| use rustc_abi::{ArmCall, CanonAbi, HasDataLayout, TyAbiInterface}; |
| |
| use crate::callconv::{ArgAbi, FnAbi, Reg, RegKind, Uniform}; |
| use crate::spec::HasTargetSpec; |
| |
| fn is_homogeneous_aggregate<'a, Ty, C>(cx: &C, arg: &mut ArgAbi<'a, Ty>) -> Option<Uniform> |
| where |
| Ty: TyAbiInterface<'a, C> + Copy, |
| C: HasDataLayout, |
| { |
| arg.layout.homogeneous_aggregate(cx).ok().and_then(|ha| ha.unit()).and_then(|unit| { |
| let size = arg.layout.size; |
| |
| // Ensure we have at most four uniquely addressable members. |
| if size > unit.size.checked_mul(4, cx).unwrap() { |
| return None; |
| } |
| |
| let valid_unit = match unit.kind { |
| RegKind::Integer => false, |
| RegKind::Float => true, |
| RegKind::Vector => size.bits() == 64 || size.bits() == 128, |
| }; |
| |
| valid_unit.then_some(Uniform::consecutive(unit, size)) |
| }) |
| } |
| |
| fn classify_ret<'a, Ty, C>(cx: &C, ret: &mut ArgAbi<'a, Ty>, vfp: bool) |
| where |
| Ty: TyAbiInterface<'a, C> + Copy, |
| C: HasDataLayout, |
| { |
| if !ret.layout.is_sized() { |
| // Not touching this... |
| return; |
| } |
| if !ret.layout.is_aggregate() { |
| ret.extend_integer_width_to(32); |
| return; |
| } |
| |
| if vfp { |
| if let Some(uniform) = is_homogeneous_aggregate(cx, ret) { |
| ret.cast_to(uniform); |
| return; |
| } |
| } |
| |
| let size = ret.layout.size; |
| let bits = size.bits(); |
| if bits <= 32 { |
| ret.cast_to(Uniform::new(Reg::i32(), size)); |
| return; |
| } |
| ret.make_indirect(); |
| } |
| |
| fn classify_arg<'a, Ty, C>(cx: &C, arg: &mut ArgAbi<'a, Ty>, vfp: bool) |
| where |
| Ty: TyAbiInterface<'a, C> + Copy, |
| C: HasDataLayout, |
| { |
| if !arg.layout.is_sized() { |
| // Not touching this... |
| return; |
| } |
| if !arg.layout.is_aggregate() { |
| arg.extend_integer_width_to(32); |
| return; |
| } |
| |
| if vfp { |
| if let Some(uniform) = is_homogeneous_aggregate(cx, arg) { |
| arg.cast_to(uniform); |
| return; |
| } |
| } |
| |
| let align = arg.layout.align.abi.bytes(); |
| let total = arg.layout.size; |
| arg.cast_to(Uniform::consecutive(if align <= 4 { Reg::i32() } else { Reg::i64() }, total)); |
| } |
| |
| pub(crate) fn compute_abi_info<'a, Ty, C>(cx: &C, fn_abi: &mut FnAbi<'a, Ty>) |
| where |
| Ty: TyAbiInterface<'a, C> + Copy, |
| C: HasDataLayout + HasTargetSpec, |
| { |
| // If this is a target with a hard-float ABI, and the function is not explicitly |
| // `extern "aapcs"`, then we must use the VFP registers for homogeneous aggregates. |
| let vfp = cx.target_spec().llvm_target.ends_with("hf") |
| && fn_abi.conv != CanonAbi::Arm(ArmCall::Aapcs) |
| && !fn_abi.c_variadic; |
| |
| if !fn_abi.ret.is_ignore() { |
| classify_ret(cx, &mut fn_abi.ret, vfp); |
| } |
| |
| for arg in fn_abi.args.iter_mut() { |
| if arg.is_ignore() { |
| continue; |
| } |
| classify_arg(cx, arg, vfp); |
| } |
| } |