| use std::f32::consts; |
| |
| /// Miri adds some extra errors to float functions; make sure the tests still pass. |
| /// These values are purely used as a canary to test against and are thus not a stable guarantee Rust provides. |
| /// They serve as a way to get an idea of the real precision of floating point operations on different platforms. |
| const APPROX_DELTA: f32 = if cfg!(miri) { 1e-3 } else { 1e-6 }; |
| |
| #[allow(unused_macros)] |
| macro_rules! assert_f32_biteq { |
| ($left : expr, $right : expr) => { |
| let l: &f32 = &$left; |
| let r: &f32 = &$right; |
| let lb = l.to_bits(); |
| let rb = r.to_bits(); |
| assert_eq!(lb, rb, "float {l} ({lb:#010x}) is not bitequal to {r} ({rb:#010x})"); |
| }; |
| } |
| |
| #[test] |
| fn test_powf() { |
| let nan: f32 = f32::NAN; |
| let inf: f32 = f32::INFINITY; |
| let neg_inf: f32 = f32::NEG_INFINITY; |
| assert_eq!(1.0f32.powf(1.0), 1.0); |
| assert_approx_eq!(3.4f32.powf(4.5), 246.408218, APPROX_DELTA); |
| assert_approx_eq!(2.7f32.powf(-3.2), 0.041652); |
| assert_approx_eq!((-3.1f32).powf(2.0), 9.61, APPROX_DELTA); |
| assert_approx_eq!(5.9f32.powf(-2.0), 0.028727); |
| assert_eq!(8.3f32.powf(0.0), 1.0); |
| assert!(nan.powf(2.0).is_nan()); |
| assert_eq!(inf.powf(2.0), inf); |
| assert_eq!(neg_inf.powf(3.0), neg_inf); |
| } |
| |
| #[test] |
| fn test_exp() { |
| assert_eq!(1.0, 0.0f32.exp()); |
| assert_approx_eq!(2.718282, 1.0f32.exp(), APPROX_DELTA); |
| assert_approx_eq!(148.413162, 5.0f32.exp(), APPROX_DELTA); |
| |
| let inf: f32 = f32::INFINITY; |
| let neg_inf: f32 = f32::NEG_INFINITY; |
| let nan: f32 = f32::NAN; |
| assert_eq!(inf, inf.exp()); |
| assert_eq!(0.0, neg_inf.exp()); |
| assert!(nan.exp().is_nan()); |
| } |
| |
| #[test] |
| fn test_exp2() { |
| assert_approx_eq!(32.0, 5.0f32.exp2(), APPROX_DELTA); |
| assert_eq!(1.0, 0.0f32.exp2()); |
| |
| let inf: f32 = f32::INFINITY; |
| let neg_inf: f32 = f32::NEG_INFINITY; |
| let nan: f32 = f32::NAN; |
| assert_eq!(inf, inf.exp2()); |
| assert_eq!(0.0, neg_inf.exp2()); |
| assert!(nan.exp2().is_nan()); |
| } |
| |
| #[test] |
| fn test_ln() { |
| let nan: f32 = f32::NAN; |
| let inf: f32 = f32::INFINITY; |
| let neg_inf: f32 = f32::NEG_INFINITY; |
| assert_approx_eq!(1.0f32.exp().ln(), 1.0); |
| assert!(nan.ln().is_nan()); |
| assert_eq!(inf.ln(), inf); |
| assert!(neg_inf.ln().is_nan()); |
| assert!((-2.3f32).ln().is_nan()); |
| assert_eq!((-0.0f32).ln(), neg_inf); |
| assert_eq!(0.0f32.ln(), neg_inf); |
| assert_approx_eq!(4.0f32.ln(), 1.386294, APPROX_DELTA); |
| } |
| |
| #[test] |
| fn test_log() { |
| let nan: f32 = f32::NAN; |
| let inf: f32 = f32::INFINITY; |
| let neg_inf: f32 = f32::NEG_INFINITY; |
| assert_approx_eq!(10.0f32.log(10.0), 1.0); |
| assert_approx_eq!(2.3f32.log(3.5), 0.664858); |
| assert_approx_eq!(1.0f32.exp().log(1.0f32.exp()), 1.0, APPROX_DELTA); |
| assert!(1.0f32.log(1.0).is_nan()); |
| assert!(1.0f32.log(-13.9).is_nan()); |
| assert!(nan.log(2.3).is_nan()); |
| assert_eq!(inf.log(10.0), inf); |
| assert!(neg_inf.log(8.8).is_nan()); |
| assert!((-2.3f32).log(0.1).is_nan()); |
| assert_eq!((-0.0f32).log(2.0), neg_inf); |
| assert_eq!(0.0f32.log(7.0), neg_inf); |
| } |
| |
| #[test] |
| fn test_log2() { |
| let nan: f32 = f32::NAN; |
| let inf: f32 = f32::INFINITY; |
| let neg_inf: f32 = f32::NEG_INFINITY; |
| assert_approx_eq!(10.0f32.log2(), 3.321928, APPROX_DELTA); |
| assert_approx_eq!(2.3f32.log2(), 1.201634); |
| assert_approx_eq!(1.0f32.exp().log2(), 1.442695, APPROX_DELTA); |
| assert!(nan.log2().is_nan()); |
| assert_eq!(inf.log2(), inf); |
| assert!(neg_inf.log2().is_nan()); |
| assert!((-2.3f32).log2().is_nan()); |
| assert_eq!((-0.0f32).log2(), neg_inf); |
| assert_eq!(0.0f32.log2(), neg_inf); |
| } |
| |
| #[test] |
| fn test_log10() { |
| let nan: f32 = f32::NAN; |
| let inf: f32 = f32::INFINITY; |
| let neg_inf: f32 = f32::NEG_INFINITY; |
| assert_approx_eq!(10.0f32.log10(), 1.0); |
| assert_approx_eq!(2.3f32.log10(), 0.361728); |
| assert_approx_eq!(1.0f32.exp().log10(), 0.434294); |
| assert_eq!(1.0f32.log10(), 0.0); |
| assert!(nan.log10().is_nan()); |
| assert_eq!(inf.log10(), inf); |
| assert!(neg_inf.log10().is_nan()); |
| assert!((-2.3f32).log10().is_nan()); |
| assert_eq!((-0.0f32).log10(), neg_inf); |
| assert_eq!(0.0f32.log10(), neg_inf); |
| } |
| |
| #[test] |
| fn test_asinh() { |
| assert_eq!(0.0f32.asinh(), 0.0f32); |
| assert_eq!((-0.0f32).asinh(), -0.0f32); |
| |
| let inf: f32 = f32::INFINITY; |
| let neg_inf: f32 = f32::NEG_INFINITY; |
| let nan: f32 = f32::NAN; |
| assert_eq!(inf.asinh(), inf); |
| assert_eq!(neg_inf.asinh(), neg_inf); |
| assert!(nan.asinh().is_nan()); |
| assert!((-0.0f32).asinh().is_sign_negative()); // issue 63271 |
| assert_approx_eq!(2.0f32.asinh(), 1.443635475178810342493276740273105f32); |
| assert_approx_eq!((-2.0f32).asinh(), -1.443635475178810342493276740273105f32); |
| // regression test for the catastrophic cancellation fixed in 72486 |
| assert_approx_eq!((-3000.0f32).asinh(), -8.699514775987968673236893537700647f32); |
| |
| // test for low accuracy from issue 104548 |
| assert_approx_eq!(60.0f32, 60.0f32.sinh().asinh()); |
| // mul needed for approximate comparison to be meaningful |
| assert_approx_eq!(1.0f32, 1e-15f32.sinh().asinh() * 1e15f32); |
| } |
| |
| #[test] |
| fn test_acosh() { |
| assert_eq!(1.0f32.acosh(), 0.0f32); |
| assert!(0.999f32.acosh().is_nan()); |
| |
| let inf: f32 = f32::INFINITY; |
| let neg_inf: f32 = f32::NEG_INFINITY; |
| let nan: f32 = f32::NAN; |
| assert_eq!(inf.acosh(), inf); |
| assert!(neg_inf.acosh().is_nan()); |
| assert!(nan.acosh().is_nan()); |
| assert_approx_eq!(2.0f32.acosh(), 1.31695789692481670862504634730796844f32); |
| assert_approx_eq!(3.0f32.acosh(), 1.76274717403908605046521864995958461f32); |
| |
| // test for low accuracy from issue 104548 |
| assert_approx_eq!(60.0f32, 60.0f32.cosh().acosh(), APPROX_DELTA); |
| } |
| |
| #[test] |
| fn test_atanh() { |
| assert_eq!(0.0f32.atanh(), 0.0f32); |
| assert_eq!((-0.0f32).atanh(), -0.0f32); |
| |
| let inf32: f32 = f32::INFINITY; |
| let neg_inf32: f32 = f32::NEG_INFINITY; |
| assert_eq!(1.0f32.atanh(), inf32); |
| assert_eq!((-1.0f32).atanh(), neg_inf32); |
| |
| assert!(2f64.atanh().atanh().is_nan()); |
| assert!((-2f64).atanh().atanh().is_nan()); |
| |
| let inf64: f32 = f32::INFINITY; |
| let neg_inf64: f32 = f32::NEG_INFINITY; |
| let nan32: f32 = f32::NAN; |
| assert!(inf64.atanh().is_nan()); |
| assert!(neg_inf64.atanh().is_nan()); |
| assert!(nan32.atanh().is_nan()); |
| |
| assert_approx_eq!(0.5f32.atanh(), 0.54930614433405484569762261846126285f32); |
| assert_approx_eq!((-0.5f32).atanh(), -0.54930614433405484569762261846126285f32); |
| } |
| |
| #[test] |
| fn test_gamma() { |
| // precision can differ between platforms |
| assert_approx_eq!(1.0f32.gamma(), 1.0f32); |
| assert_approx_eq!(2.0f32.gamma(), 1.0f32); |
| assert_approx_eq!(3.0f32.gamma(), 2.0f32); |
| assert_approx_eq!(4.0f32.gamma(), 6.0f32); |
| assert_approx_eq!(5.0f32.gamma(), 24.0f32); |
| assert_approx_eq!(0.5f32.gamma(), consts::PI.sqrt()); |
| assert_approx_eq!((-0.5f32).gamma(), -2.0 * consts::PI.sqrt()); |
| assert_eq!(0.0f32.gamma(), f32::INFINITY); |
| assert_eq!((-0.0f32).gamma(), f32::NEG_INFINITY); |
| assert!((-1.0f32).gamma().is_nan()); |
| assert!((-2.0f32).gamma().is_nan()); |
| assert!(f32::NAN.gamma().is_nan()); |
| assert!(f32::NEG_INFINITY.gamma().is_nan()); |
| assert_eq!(f32::INFINITY.gamma(), f32::INFINITY); |
| assert_eq!(171.71f32.gamma(), f32::INFINITY); |
| } |
| |
| #[test] |
| fn test_ln_gamma() { |
| assert_approx_eq!(1.0f32.ln_gamma().0, 0.0f32); |
| assert_eq!(1.0f32.ln_gamma().1, 1); |
| assert_approx_eq!(2.0f32.ln_gamma().0, 0.0f32); |
| assert_eq!(2.0f32.ln_gamma().1, 1); |
| assert_approx_eq!(3.0f32.ln_gamma().0, 2.0f32.ln()); |
| assert_eq!(3.0f32.ln_gamma().1, 1); |
| assert_approx_eq!((-0.5f32).ln_gamma().0, (2.0 * consts::PI.sqrt()).ln()); |
| assert_eq!((-0.5f32).ln_gamma().1, -1); |
| } |
| |
| #[test] |
| fn test_real_consts() { |
| let pi: f32 = consts::PI; |
| let frac_pi_2: f32 = consts::FRAC_PI_2; |
| let frac_pi_3: f32 = consts::FRAC_PI_3; |
| let frac_pi_4: f32 = consts::FRAC_PI_4; |
| let frac_pi_6: f32 = consts::FRAC_PI_6; |
| let frac_pi_8: f32 = consts::FRAC_PI_8; |
| let frac_1_pi: f32 = consts::FRAC_1_PI; |
| let frac_2_pi: f32 = consts::FRAC_2_PI; |
| let frac_2_sqrtpi: f32 = consts::FRAC_2_SQRT_PI; |
| let sqrt2: f32 = consts::SQRT_2; |
| let frac_1_sqrt2: f32 = consts::FRAC_1_SQRT_2; |
| let e: f32 = consts::E; |
| let log2_e: f32 = consts::LOG2_E; |
| let log10_e: f32 = consts::LOG10_E; |
| let ln_2: f32 = consts::LN_2; |
| let ln_10: f32 = consts::LN_10; |
| |
| assert_approx_eq!(frac_pi_2, pi / 2f32); |
| assert_approx_eq!(frac_pi_3, pi / 3f32, APPROX_DELTA); |
| assert_approx_eq!(frac_pi_4, pi / 4f32); |
| assert_approx_eq!(frac_pi_6, pi / 6f32); |
| assert_approx_eq!(frac_pi_8, pi / 8f32); |
| assert_approx_eq!(frac_1_pi, 1f32 / pi); |
| assert_approx_eq!(frac_2_pi, 2f32 / pi); |
| assert_approx_eq!(frac_2_sqrtpi, 2f32 / pi.sqrt()); |
| assert_approx_eq!(sqrt2, 2f32.sqrt()); |
| assert_approx_eq!(frac_1_sqrt2, 1f32 / 2f32.sqrt()); |
| assert_approx_eq!(log2_e, e.log2()); |
| assert_approx_eq!(log10_e, e.log10()); |
| assert_approx_eq!(ln_2, 2f32.ln()); |
| assert_approx_eq!(ln_10, 10f32.ln(), APPROX_DELTA); |
| } |