { feature });
}
},
|base_feature, new_features, enable| {
rust_features.extend(
UnordSet::from(new_features).to_sorted_stable_ord().iter().map(|&&s| (enable, s)),
);
// Check feature validity.
if diagnostics {
let feature_state = known_features.iter().find(|&&(v, _, _)| v == base_feature);
match feature_state {
None => {
// This is definitely not a valid Rust feature name. Maybe it is a backend
// feature name? If so, give a better error message.
let rust_feature =
known_features.iter().find_map(|&(rust_feature, _, _)| {
let backend_features = to_backend_features(rust_feature);
if backend_features.contains(&base_feature)
&& !backend_features.contains(&rust_feature)
{
Some(rust_feature)
} else {
None
}
});
let unknown_feature = if let Some(rust_feature) = rust_feature {
errors::UnknownCTargetFeature {
feature: base_feature,
rust_feature: errors::PossibleFeature::Some { rust_feature },
}
} else {
errors::UnknownCTargetFeature {
feature: base_feature,
rust_feature: errors::PossibleFeature::None,
}
};
sess.dcx().emit_warn(unknown_feature);
}
Some((_, stability, _)) => {
if let Err(reason) = stability.toggle_allowed() {
sess.dcx().emit_warn(errors::ForbiddenCTargetFeature {
feature: base_feature,
enabled: if enable { "enabled" } else { "disabled" },
reason,
});
} else if stability.requires_nightly().is_some() {
// An unstable feature. Warn about using it. It makes little sense
// to hard-error here since we just warn about fully unknown
// features above.
sess.dcx().emit_warn(errors::UnstableCTargetFeature {
feature: base_feature,
});
}
}
}
}
},
);
if diagnostics {
// FIXME(nagisa): figure out how to not allocate a full hashmap here.
if let Some(f) = check_tied_features(
sess,
&FxHashMap::from_iter(rust_features.iter().map(|&(enable, feature)| (feature, enable))),
) {
sess.dcx().emit_err(errors::TargetFeatureDisableOrEnable {
features: f,
span: None,
missing_features: None,
});
}
}
// Add this to the backend features.
for (enable, feature) in rust_features {
extend_backend_features(feature, enable);
}
}
/// Computes the backend target features to be added to account for retpoline flags.
/// Used by both LLVM and GCC since their target features are, conveniently, the same.
pub fn retpoline_features_by_flags(sess: &Session, features: &mut Vec<String>) {
// -Zretpoline without -Zretpoline-external-thunk enables
// retpoline-indirect-branches and retpoline-indirect-calls target features
let unstable_opts = &sess.opts.unstable_opts;
if unstable_opts.retpoline && !unstable_opts.retpoline_external_thunk {
features.push("+retpoline-indirect-branches".into());
features.push("+retpoline-indirect-calls".into());
}
// -Zretpoline-external-thunk (maybe, with -Zretpoline too) enables
// retpoline-external-thunk, retpoline-indirect-branches and
// retpoline-indirect-calls target features
if unstable_opts.retpoline_external_thunk {
features.push("+retpoline-external-thunk".into());
features.push("+retpoline-indirect-branches".into());
features.push("+retpoline-indirect-calls".into());
}
}
pub(crate) fn provide(providers: &mut Providers) {
*providers = Providers {
rust_target_features: |tcx, cnum| {
assert_eq!(cnum, LOCAL_CRATE);
if tcx.sess.opts.actually_rustdoc {
// HACK: rustdoc would like to pretend that we have all the target features, so we
// have to merge all the lists into one. To ensure an unstable target never prevents
// a stable one from working, we merge the stability info of all instances of the
// same target feature name, with the "most stable" taking precedence. And then we
// hope that this doesn't cause issues anywhere else in the compiler...
let mut result: UnordMap<String, Stability> = Default::default();
for (name, stability) in rustc_target::target_features::all_rust_features() {
use std::collections::hash_map::Entry;
match result.entry(name.to_owned()) {
Entry::Vacant(vacant_entry) => {
vacant_entry.insert(stability);
}
Entry::Occupied(mut occupied_entry) => {
// Merge the two stabilities, "more stable" taking precedence.
match (occupied_entry.get(), stability) {
(Stability::Stable, _)
| (
Stability::Unstable { .. },
Stability::Unstable { .. } | Stability::Forbidden { .. },
)
| (Stability::Forbidden { .. }, Stability::Forbidden { .. }) => {
// The stability in the entry is at least as good as the new
// one, just keep it.
}
_ => {
// Overwrite stabilite.
occupied_entry.insert(stability);
}
}
}
}
}
result
} else {
tcx.sess
.target
.rust_target_features()
.iter()
.map(|(a, b, _)| (a.to_string(), *b))
.collect()
}
},
implied_target_features: |tcx, feature: Symbol| {
let feature = feature.as_str();
UnordSet::from(tcx.sess.target.implied_target_features(feature))
.into_sorted_stable_ord()
.into_iter()
.map(|s| Symbol::intern(s))
.collect()
},
asm_target_features,
..*providers
}
}