| //! Defines how the compiler represents types internally. |
| //! |
| //! Two important entities in this module are: |
| //! |
| //! - [`rustc_middle::ty::Ty`], used to represent the semantics of a type. |
| //! - [`rustc_middle::ty::TyCtxt`], the central data structure in the compiler. |
| //! |
| //! For more information, see ["The `ty` module: representing types"] in the rustc-dev-guide. |
| //! |
| //! ["The `ty` module: representing types"]: https://rustc-dev-guide.rust-lang.org/ty.html |
| |
| #![allow(rustc::usage_of_ty_tykind)] |
| |
| use std::assert_matches::assert_matches; |
| use std::fmt::Debug; |
| use std::hash::{Hash, Hasher}; |
| use std::marker::PhantomData; |
| use std::num::NonZero; |
| use std::ptr::NonNull; |
| use std::{fmt, iter, str}; |
| |
| pub use adt::*; |
| pub use assoc::*; |
| pub use generic_args::{GenericArgKind, TermKind, *}; |
| pub use generics::*; |
| pub use intrinsic::IntrinsicDef; |
| use rustc_abi::{Align, FieldIdx, Integer, IntegerType, ReprFlags, ReprOptions, VariantIdx}; |
| use rustc_ast::node_id::NodeMap; |
| pub use rustc_ast_ir::{Movability, Mutability, try_visit}; |
| use rustc_data_structures::fx::{FxHashMap, FxHashSet, FxIndexMap, FxIndexSet}; |
| use rustc_data_structures::intern::Interned; |
| use rustc_data_structures::stable_hasher::{HashStable, StableHasher}; |
| use rustc_data_structures::steal::Steal; |
| use rustc_data_structures::unord::{UnordMap, UnordSet}; |
| use rustc_errors::{Diag, ErrorGuaranteed, LintBuffer}; |
| use rustc_hir::attrs::{AttributeKind, StrippedCfgItem}; |
| use rustc_hir::def::{CtorKind, CtorOf, DefKind, DocLinkResMap, LifetimeRes, Res}; |
| use rustc_hir::def_id::{CrateNum, DefId, DefIdMap, LocalDefId, LocalDefIdMap}; |
| use rustc_hir::definitions::DisambiguatorState; |
| use rustc_hir::{LangItem, attrs as attr, find_attr}; |
| use rustc_index::IndexVec; |
| use rustc_index::bit_set::BitMatrix; |
| use rustc_macros::{ |
| Decodable, Encodable, HashStable, TyDecodable, TyEncodable, TypeFoldable, TypeVisitable, |
| extension, |
| }; |
| use rustc_query_system::ich::StableHashingContext; |
| use rustc_serialize::{Decodable, Encodable}; |
| pub use rustc_session::lint::RegisteredTools; |
| use rustc_span::hygiene::MacroKind; |
| use rustc_span::{DUMMY_SP, ExpnId, ExpnKind, Ident, Span, Symbol, sym}; |
| pub use rustc_type_ir::data_structures::{DelayedMap, DelayedSet}; |
| pub use rustc_type_ir::fast_reject::DeepRejectCtxt; |
| #[allow( |
| hidden_glob_reexports, |
| rustc::usage_of_type_ir_inherent, |
| rustc::non_glob_import_of_type_ir_inherent |
| )] |
| use rustc_type_ir::inherent; |
| pub use rustc_type_ir::relate::VarianceDiagInfo; |
| pub use rustc_type_ir::solve::SizedTraitKind; |
| pub use rustc_type_ir::*; |
| #[allow(hidden_glob_reexports, unused_imports)] |
| use rustc_type_ir::{InferCtxtLike, Interner}; |
| use tracing::{debug, instrument}; |
| pub use vtable::*; |
| use {rustc_ast as ast, rustc_hir as hir}; |
| |
| pub use self::closure::{ |
| BorrowKind, CAPTURE_STRUCT_LOCAL, CaptureInfo, CapturedPlace, ClosureTypeInfo, |
| MinCaptureInformationMap, MinCaptureList, RootVariableMinCaptureList, UpvarCapture, UpvarId, |
| UpvarPath, analyze_coroutine_closure_captures, is_ancestor_or_same_capture, |
| place_to_string_for_capture, |
| }; |
| pub use self::consts::{ |
| AnonConstKind, AtomicOrdering, Const, ConstInt, ConstKind, ConstToValTreeResult, Expr, |
| ExprKind, ScalarInt, UnevaluatedConst, ValTree, ValTreeKind, Value, |
| }; |
| pub use self::context::{ |
| CtxtInterners, CurrentGcx, DeducedParamAttrs, Feed, FreeRegionInfo, GlobalCtxt, Lift, TyCtxt, |
| TyCtxtFeed, tls, |
| }; |
| pub use self::fold::*; |
| pub use self::instance::{Instance, InstanceKind, ReifyReason, UnusedGenericParams}; |
| pub use self::list::{List, ListWithCachedTypeInfo}; |
| pub use self::opaque_types::OpaqueTypeKey; |
| pub use self::pattern::{Pattern, PatternKind}; |
| pub use self::predicate::{ |
| AliasTerm, ArgOutlivesPredicate, Clause, ClauseKind, CoercePredicate, ExistentialPredicate, |
| ExistentialPredicateStableCmpExt, ExistentialProjection, ExistentialTraitRef, |
| HostEffectPredicate, NormalizesTo, OutlivesPredicate, PolyCoercePredicate, |
| PolyExistentialPredicate, PolyExistentialProjection, PolyExistentialTraitRef, |
| PolyProjectionPredicate, PolyRegionOutlivesPredicate, PolySubtypePredicate, PolyTraitPredicate, |
| PolyTraitRef, PolyTypeOutlivesPredicate, Predicate, PredicateKind, ProjectionPredicate, |
| RegionOutlivesPredicate, SubtypePredicate, TraitPredicate, TraitRef, TypeOutlivesPredicate, |
| }; |
| pub use self::region::{ |
| BoundRegion, BoundRegionKind, EarlyParamRegion, LateParamRegion, LateParamRegionKind, Region, |
| RegionKind, RegionVid, |
| }; |
| pub use self::rvalue_scopes::RvalueScopes; |
| pub use self::sty::{ |
| AliasTy, Article, Binder, BoundTy, BoundTyKind, BoundVariableKind, CanonicalPolyFnSig, |
| CoroutineArgsExt, EarlyBinder, FnSig, InlineConstArgs, InlineConstArgsParts, ParamConst, |
| ParamTy, PolyFnSig, TyKind, TypeAndMut, TypingMode, UpvarArgs, |
| }; |
| pub use self::trait_def::TraitDef; |
| pub use self::typeck_results::{ |
| CanonicalUserType, CanonicalUserTypeAnnotation, CanonicalUserTypeAnnotations, IsIdentity, |
| Rust2024IncompatiblePatInfo, TypeckResults, UserType, UserTypeAnnotationIndex, UserTypeKind, |
| }; |
| pub use self::visit::*; |
| use crate::error::{OpaqueHiddenTypeMismatch, TypeMismatchReason}; |
| use crate::metadata::ModChild; |
| use crate::middle::privacy::EffectiveVisibilities; |
| use crate::mir::{Body, CoroutineLayout, CoroutineSavedLocal, SourceInfo}; |
| use crate::query::{IntoQueryParam, Providers}; |
| use crate::ty; |
| use crate::ty::codec::{TyDecoder, TyEncoder}; |
| pub use crate::ty::diagnostics::*; |
| use crate::ty::fast_reject::SimplifiedType; |
| use crate::ty::layout::LayoutError; |
| use crate::ty::util::Discr; |
| use crate::ty::walk::TypeWalker; |
| |
| pub mod abstract_const; |
| pub mod adjustment; |
| pub mod cast; |
| pub mod codec; |
| pub mod error; |
| pub mod fast_reject; |
| pub mod inhabitedness; |
| pub mod layout; |
| pub mod normalize_erasing_regions; |
| pub mod pattern; |
| pub mod print; |
| pub mod relate; |
| pub mod significant_drop_order; |
| pub mod trait_def; |
| pub mod util; |
| pub mod vtable; |
| |
| mod adt; |
| mod assoc; |
| mod closure; |
| mod consts; |
| mod context; |
| mod diagnostics; |
| mod elaborate_impl; |
| mod erase_regions; |
| mod fold; |
| mod generic_args; |
| mod generics; |
| mod impls_ty; |
| mod instance; |
| mod intrinsic; |
| mod list; |
| mod opaque_types; |
| mod predicate; |
| mod region; |
| mod rvalue_scopes; |
| mod structural_impls; |
| #[allow(hidden_glob_reexports)] |
| mod sty; |
| mod typeck_results; |
| mod visit; |
| |
| // Data types |
| |
| #[derive(Debug, HashStable)] |
| pub struct ResolverGlobalCtxt { |
| pub visibilities_for_hashing: Vec<(LocalDefId, Visibility)>, |
| /// Item with a given `LocalDefId` was defined during macro expansion with ID `ExpnId`. |
| pub expn_that_defined: UnordMap<LocalDefId, ExpnId>, |
| pub effective_visibilities: EffectiveVisibilities, |
| pub extern_crate_map: UnordMap<LocalDefId, CrateNum>, |
| pub maybe_unused_trait_imports: FxIndexSet<LocalDefId>, |
| pub module_children: LocalDefIdMap<Vec<ModChild>>, |
| pub glob_map: FxIndexMap<LocalDefId, FxIndexSet<Symbol>>, |
| pub main_def: Option<MainDefinition>, |
| pub trait_impls: FxIndexMap<DefId, Vec<LocalDefId>>, |
| /// A list of proc macro LocalDefIds, written out in the order in which |
| /// they are declared in the static array generated by proc_macro_harness. |
| pub proc_macros: Vec<LocalDefId>, |
| /// Mapping from ident span to path span for paths that don't exist as written, but that |
| /// exist under `std`. For example, wrote `str::from_utf8` instead of `std::str::from_utf8`. |
| pub confused_type_with_std_module: FxIndexMap<Span, Span>, |
| pub doc_link_resolutions: FxIndexMap<LocalDefId, DocLinkResMap>, |
| pub doc_link_traits_in_scope: FxIndexMap<LocalDefId, Vec<DefId>>, |
| pub all_macro_rules: UnordSet<Symbol>, |
| pub stripped_cfg_items: Vec<StrippedCfgItem>, |
| } |
| |
| /// Resolutions that should only be used for lowering. |
| /// This struct is meant to be consumed by lowering. |
| #[derive(Debug)] |
| pub struct ResolverAstLowering { |
| pub legacy_const_generic_args: FxHashMap<DefId, Option<Vec<usize>>>, |
| |
| /// Resolutions for nodes that have a single resolution. |
| pub partial_res_map: NodeMap<hir::def::PartialRes>, |
| /// Resolutions for import nodes, which have multiple resolutions in different namespaces. |
| pub import_res_map: NodeMap<hir::def::PerNS<Option<Res<ast::NodeId>>>>, |
| /// Resolutions for labels (node IDs of their corresponding blocks or loops). |
| pub label_res_map: NodeMap<ast::NodeId>, |
| /// Resolutions for lifetimes. |
| pub lifetimes_res_map: NodeMap<LifetimeRes>, |
| /// Lifetime parameters that lowering will have to introduce. |
| pub extra_lifetime_params_map: NodeMap<Vec<(Ident, ast::NodeId, LifetimeRes)>>, |
| |
| pub next_node_id: ast::NodeId, |
| |
| pub node_id_to_def_id: NodeMap<LocalDefId>, |
| |
| pub disambiguator: DisambiguatorState, |
| |
| pub trait_map: NodeMap<Vec<hir::TraitCandidate>>, |
| /// List functions and methods for which lifetime elision was successful. |
| pub lifetime_elision_allowed: FxHashSet<ast::NodeId>, |
| |
| /// Lints that were emitted by the resolver and early lints. |
| pub lint_buffer: Steal<LintBuffer>, |
| |
| /// Information about functions signatures for delegation items expansion |
| pub delegation_fn_sigs: LocalDefIdMap<DelegationFnSig>, |
| } |
| |
| #[derive(Debug)] |
| pub struct DelegationFnSig { |
| pub header: ast::FnHeader, |
| pub param_count: usize, |
| pub has_self: bool, |
| pub c_variadic: bool, |
| pub target_feature: bool, |
| } |
| |
| #[derive(Clone, Copy, Debug, HashStable)] |
| pub struct MainDefinition { |
| pub res: Res<ast::NodeId>, |
| pub is_import: bool, |
| pub span: Span, |
| } |
| |
| impl MainDefinition { |
| pub fn opt_fn_def_id(self) -> Option<DefId> { |
| if let Res::Def(DefKind::Fn, def_id) = self.res { Some(def_id) } else { None } |
| } |
| } |
| |
| #[derive(Copy, Clone, Debug, TyEncodable, TyDecodable, HashStable)] |
| pub struct ImplTraitHeader<'tcx> { |
| pub trait_ref: ty::EarlyBinder<'tcx, ty::TraitRef<'tcx>>, |
| pub polarity: ImplPolarity, |
| pub safety: hir::Safety, |
| pub constness: hir::Constness, |
| } |
| |
| #[derive(Copy, Clone, PartialEq, Eq, Debug, TypeFoldable, TypeVisitable)] |
| pub enum ImplSubject<'tcx> { |
| Trait(TraitRef<'tcx>), |
| Inherent(Ty<'tcx>), |
| } |
| |
| #[derive(Copy, Clone, PartialEq, Eq, Hash, TyEncodable, TyDecodable, HashStable, Debug)] |
| #[derive(TypeFoldable, TypeVisitable)] |
| pub enum Asyncness { |
| Yes, |
| No, |
| } |
| |
| impl Asyncness { |
| pub fn is_async(self) -> bool { |
| matches!(self, Asyncness::Yes) |
| } |
| } |
| |
| #[derive(Clone, Debug, PartialEq, Eq, Copy, Hash, Encodable, Decodable, HashStable)] |
| pub enum Visibility<Id = LocalDefId> { |
| /// Visible everywhere (including in other crates). |
| Public, |
| /// Visible only in the given crate-local module. |
| Restricted(Id), |
| } |
| |
| impl Visibility { |
| pub fn to_string(self, def_id: LocalDefId, tcx: TyCtxt<'_>) -> String { |
| match self { |
| ty::Visibility::Restricted(restricted_id) => { |
| if restricted_id.is_top_level_module() { |
| "pub(crate)".to_string() |
| } else if restricted_id == tcx.parent_module_from_def_id(def_id).to_local_def_id() { |
| "pub(self)".to_string() |
| } else { |
| format!( |
| "pub(in crate{})", |
| tcx.def_path(restricted_id.to_def_id()).to_string_no_crate_verbose() |
| ) |
| } |
| } |
| ty::Visibility::Public => "pub".to_string(), |
| } |
| } |
| } |
| |
| #[derive(Clone, Debug, PartialEq, Eq, Copy, Hash, TyEncodable, TyDecodable, HashStable)] |
| #[derive(TypeFoldable, TypeVisitable)] |
| pub struct ClosureSizeProfileData<'tcx> { |
| /// Tuple containing the types of closure captures before the feature `capture_disjoint_fields` |
| pub before_feature_tys: Ty<'tcx>, |
| /// Tuple containing the types of closure captures after the feature `capture_disjoint_fields` |
| pub after_feature_tys: Ty<'tcx>, |
| } |
| |
| impl TyCtxt<'_> { |
| #[inline] |
| pub fn opt_parent(self, id: DefId) -> Option<DefId> { |
| self.def_key(id).parent.map(|index| DefId { index, ..id }) |
| } |
| |
| #[inline] |
| #[track_caller] |
| pub fn parent(self, id: DefId) -> DefId { |
| match self.opt_parent(id) { |
| Some(id) => id, |
| // not `unwrap_or_else` to avoid breaking caller tracking |
| None => bug!("{id:?} doesn't have a parent"), |
| } |
| } |
| |
| #[inline] |
| #[track_caller] |
| pub fn opt_local_parent(self, id: LocalDefId) -> Option<LocalDefId> { |
| self.opt_parent(id.to_def_id()).map(DefId::expect_local) |
| } |
| |
| #[inline] |
| #[track_caller] |
| pub fn local_parent(self, id: impl Into<LocalDefId>) -> LocalDefId { |
| self.parent(id.into().to_def_id()).expect_local() |
| } |
| |
| pub fn is_descendant_of(self, mut descendant: DefId, ancestor: DefId) -> bool { |
| if descendant.krate != ancestor.krate { |
| return false; |
| } |
| |
| while descendant != ancestor { |
| match self.opt_parent(descendant) { |
| Some(parent) => descendant = parent, |
| None => return false, |
| } |
| } |
| true |
| } |
| } |
| |
| impl<Id> Visibility<Id> { |
| pub fn is_public(self) -> bool { |
| matches!(self, Visibility::Public) |
| } |
| |
| pub fn map_id<OutId>(self, f: impl FnOnce(Id) -> OutId) -> Visibility<OutId> { |
| match self { |
| Visibility::Public => Visibility::Public, |
| Visibility::Restricted(id) => Visibility::Restricted(f(id)), |
| } |
| } |
| } |
| |
| impl<Id: Into<DefId>> Visibility<Id> { |
| pub fn to_def_id(self) -> Visibility<DefId> { |
| self.map_id(Into::into) |
| } |
| |
| /// Returns `true` if an item with this visibility is accessible from the given module. |
| pub fn is_accessible_from(self, module: impl Into<DefId>, tcx: TyCtxt<'_>) -> bool { |
| match self { |
| // Public items are visible everywhere. |
| Visibility::Public => true, |
| Visibility::Restricted(id) => tcx.is_descendant_of(module.into(), id.into()), |
| } |
| } |
| |
| /// Returns `true` if this visibility is at least as accessible as the given visibility |
| pub fn is_at_least(self, vis: Visibility<impl Into<DefId>>, tcx: TyCtxt<'_>) -> bool { |
| match vis { |
| Visibility::Public => self.is_public(), |
| Visibility::Restricted(id) => self.is_accessible_from(id, tcx), |
| } |
| } |
| } |
| |
| impl Visibility<DefId> { |
| pub fn expect_local(self) -> Visibility { |
| self.map_id(|id| id.expect_local()) |
| } |
| |
| /// Returns `true` if this item is visible anywhere in the local crate. |
| pub fn is_visible_locally(self) -> bool { |
| match self { |
| Visibility::Public => true, |
| Visibility::Restricted(def_id) => def_id.is_local(), |
| } |
| } |
| } |
| |
| /// The crate variances map is computed during typeck and contains the |
| /// variance of every item in the local crate. You should not use it |
| /// directly, because to do so will make your pass dependent on the |
| /// HIR of every item in the local crate. Instead, use |
| /// `tcx.variances_of()` to get the variance for a *particular* |
| /// item. |
| #[derive(HashStable, Debug)] |
| pub struct CrateVariancesMap<'tcx> { |
| /// For each item with generics, maps to a vector of the variance |
| /// of its generics. If an item has no generics, it will have no |
| /// entry. |
| pub variances: DefIdMap<&'tcx [ty::Variance]>, |
| } |
| |
| // Contains information needed to resolve types and (in the future) look up |
| // the types of AST nodes. |
| #[derive(Copy, Clone, PartialEq, Eq, Hash)] |
| pub struct CReaderCacheKey { |
| pub cnum: Option<CrateNum>, |
| pub pos: usize, |
| } |
| |
| /// Use this rather than `TyKind`, whenever possible. |
| #[derive(Copy, Clone, PartialEq, Eq, Hash, HashStable)] |
| #[rustc_diagnostic_item = "Ty"] |
| #[rustc_pass_by_value] |
| pub struct Ty<'tcx>(Interned<'tcx, WithCachedTypeInfo<TyKind<'tcx>>>); |
| |
| impl<'tcx> rustc_type_ir::inherent::IntoKind for Ty<'tcx> { |
| type Kind = TyKind<'tcx>; |
| |
| fn kind(self) -> TyKind<'tcx> { |
| *self.kind() |
| } |
| } |
| |
| impl<'tcx> rustc_type_ir::Flags for Ty<'tcx> { |
| fn flags(&self) -> TypeFlags { |
| self.0.flags |
| } |
| |
| fn outer_exclusive_binder(&self) -> DebruijnIndex { |
| self.0.outer_exclusive_binder |
| } |
| } |
| |
| /// The crate outlives map is computed during typeck and contains the |
| /// outlives of every item in the local crate. You should not use it |
| /// directly, because to do so will make your pass dependent on the |
| /// HIR of every item in the local crate. Instead, use |
| /// `tcx.inferred_outlives_of()` to get the outlives for a *particular* |
| /// item. |
| #[derive(HashStable, Debug)] |
| pub struct CratePredicatesMap<'tcx> { |
| /// For each struct with outlive bounds, maps to a vector of the |
| /// predicate of its outlive bounds. If an item has no outlives |
| /// bounds, it will have no entry. |
| pub predicates: DefIdMap<&'tcx [(Clause<'tcx>, Span)]>, |
| } |
| |
| #[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)] |
| pub struct Term<'tcx> { |
| ptr: NonNull<()>, |
| marker: PhantomData<(Ty<'tcx>, Const<'tcx>)>, |
| } |
| |
| impl<'tcx> rustc_type_ir::inherent::Term<TyCtxt<'tcx>> for Term<'tcx> {} |
| |
| impl<'tcx> rustc_type_ir::inherent::IntoKind for Term<'tcx> { |
| type Kind = TermKind<'tcx>; |
| |
| fn kind(self) -> Self::Kind { |
| self.kind() |
| } |
| } |
| |
| unsafe impl<'tcx> rustc_data_structures::sync::DynSend for Term<'tcx> where |
| &'tcx (Ty<'tcx>, Const<'tcx>): rustc_data_structures::sync::DynSend |
| { |
| } |
| unsafe impl<'tcx> rustc_data_structures::sync::DynSync for Term<'tcx> where |
| &'tcx (Ty<'tcx>, Const<'tcx>): rustc_data_structures::sync::DynSync |
| { |
| } |
| unsafe impl<'tcx> Send for Term<'tcx> where &'tcx (Ty<'tcx>, Const<'tcx>): Send {} |
| unsafe impl<'tcx> Sync for Term<'tcx> where &'tcx (Ty<'tcx>, Const<'tcx>): Sync {} |
| |
| impl Debug for Term<'_> { |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| match self.kind() { |
| TermKind::Ty(ty) => write!(f, "Term::Ty({ty:?})"), |
| TermKind::Const(ct) => write!(f, "Term::Const({ct:?})"), |
| } |
| } |
| } |
| |
| impl<'tcx> From<Ty<'tcx>> for Term<'tcx> { |
| fn from(ty: Ty<'tcx>) -> Self { |
| TermKind::Ty(ty).pack() |
| } |
| } |
| |
| impl<'tcx> From<Const<'tcx>> for Term<'tcx> { |
| fn from(c: Const<'tcx>) -> Self { |
| TermKind::Const(c).pack() |
| } |
| } |
| |
| impl<'a, 'tcx> HashStable<StableHashingContext<'a>> for Term<'tcx> { |
| fn hash_stable(&self, hcx: &mut StableHashingContext<'a>, hasher: &mut StableHasher) { |
| self.kind().hash_stable(hcx, hasher); |
| } |
| } |
| |
| impl<'tcx> TypeFoldable<TyCtxt<'tcx>> for Term<'tcx> { |
| fn try_fold_with<F: FallibleTypeFolder<TyCtxt<'tcx>>>( |
| self, |
| folder: &mut F, |
| ) -> Result<Self, F::Error> { |
| match self.kind() { |
| ty::TermKind::Ty(ty) => ty.try_fold_with(folder).map(Into::into), |
| ty::TermKind::Const(ct) => ct.try_fold_with(folder).map(Into::into), |
| } |
| } |
| |
| fn fold_with<F: TypeFolder<TyCtxt<'tcx>>>(self, folder: &mut F) -> Self { |
| match self.kind() { |
| ty::TermKind::Ty(ty) => ty.fold_with(folder).into(), |
| ty::TermKind::Const(ct) => ct.fold_with(folder).into(), |
| } |
| } |
| } |
| |
| impl<'tcx> TypeVisitable<TyCtxt<'tcx>> for Term<'tcx> { |
| fn visit_with<V: TypeVisitor<TyCtxt<'tcx>>>(&self, visitor: &mut V) -> V::Result { |
| match self.kind() { |
| ty::TermKind::Ty(ty) => ty.visit_with(visitor), |
| ty::TermKind::Const(ct) => ct.visit_with(visitor), |
| } |
| } |
| } |
| |
| impl<'tcx, E: TyEncoder<'tcx>> Encodable<E> for Term<'tcx> { |
| fn encode(&self, e: &mut E) { |
| self.kind().encode(e) |
| } |
| } |
| |
| impl<'tcx, D: TyDecoder<'tcx>> Decodable<D> for Term<'tcx> { |
| fn decode(d: &mut D) -> Self { |
| let res: TermKind<'tcx> = Decodable::decode(d); |
| res.pack() |
| } |
| } |
| |
| impl<'tcx> Term<'tcx> { |
| #[inline] |
| pub fn kind(self) -> TermKind<'tcx> { |
| let ptr = |
| unsafe { self.ptr.map_addr(|addr| NonZero::new_unchecked(addr.get() & !TAG_MASK)) }; |
| // SAFETY: use of `Interned::new_unchecked` here is ok because these |
| // pointers were originally created from `Interned` types in `pack()`, |
| // and this is just going in the other direction. |
| unsafe { |
| match self.ptr.addr().get() & TAG_MASK { |
| TYPE_TAG => TermKind::Ty(Ty(Interned::new_unchecked( |
| ptr.cast::<WithCachedTypeInfo<ty::TyKind<'tcx>>>().as_ref(), |
| ))), |
| CONST_TAG => TermKind::Const(ty::Const(Interned::new_unchecked( |
| ptr.cast::<WithCachedTypeInfo<ty::ConstKind<'tcx>>>().as_ref(), |
| ))), |
| _ => core::intrinsics::unreachable(), |
| } |
| } |
| } |
| |
| pub fn as_type(&self) -> Option<Ty<'tcx>> { |
| if let TermKind::Ty(ty) = self.kind() { Some(ty) } else { None } |
| } |
| |
| pub fn expect_type(&self) -> Ty<'tcx> { |
| self.as_type().expect("expected a type, but found a const") |
| } |
| |
| pub fn as_const(&self) -> Option<Const<'tcx>> { |
| if let TermKind::Const(c) = self.kind() { Some(c) } else { None } |
| } |
| |
| pub fn expect_const(&self) -> Const<'tcx> { |
| self.as_const().expect("expected a const, but found a type") |
| } |
| |
| pub fn into_arg(self) -> GenericArg<'tcx> { |
| match self.kind() { |
| TermKind::Ty(ty) => ty.into(), |
| TermKind::Const(c) => c.into(), |
| } |
| } |
| |
| pub fn to_alias_term(self) -> Option<AliasTerm<'tcx>> { |
| match self.kind() { |
| TermKind::Ty(ty) => match *ty.kind() { |
| ty::Alias(_kind, alias_ty) => Some(alias_ty.into()), |
| _ => None, |
| }, |
| TermKind::Const(ct) => match ct.kind() { |
| ConstKind::Unevaluated(uv) => Some(uv.into()), |
| _ => None, |
| }, |
| } |
| } |
| |
| pub fn is_infer(&self) -> bool { |
| match self.kind() { |
| TermKind::Ty(ty) => ty.is_ty_var(), |
| TermKind::Const(ct) => ct.is_ct_infer(), |
| } |
| } |
| |
| pub fn is_trivially_wf(&self, tcx: TyCtxt<'tcx>) -> bool { |
| match self.kind() { |
| TermKind::Ty(ty) => ty.is_trivially_wf(tcx), |
| TermKind::Const(ct) => ct.is_trivially_wf(), |
| } |
| } |
| |
| /// Iterator that walks `self` and any types reachable from |
| /// `self`, in depth-first order. Note that just walks the types |
| /// that appear in `self`, it does not descend into the fields of |
| /// structs or variants. For example: |
| /// |
| /// ```text |
| /// isize => { isize } |
| /// Foo<Bar<isize>> => { Foo<Bar<isize>>, Bar<isize>, isize } |
| /// [isize] => { [isize], isize } |
| /// ``` |
| pub fn walk(self) -> TypeWalker<TyCtxt<'tcx>> { |
| TypeWalker::new(self.into()) |
| } |
| } |
| |
| const TAG_MASK: usize = 0b11; |
| const TYPE_TAG: usize = 0b00; |
| const CONST_TAG: usize = 0b01; |
| |
| #[extension(pub trait TermKindPackExt<'tcx>)] |
| impl<'tcx> TermKind<'tcx> { |
| #[inline] |
| fn pack(self) -> Term<'tcx> { |
| let (tag, ptr) = match self { |
| TermKind::Ty(ty) => { |
| // Ensure we can use the tag bits. |
| assert_eq!(align_of_val(&*ty.0.0) & TAG_MASK, 0); |
| (TYPE_TAG, NonNull::from(ty.0.0).cast()) |
| } |
| TermKind::Const(ct) => { |
| // Ensure we can use the tag bits. |
| assert_eq!(align_of_val(&*ct.0.0) & TAG_MASK, 0); |
| (CONST_TAG, NonNull::from(ct.0.0).cast()) |
| } |
| }; |
| |
| Term { ptr: ptr.map_addr(|addr| addr | tag), marker: PhantomData } |
| } |
| } |
| |
| /// Represents the bounds declared on a particular set of type |
| /// parameters. Should eventually be generalized into a flag list of |
| /// where-clauses. You can obtain an `InstantiatedPredicates` list from a |
| /// `GenericPredicates` by using the `instantiate` method. Note that this method |
| /// reflects an important semantic invariant of `InstantiatedPredicates`: while |
| /// the `GenericPredicates` are expressed in terms of the bound type |
| /// parameters of the impl/trait/whatever, an `InstantiatedPredicates` instance |
| /// represented a set of bounds for some particular instantiation, |
| /// meaning that the generic parameters have been instantiated with |
| /// their values. |
| /// |
| /// Example: |
| /// ```ignore (illustrative) |
| /// struct Foo<T, U: Bar<T>> { ... } |
| /// ``` |
| /// Here, the `GenericPredicates` for `Foo` would contain a list of bounds like |
| /// `[[], [U:Bar<T>]]`. Now if there were some particular reference |
| /// like `Foo<isize,usize>`, then the `InstantiatedPredicates` would be `[[], |
| /// [usize:Bar<isize>]]`. |
| #[derive(Clone, Debug, TypeFoldable, TypeVisitable)] |
| pub struct InstantiatedPredicates<'tcx> { |
| pub predicates: Vec<Clause<'tcx>>, |
| pub spans: Vec<Span>, |
| } |
| |
| impl<'tcx> InstantiatedPredicates<'tcx> { |
| pub fn empty() -> InstantiatedPredicates<'tcx> { |
| InstantiatedPredicates { predicates: vec![], spans: vec![] } |
| } |
| |
| pub fn is_empty(&self) -> bool { |
| self.predicates.is_empty() |
| } |
| |
| pub fn iter(&self) -> <&Self as IntoIterator>::IntoIter { |
| self.into_iter() |
| } |
| } |
| |
| impl<'tcx> IntoIterator for InstantiatedPredicates<'tcx> { |
| type Item = (Clause<'tcx>, Span); |
| |
| type IntoIter = std::iter::Zip<std::vec::IntoIter<Clause<'tcx>>, std::vec::IntoIter<Span>>; |
| |
| fn into_iter(self) -> Self::IntoIter { |
| debug_assert_eq!(self.predicates.len(), self.spans.len()); |
| std::iter::zip(self.predicates, self.spans) |
| } |
| } |
| |
| impl<'a, 'tcx> IntoIterator for &'a InstantiatedPredicates<'tcx> { |
| type Item = (Clause<'tcx>, Span); |
| |
| type IntoIter = std::iter::Zip< |
| std::iter::Copied<std::slice::Iter<'a, Clause<'tcx>>>, |
| std::iter::Copied<std::slice::Iter<'a, Span>>, |
| >; |
| |
| fn into_iter(self) -> Self::IntoIter { |
| debug_assert_eq!(self.predicates.len(), self.spans.len()); |
| std::iter::zip(self.predicates.iter().copied(), self.spans.iter().copied()) |
| } |
| } |
| |
| #[derive(Copy, Clone, Debug, TypeFoldable, TypeVisitable, HashStable, TyEncodable, TyDecodable)] |
| pub struct OpaqueHiddenType<'tcx> { |
| /// The span of this particular definition of the opaque type. So |
| /// for example: |
| /// |
| /// ```ignore (incomplete snippet) |
| /// type Foo = impl Baz; |
| /// fn bar() -> Foo { |
| /// // ^^^ This is the span we are looking for! |
| /// } |
| /// ``` |
| /// |
| /// In cases where the fn returns `(impl Trait, impl Trait)` or |
| /// other such combinations, the result is currently |
| /// over-approximated, but better than nothing. |
| pub span: Span, |
| |
| /// The type variable that represents the value of the opaque type |
| /// that we require. In other words, after we compile this function, |
| /// we will be created a constraint like: |
| /// ```ignore (pseudo-rust) |
| /// Foo<'a, T> = ?C |
| /// ``` |
| /// where `?C` is the value of this type variable. =) It may |
| /// naturally refer to the type and lifetime parameters in scope |
| /// in this function, though ultimately it should only reference |
| /// those that are arguments to `Foo` in the constraint above. (In |
| /// other words, `?C` should not include `'b`, even though it's a |
| /// lifetime parameter on `foo`.) |
| pub ty: Ty<'tcx>, |
| } |
| |
| /// Whether we're currently in HIR typeck or MIR borrowck. |
| #[derive(Debug, Clone, Copy)] |
| pub enum DefiningScopeKind { |
| /// During writeback in typeck, we don't care about regions and simply |
| /// erase them. This means we also don't check whether regions are |
| /// universal in the opaque type key. This will only be checked in |
| /// MIR borrowck. |
| HirTypeck, |
| MirBorrowck, |
| } |
| |
| impl<'tcx> OpaqueHiddenType<'tcx> { |
| pub fn new_error(tcx: TyCtxt<'tcx>, guar: ErrorGuaranteed) -> OpaqueHiddenType<'tcx> { |
| OpaqueHiddenType { span: DUMMY_SP, ty: Ty::new_error(tcx, guar) } |
| } |
| |
| pub fn build_mismatch_error( |
| &self, |
| other: &Self, |
| tcx: TyCtxt<'tcx>, |
| ) -> Result<Diag<'tcx>, ErrorGuaranteed> { |
| (self.ty, other.ty).error_reported()?; |
| // Found different concrete types for the opaque type. |
| let sub_diag = if self.span == other.span { |
| TypeMismatchReason::ConflictType { span: self.span } |
| } else { |
| TypeMismatchReason::PreviousUse { span: self.span } |
| }; |
| Ok(tcx.dcx().create_err(OpaqueHiddenTypeMismatch { |
| self_ty: self.ty, |
| other_ty: other.ty, |
| other_span: other.span, |
| sub: sub_diag, |
| })) |
| } |
| |
| #[instrument(level = "debug", skip(tcx), ret)] |
| pub fn remap_generic_params_to_declaration_params( |
| self, |
| opaque_type_key: OpaqueTypeKey<'tcx>, |
| tcx: TyCtxt<'tcx>, |
| defining_scope_kind: DefiningScopeKind, |
| ) -> Self { |
| let OpaqueTypeKey { def_id, args } = opaque_type_key; |
| |
| // Use args to build up a reverse map from regions to their |
| // identity mappings. This is necessary because of `impl |
| // Trait` lifetimes are computed by replacing existing |
| // lifetimes with 'static and remapping only those used in the |
| // `impl Trait` return type, resulting in the parameters |
| // shifting. |
| let id_args = GenericArgs::identity_for_item(tcx, def_id); |
| debug!(?id_args); |
| |
| // This zip may have several times the same lifetime in `args` paired with a different |
| // lifetime from `id_args`. Simply `collect`ing the iterator is the correct behaviour: |
| // it will pick the last one, which is the one we introduced in the impl-trait desugaring. |
| let map = args.iter().zip(id_args).collect(); |
| debug!("map = {:#?}", map); |
| |
| // Convert the type from the function into a type valid outside by mapping generic |
| // parameters to into the context of the opaque. |
| // |
| // We erase regions when doing this during HIR typeck. We manually use `fold_regions` |
| // here as we do not want to anonymize bound variables. |
| let this = match defining_scope_kind { |
| DefiningScopeKind::HirTypeck => fold_regions(tcx, self, |_, _| tcx.lifetimes.re_erased), |
| DefiningScopeKind::MirBorrowck => self, |
| }; |
| let result = this.fold_with(&mut opaque_types::ReverseMapper::new(tcx, map, self.span)); |
| if cfg!(debug_assertions) && matches!(defining_scope_kind, DefiningScopeKind::HirTypeck) { |
| assert_eq!(result.ty, fold_regions(tcx, result.ty, |_, _| tcx.lifetimes.re_erased)); |
| } |
| result |
| } |
| } |
| |
| /// The "placeholder index" fully defines a placeholder region, type, or const. Placeholders are |
| /// identified by both a universe, as well as a name residing within that universe. Distinct bound |
| /// regions/types/consts within the same universe simply have an unknown relationship to one |
| /// another. |
| #[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord)] |
| #[derive(HashStable, TyEncodable, TyDecodable)] |
| pub struct Placeholder<T> { |
| pub universe: UniverseIndex, |
| pub bound: T, |
| } |
| |
| pub type PlaceholderRegion = Placeholder<BoundRegion>; |
| |
| impl<'tcx> rustc_type_ir::inherent::PlaceholderLike<TyCtxt<'tcx>> for PlaceholderRegion { |
| type Bound = BoundRegion; |
| |
| fn universe(self) -> UniverseIndex { |
| self.universe |
| } |
| |
| fn var(self) -> BoundVar { |
| self.bound.var |
| } |
| |
| fn with_updated_universe(self, ui: UniverseIndex) -> Self { |
| Placeholder { universe: ui, ..self } |
| } |
| |
| fn new(ui: UniverseIndex, bound: BoundRegion) -> Self { |
| Placeholder { universe: ui, bound } |
| } |
| |
| fn new_anon(ui: UniverseIndex, var: BoundVar) -> Self { |
| Placeholder { universe: ui, bound: BoundRegion { var, kind: BoundRegionKind::Anon } } |
| } |
| } |
| |
| pub type PlaceholderType = Placeholder<BoundTy>; |
| |
| impl<'tcx> rustc_type_ir::inherent::PlaceholderLike<TyCtxt<'tcx>> for PlaceholderType { |
| type Bound = BoundTy; |
| |
| fn universe(self) -> UniverseIndex { |
| self.universe |
| } |
| |
| fn var(self) -> BoundVar { |
| self.bound.var |
| } |
| |
| fn with_updated_universe(self, ui: UniverseIndex) -> Self { |
| Placeholder { universe: ui, ..self } |
| } |
| |
| fn new(ui: UniverseIndex, bound: BoundTy) -> Self { |
| Placeholder { universe: ui, bound } |
| } |
| |
| fn new_anon(ui: UniverseIndex, var: BoundVar) -> Self { |
| Placeholder { universe: ui, bound: BoundTy { var, kind: BoundTyKind::Anon } } |
| } |
| } |
| |
| #[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, HashStable)] |
| #[derive(TyEncodable, TyDecodable)] |
| pub struct BoundConst { |
| pub var: BoundVar, |
| } |
| |
| impl<'tcx> rustc_type_ir::inherent::BoundVarLike<TyCtxt<'tcx>> for BoundConst { |
| fn var(self) -> BoundVar { |
| self.var |
| } |
| |
| fn assert_eq(self, var: ty::BoundVariableKind) { |
| var.expect_const() |
| } |
| } |
| |
| pub type PlaceholderConst = Placeholder<BoundConst>; |
| |
| impl<'tcx> rustc_type_ir::inherent::PlaceholderLike<TyCtxt<'tcx>> for PlaceholderConst { |
| type Bound = BoundConst; |
| |
| fn universe(self) -> UniverseIndex { |
| self.universe |
| } |
| |
| fn var(self) -> BoundVar { |
| self.bound.var |
| } |
| |
| fn with_updated_universe(self, ui: UniverseIndex) -> Self { |
| Placeholder { universe: ui, ..self } |
| } |
| |
| fn new(ui: UniverseIndex, bound: BoundConst) -> Self { |
| Placeholder { universe: ui, bound } |
| } |
| |
| fn new_anon(ui: UniverseIndex, var: BoundVar) -> Self { |
| Placeholder { universe: ui, bound: BoundConst { var } } |
| } |
| } |
| |
| pub type Clauses<'tcx> = &'tcx ListWithCachedTypeInfo<Clause<'tcx>>; |
| |
| impl<'tcx> rustc_type_ir::Flags for Clauses<'tcx> { |
| fn flags(&self) -> TypeFlags { |
| (**self).flags() |
| } |
| |
| fn outer_exclusive_binder(&self) -> DebruijnIndex { |
| (**self).outer_exclusive_binder() |
| } |
| } |
| |
| /// When interacting with the type system we must provide information about the |
| /// environment. `ParamEnv` is the type that represents this information. See the |
| /// [dev guide chapter][param_env_guide] for more information. |
| /// |
| /// [param_env_guide]: https://rustc-dev-guide.rust-lang.org/typing_parameter_envs.html |
| #[derive(Debug, Copy, Clone, Hash, PartialEq, Eq)] |
| #[derive(HashStable, TypeVisitable, TypeFoldable)] |
| pub struct ParamEnv<'tcx> { |
| /// Caller bounds are `Obligation`s that the caller must satisfy. This is |
| /// basically the set of bounds on the in-scope type parameters, translated |
| /// into `Obligation`s, and elaborated and normalized. |
| /// |
| /// Use the `caller_bounds()` method to access. |
| caller_bounds: Clauses<'tcx>, |
| } |
| |
| impl<'tcx> rustc_type_ir::inherent::ParamEnv<TyCtxt<'tcx>> for ParamEnv<'tcx> { |
| fn caller_bounds(self) -> impl inherent::SliceLike<Item = ty::Clause<'tcx>> { |
| self.caller_bounds() |
| } |
| } |
| |
| impl<'tcx> ParamEnv<'tcx> { |
| /// Construct a trait environment suitable for contexts where there are |
| /// no where-clauses in scope. In the majority of cases it is incorrect |
| /// to use an empty environment. See the [dev guide section][param_env_guide] |
| /// for information on what a `ParamEnv` is and how to acquire one. |
| /// |
| /// [param_env_guide]: https://rustc-dev-guide.rust-lang.org/typing_parameter_envs.html |
| #[inline] |
| pub fn empty() -> Self { |
| Self::new(ListWithCachedTypeInfo::empty()) |
| } |
| |
| #[inline] |
| pub fn caller_bounds(self) -> Clauses<'tcx> { |
| self.caller_bounds |
| } |
| |
| /// Construct a trait environment with the given set of predicates. |
| #[inline] |
| pub fn new(caller_bounds: Clauses<'tcx>) -> Self { |
| ParamEnv { caller_bounds } |
| } |
| |
| /// Creates a pair of param-env and value for use in queries. |
| pub fn and<T: TypeVisitable<TyCtxt<'tcx>>>(self, value: T) -> ParamEnvAnd<'tcx, T> { |
| ParamEnvAnd { param_env: self, value } |
| } |
| } |
| |
| #[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, TypeFoldable, TypeVisitable)] |
| #[derive(HashStable)] |
| pub struct ParamEnvAnd<'tcx, T> { |
| pub param_env: ParamEnv<'tcx>, |
| pub value: T, |
| } |
| |
| /// The environment in which to do trait solving. |
| /// |
| /// Most of the time you only need to care about the `ParamEnv` |
| /// as the `TypingMode` is simply stored in the `InferCtxt`. |
| /// |
| /// However, there are some places which rely on trait solving |
| /// without using an `InferCtxt` themselves. For these to be |
| /// able to use the trait system they have to be able to initialize |
| /// such an `InferCtxt` with the right `typing_mode`, so they need |
| /// to track both. |
| #[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, HashStable)] |
| #[derive(TypeVisitable, TypeFoldable)] |
| pub struct TypingEnv<'tcx> { |
| #[type_foldable(identity)] |
| #[type_visitable(ignore)] |
| pub typing_mode: TypingMode<'tcx>, |
| pub param_env: ParamEnv<'tcx>, |
| } |
| |
| impl<'tcx> TypingEnv<'tcx> { |
| /// Create a typing environment with no where-clauses in scope |
| /// where all opaque types and default associated items are revealed. |
| /// |
| /// This is only suitable for monomorphized, post-typeck environments. |
| /// Do not use this for MIR optimizations, as even though they also |
| /// use `TypingMode::PostAnalysis`, they may still have where-clauses |
| /// in scope. |
| pub fn fully_monomorphized() -> TypingEnv<'tcx> { |
| TypingEnv { typing_mode: TypingMode::PostAnalysis, param_env: ParamEnv::empty() } |
| } |
| |
| /// Create a typing environment for use during analysis outside of a body. |
| /// |
| /// Using a typing environment inside of bodies is not supported as the body |
| /// may define opaque types. In this case the used functions have to be |
| /// converted to use proper canonical inputs instead. |
| pub fn non_body_analysis( |
| tcx: TyCtxt<'tcx>, |
| def_id: impl IntoQueryParam<DefId>, |
| ) -> TypingEnv<'tcx> { |
| TypingEnv { typing_mode: TypingMode::non_body_analysis(), param_env: tcx.param_env(def_id) } |
| } |
| |
| pub fn post_analysis(tcx: TyCtxt<'tcx>, def_id: impl IntoQueryParam<DefId>) -> TypingEnv<'tcx> { |
| tcx.typing_env_normalized_for_post_analysis(def_id) |
| } |
| |
| /// Modify the `typing_mode` to `PostAnalysis` and eagerly reveal all |
| /// opaque types in the `param_env`. |
| pub fn with_post_analysis_normalized(self, tcx: TyCtxt<'tcx>) -> TypingEnv<'tcx> { |
| let TypingEnv { typing_mode, param_env } = self; |
| if let TypingMode::PostAnalysis = typing_mode { |
| return self; |
| } |
| |
| // No need to reveal opaques with the new solver enabled, |
| // since we have lazy norm. |
| let param_env = if tcx.next_trait_solver_globally() { |
| param_env |
| } else { |
| ParamEnv::new(tcx.reveal_opaque_types_in_bounds(param_env.caller_bounds())) |
| }; |
| TypingEnv { typing_mode: TypingMode::PostAnalysis, param_env } |
| } |
| |
| /// Combine this typing environment with the given `value` to be used by |
| /// not (yet) canonicalized queries. This only works if the value does not |
| /// contain anything local to some `InferCtxt`, i.e. inference variables or |
| /// placeholders. |
| pub fn as_query_input<T>(self, value: T) -> PseudoCanonicalInput<'tcx, T> |
| where |
| T: TypeVisitable<TyCtxt<'tcx>>, |
| { |
| // FIXME(#132279): We should assert that the value does not contain any placeholders |
| // as these placeholders are also local to the current inference context. However, we |
| // currently use pseudo-canonical queries in the trait solver, which replaces params |
| // with placeholders during canonicalization. We should also simply not use pseudo- |
| // canonical queries in the trait solver, at which point we can readd this assert. |
| // |
| // As of writing this comment, this is only used when normalizing consts that mention |
| // params. |
| /* debug_assert!( |
| !value.has_placeholders(), |
| "{value:?} which has placeholder shouldn't be pseudo-canonicalized" |
| ); */ |
| PseudoCanonicalInput { typing_env: self, value } |
| } |
| } |
| |
| /// Similar to `CanonicalInput`, this carries the `typing_mode` and the environment |
| /// necessary to do any kind of trait solving inside of nested queries. |
| /// |
| /// Unlike proper canonicalization, this requires the `param_env` and the `value` to not |
| /// contain anything local to the `infcx` of the caller, so we don't actually canonicalize |
| /// anything. |
| /// |
| /// This should be created by using `infcx.pseudo_canonicalize_query(param_env, value)` |
| /// or by using `typing_env.as_query_input(value)`. |
| #[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)] |
| #[derive(HashStable, TypeVisitable, TypeFoldable)] |
| pub struct PseudoCanonicalInput<'tcx, T> { |
| pub typing_env: TypingEnv<'tcx>, |
| pub value: T, |
| } |
| |
| #[derive(Copy, Clone, Debug, HashStable, Encodable, Decodable)] |
| pub struct Destructor { |
| /// The `DefId` of the destructor method |
| pub did: DefId, |
| } |
| |
| // FIXME: consider combining this definition with regular `Destructor` |
| #[derive(Copy, Clone, Debug, HashStable, Encodable, Decodable)] |
| pub struct AsyncDestructor { |
| /// The `DefId` of the `impl AsyncDrop` |
| pub impl_did: DefId, |
| } |
| |
| #[derive(Clone, Copy, PartialEq, Eq, HashStable, TyEncodable, TyDecodable)] |
| pub struct VariantFlags(u8); |
| bitflags::bitflags! { |
| impl VariantFlags: u8 { |
| const NO_VARIANT_FLAGS = 0; |
| /// Indicates whether the field list of this variant is `#[non_exhaustive]`. |
| const IS_FIELD_LIST_NON_EXHAUSTIVE = 1 << 0; |
| } |
| } |
| rustc_data_structures::external_bitflags_debug! { VariantFlags } |
| |
| /// Definition of a variant -- a struct's fields or an enum variant. |
| #[derive(Debug, HashStable, TyEncodable, TyDecodable)] |
| pub struct VariantDef { |
| /// `DefId` that identifies the variant itself. |
| /// If this variant belongs to a struct or union, then this is a copy of its `DefId`. |
| pub def_id: DefId, |
| /// `DefId` that identifies the variant's constructor. |
| /// If this variant is a struct variant, then this is `None`. |
| pub ctor: Option<(CtorKind, DefId)>, |
| /// Variant or struct name. |
| pub name: Symbol, |
| /// Discriminant of this variant. |
| pub discr: VariantDiscr, |
| /// Fields of this variant. |
| pub fields: IndexVec<FieldIdx, FieldDef>, |
| /// The error guarantees from parser, if any. |
| tainted: Option<ErrorGuaranteed>, |
| /// Flags of the variant (e.g. is field list non-exhaustive)? |
| flags: VariantFlags, |
| } |
| |
| impl VariantDef { |
| /// Creates a new `VariantDef`. |
| /// |
| /// `variant_did` is the `DefId` that identifies the enum variant (if this `VariantDef` |
| /// represents an enum variant). |
| /// |
| /// `ctor_did` is the `DefId` that identifies the constructor of unit or |
| /// tuple-variants/structs. If this is a `struct`-variant then this should be `None`. |
| /// |
| /// `parent_did` is the `DefId` of the `AdtDef` representing the enum or struct that |
| /// owns this variant. It is used for checking if a struct has `#[non_exhaustive]` w/out having |
| /// to go through the redirect of checking the ctor's attributes - but compiling a small crate |
| /// requires loading the `AdtDef`s for all the structs in the universe (e.g., coherence for any |
| /// built-in trait), and we do not want to load attributes twice. |
| /// |
| /// If someone speeds up attribute loading to not be a performance concern, they can |
| /// remove this hack and use the constructor `DefId` everywhere. |
| #[instrument(level = "debug")] |
| pub fn new( |
| name: Symbol, |
| variant_did: Option<DefId>, |
| ctor: Option<(CtorKind, DefId)>, |
| discr: VariantDiscr, |
| fields: IndexVec<FieldIdx, FieldDef>, |
| parent_did: DefId, |
| recover_tainted: Option<ErrorGuaranteed>, |
| is_field_list_non_exhaustive: bool, |
| ) -> Self { |
| let mut flags = VariantFlags::NO_VARIANT_FLAGS; |
| if is_field_list_non_exhaustive { |
| flags |= VariantFlags::IS_FIELD_LIST_NON_EXHAUSTIVE; |
| } |
| |
| VariantDef { |
| def_id: variant_did.unwrap_or(parent_did), |
| ctor, |
| name, |
| discr, |
| fields, |
| flags, |
| tainted: recover_tainted, |
| } |
| } |
| |
| /// Returns `true` if the field list of this variant is `#[non_exhaustive]`. |
| /// |
| /// Note that this function will return `true` even if the type has been |
| /// defined in the crate currently being compiled. If that's not what you |
| /// want, see [`Self::field_list_has_applicable_non_exhaustive`]. |
| #[inline] |
| pub fn is_field_list_non_exhaustive(&self) -> bool { |
| self.flags.intersects(VariantFlags::IS_FIELD_LIST_NON_EXHAUSTIVE) |
| } |
| |
| /// Returns `true` if the field list of this variant is `#[non_exhaustive]` |
| /// and the type has been defined in another crate. |
| #[inline] |
| pub fn field_list_has_applicable_non_exhaustive(&self) -> bool { |
| self.is_field_list_non_exhaustive() && !self.def_id.is_local() |
| } |
| |
| /// Computes the `Ident` of this variant by looking up the `Span` |
| pub fn ident(&self, tcx: TyCtxt<'_>) -> Ident { |
| Ident::new(self.name, tcx.def_ident_span(self.def_id).unwrap()) |
| } |
| |
| /// Was this variant obtained as part of recovering from a syntactic error? |
| #[inline] |
| pub fn has_errors(&self) -> Result<(), ErrorGuaranteed> { |
| self.tainted.map_or(Ok(()), Err) |
| } |
| |
| #[inline] |
| pub fn ctor_kind(&self) -> Option<CtorKind> { |
| self.ctor.map(|(kind, _)| kind) |
| } |
| |
| #[inline] |
| pub fn ctor_def_id(&self) -> Option<DefId> { |
| self.ctor.map(|(_, def_id)| def_id) |
| } |
| |
| /// Returns the one field in this variant. |
| /// |
| /// `panic!`s if there are no fields or multiple fields. |
| #[inline] |
| pub fn single_field(&self) -> &FieldDef { |
| assert!(self.fields.len() == 1); |
| |
| &self.fields[FieldIdx::ZERO] |
| } |
| |
| /// Returns the last field in this variant, if present. |
| #[inline] |
| pub fn tail_opt(&self) -> Option<&FieldDef> { |
| self.fields.raw.last() |
| } |
| |
| /// Returns the last field in this variant. |
| /// |
| /// # Panics |
| /// |
| /// Panics, if the variant has no fields. |
| #[inline] |
| pub fn tail(&self) -> &FieldDef { |
| self.tail_opt().expect("expected unsized ADT to have a tail field") |
| } |
| |
| /// Returns whether this variant has unsafe fields. |
| pub fn has_unsafe_fields(&self) -> bool { |
| self.fields.iter().any(|x| x.safety.is_unsafe()) |
| } |
| } |
| |
| impl PartialEq for VariantDef { |
| #[inline] |
| fn eq(&self, other: &Self) -> bool { |
| // There should be only one `VariantDef` for each `def_id`, therefore |
| // it is fine to implement `PartialEq` only based on `def_id`. |
| // |
| // Below, we exhaustively destructure `self` and `other` so that if the |
| // definition of `VariantDef` changes, a compile-error will be produced, |
| // reminding us to revisit this assumption. |
| |
| let Self { |
| def_id: lhs_def_id, |
| ctor: _, |
| name: _, |
| discr: _, |
| fields: _, |
| flags: _, |
| tainted: _, |
| } = &self; |
| let Self { |
| def_id: rhs_def_id, |
| ctor: _, |
| name: _, |
| discr: _, |
| fields: _, |
| flags: _, |
| tainted: _, |
| } = other; |
| |
| let res = lhs_def_id == rhs_def_id; |
| |
| // Double check that implicit assumption detailed above. |
| if cfg!(debug_assertions) && res { |
| let deep = self.ctor == other.ctor |
| && self.name == other.name |
| && self.discr == other.discr |
| && self.fields == other.fields |
| && self.flags == other.flags; |
| assert!(deep, "VariantDef for the same def-id has differing data"); |
| } |
| |
| res |
| } |
| } |
| |
| impl Eq for VariantDef {} |
| |
| impl Hash for VariantDef { |
| #[inline] |
| fn hash<H: Hasher>(&self, s: &mut H) { |
| // There should be only one `VariantDef` for each `def_id`, therefore |
| // it is fine to implement `Hash` only based on `def_id`. |
| // |
| // Below, we exhaustively destructure `self` so that if the definition |
| // of `VariantDef` changes, a compile-error will be produced, reminding |
| // us to revisit this assumption. |
| |
| let Self { def_id, ctor: _, name: _, discr: _, fields: _, flags: _, tainted: _ } = &self; |
| def_id.hash(s) |
| } |
| } |
| |
| #[derive(Copy, Clone, Debug, PartialEq, Eq, TyEncodable, TyDecodable, HashStable)] |
| pub enum VariantDiscr { |
| /// Explicit value for this variant, i.e., `X = 123`. |
| /// The `DefId` corresponds to the embedded constant. |
| Explicit(DefId), |
| |
| /// The previous variant's discriminant plus one. |
| /// For efficiency reasons, the distance from the |
| /// last `Explicit` discriminant is being stored, |
| /// or `0` for the first variant, if it has none. |
| Relative(u32), |
| } |
| |
| #[derive(Debug, HashStable, TyEncodable, TyDecodable)] |
| pub struct FieldDef { |
| pub did: DefId, |
| pub name: Symbol, |
| pub vis: Visibility<DefId>, |
| pub safety: hir::Safety, |
| pub value: Option<DefId>, |
| } |
| |
| impl PartialEq for FieldDef { |
| #[inline] |
| fn eq(&self, other: &Self) -> bool { |
| // There should be only one `FieldDef` for each `did`, therefore it is |
| // fine to implement `PartialEq` only based on `did`. |
| // |
| // Below, we exhaustively destructure `self` so that if the definition |
| // of `FieldDef` changes, a compile-error will be produced, reminding |
| // us to revisit this assumption. |
| |
| let Self { did: lhs_did, name: _, vis: _, safety: _, value: _ } = &self; |
| |
| let Self { did: rhs_did, name: _, vis: _, safety: _, value: _ } = other; |
| |
| let res = lhs_did == rhs_did; |
| |
| // Double check that implicit assumption detailed above. |
| if cfg!(debug_assertions) && res { |
| let deep = |
| self.name == other.name && self.vis == other.vis && self.safety == other.safety; |
| assert!(deep, "FieldDef for the same def-id has differing data"); |
| } |
| |
| res |
| } |
| } |
| |
| impl Eq for FieldDef {} |
| |
| impl Hash for FieldDef { |
| #[inline] |
| fn hash<H: Hasher>(&self, s: &mut H) { |
| // There should be only one `FieldDef` for each `did`, therefore it is |
| // fine to implement `Hash` only based on `did`. |
| // |
| // Below, we exhaustively destructure `self` so that if the definition |
| // of `FieldDef` changes, a compile-error will be produced, reminding |
| // us to revisit this assumption. |
| |
| let Self { did, name: _, vis: _, safety: _, value: _ } = &self; |
| |
| did.hash(s) |
| } |
| } |
| |
| impl<'tcx> FieldDef { |
| /// Returns the type of this field. The resulting type is not normalized. The `arg` is |
| /// typically obtained via the second field of [`TyKind::Adt`]. |
| pub fn ty(&self, tcx: TyCtxt<'tcx>, args: GenericArgsRef<'tcx>) -> Ty<'tcx> { |
| tcx.type_of(self.did).instantiate(tcx, args) |
| } |
| |
| /// Computes the `Ident` of this variant by looking up the `Span` |
| pub fn ident(&self, tcx: TyCtxt<'_>) -> Ident { |
| Ident::new(self.name, tcx.def_ident_span(self.did).unwrap()) |
| } |
| } |
| |
| #[derive(Debug, PartialEq, Eq)] |
| pub enum ImplOverlapKind { |
| /// These impls are always allowed to overlap. |
| Permitted { |
| /// Whether or not the impl is permitted due to the trait being a `#[marker]` trait |
| marker: bool, |
| }, |
| } |
| |
| /// Useful source information about where a desugared associated type for an |
| /// RPITIT originated from. |
| #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash, Encodable, Decodable, HashStable)] |
| pub enum ImplTraitInTraitData { |
| Trait { fn_def_id: DefId, opaque_def_id: DefId }, |
| Impl { fn_def_id: DefId }, |
| } |
| |
| impl<'tcx> TyCtxt<'tcx> { |
| pub fn typeck_body(self, body: hir::BodyId) -> &'tcx TypeckResults<'tcx> { |
| self.typeck(self.hir_body_owner_def_id(body)) |
| } |
| |
| pub fn provided_trait_methods(self, id: DefId) -> impl 'tcx + Iterator<Item = &'tcx AssocItem> { |
| self.associated_items(id) |
| .in_definition_order() |
| .filter(move |item| item.is_fn() && item.defaultness(self).has_value()) |
| } |
| |
| pub fn repr_options_of_def(self, did: LocalDefId) -> ReprOptions { |
| let mut flags = ReprFlags::empty(); |
| let mut size = None; |
| let mut max_align: Option<Align> = None; |
| let mut min_pack: Option<Align> = None; |
| |
| // Generate a deterministically-derived seed from the item's path hash |
| // to allow for cross-crate compilation to actually work |
| let mut field_shuffle_seed = self.def_path_hash(did.to_def_id()).0.to_smaller_hash(); |
| |
| // If the user defined a custom seed for layout randomization, xor the item's |
| // path hash with the user defined seed, this will allowing determinism while |
| // still allowing users to further randomize layout generation for e.g. fuzzing |
| if let Some(user_seed) = self.sess.opts.unstable_opts.layout_seed { |
| field_shuffle_seed ^= user_seed; |
| } |
| |
| if let Some(reprs) = |
| find_attr!(self.get_all_attrs(did), AttributeKind::Repr { reprs, .. } => reprs) |
| { |
| for (r, _) in reprs { |
| flags.insert(match *r { |
| attr::ReprRust => ReprFlags::empty(), |
| attr::ReprC => ReprFlags::IS_C, |
| attr::ReprPacked(pack) => { |
| min_pack = Some(if let Some(min_pack) = min_pack { |
| min_pack.min(pack) |
| } else { |
| pack |
| }); |
| ReprFlags::empty() |
| } |
| attr::ReprTransparent => ReprFlags::IS_TRANSPARENT, |
| attr::ReprSimd => ReprFlags::IS_SIMD, |
| attr::ReprInt(i) => { |
| size = Some(match i { |
| attr::IntType::SignedInt(x) => match x { |
| ast::IntTy::Isize => IntegerType::Pointer(true), |
| ast::IntTy::I8 => IntegerType::Fixed(Integer::I8, true), |
| ast::IntTy::I16 => IntegerType::Fixed(Integer::I16, true), |
| ast::IntTy::I32 => IntegerType::Fixed(Integer::I32, true), |
| ast::IntTy::I64 => IntegerType::Fixed(Integer::I64, true), |
| ast::IntTy::I128 => IntegerType::Fixed(Integer::I128, true), |
| }, |
| attr::IntType::UnsignedInt(x) => match x { |
| ast::UintTy::Usize => IntegerType::Pointer(false), |
| ast::UintTy::U8 => IntegerType::Fixed(Integer::I8, false), |
| ast::UintTy::U16 => IntegerType::Fixed(Integer::I16, false), |
| ast::UintTy::U32 => IntegerType::Fixed(Integer::I32, false), |
| ast::UintTy::U64 => IntegerType::Fixed(Integer::I64, false), |
| ast::UintTy::U128 => IntegerType::Fixed(Integer::I128, false), |
| }, |
| }); |
| ReprFlags::empty() |
| } |
| attr::ReprAlign(align) => { |
| max_align = max_align.max(Some(align)); |
| ReprFlags::empty() |
| } |
| }); |
| } |
| } |
| |
| // If `-Z randomize-layout` was enabled for the type definition then we can |
| // consider performing layout randomization |
| if self.sess.opts.unstable_opts.randomize_layout { |
| flags.insert(ReprFlags::RANDOMIZE_LAYOUT); |
| } |
| |
| // box is special, on the one hand the compiler assumes an ordered layout, with the pointer |
| // always at offset zero. On the other hand we want scalar abi optimizations. |
| let is_box = self.is_lang_item(did.to_def_id(), LangItem::OwnedBox); |
| |
| // This is here instead of layout because the choice must make it into metadata. |
| if is_box { |
| flags.insert(ReprFlags::IS_LINEAR); |
| } |
| |
| ReprOptions { int: size, align: max_align, pack: min_pack, flags, field_shuffle_seed } |
| } |
| |
| /// Look up the name of a definition across crates. This does not look at HIR. |
| pub fn opt_item_name(self, def_id: impl IntoQueryParam<DefId>) -> Option<Symbol> { |
| let def_id = def_id.into_query_param(); |
| if let Some(cnum) = def_id.as_crate_root() { |
| Some(self.crate_name(cnum)) |
| } else { |
| let def_key = self.def_key(def_id); |
| match def_key.disambiguated_data.data { |
| // The name of a constructor is that of its parent. |
| rustc_hir::definitions::DefPathData::Ctor => self |
| .opt_item_name(DefId { krate: def_id.krate, index: def_key.parent.unwrap() }), |
| _ => def_key.get_opt_name(), |
| } |
| } |
| } |
| |
| /// Look up the name of a definition across crates. This does not look at HIR. |
| /// |
| /// This method will ICE if the corresponding item does not have a name. In these cases, use |
| /// [`opt_item_name`] instead. |
| /// |
| /// [`opt_item_name`]: Self::opt_item_name |
| pub fn item_name(self, id: impl IntoQueryParam<DefId>) -> Symbol { |
| let id = id.into_query_param(); |
| self.opt_item_name(id).unwrap_or_else(|| { |
| bug!("item_name: no name for {:?}", self.def_path(id)); |
| }) |
| } |
| |
| /// Look up the name and span of a definition. |
| /// |
| /// See [`item_name`][Self::item_name] for more information. |
| pub fn opt_item_ident(self, def_id: impl IntoQueryParam<DefId>) -> Option<Ident> { |
| let def_id = def_id.into_query_param(); |
| let def = self.opt_item_name(def_id)?; |
| let span = self |
| .def_ident_span(def_id) |
| .unwrap_or_else(|| bug!("missing ident span for {def_id:?}")); |
| Some(Ident::new(def, span)) |
| } |
| |
| /// Look up the name and span of a definition. |
| /// |
| /// See [`item_name`][Self::item_name] for more information. |
| pub fn item_ident(self, def_id: impl IntoQueryParam<DefId>) -> Ident { |
| let def_id = def_id.into_query_param(); |
| self.opt_item_ident(def_id).unwrap_or_else(|| { |
| bug!("item_ident: no name for {:?}", self.def_path(def_id)); |
| }) |
| } |
| |
| pub fn opt_associated_item(self, def_id: DefId) -> Option<AssocItem> { |
| if let DefKind::AssocConst | DefKind::AssocFn | DefKind::AssocTy = self.def_kind(def_id) { |
| Some(self.associated_item(def_id)) |
| } else { |
| None |
| } |
| } |
| |
| /// If the `def_id` is an associated type that was desugared from a |
| /// return-position `impl Trait` from a trait, then provide the source info |
| /// about where that RPITIT came from. |
| pub fn opt_rpitit_info(self, def_id: DefId) -> Option<ImplTraitInTraitData> { |
| if let DefKind::AssocTy = self.def_kind(def_id) |
| && let AssocKind::Type { data: AssocTypeData::Rpitit(rpitit_info) } = |
| self.associated_item(def_id).kind |
| { |
| Some(rpitit_info) |
| } else { |
| None |
| } |
| } |
| |
| pub fn find_field_index(self, ident: Ident, variant: &VariantDef) -> Option<FieldIdx> { |
| variant.fields.iter_enumerated().find_map(|(i, field)| { |
| self.hygienic_eq(ident, field.ident(self), variant.def_id).then_some(i) |
| }) |
| } |
| |
| /// Returns `Some` if the impls are the same polarity and the trait either |
| /// has no items or is annotated `#[marker]` and prevents item overrides. |
| #[instrument(level = "debug", skip(self), ret)] |
| pub fn impls_are_allowed_to_overlap( |
| self, |
| def_id1: DefId, |
| def_id2: DefId, |
| ) -> Option<ImplOverlapKind> { |
| let impl1 = self.impl_trait_header(def_id1).unwrap(); |
| let impl2 = self.impl_trait_header(def_id2).unwrap(); |
| |
| let trait_ref1 = impl1.trait_ref.skip_binder(); |
| let trait_ref2 = impl2.trait_ref.skip_binder(); |
| |
| // If either trait impl references an error, they're allowed to overlap, |
| // as one of them essentially doesn't exist. |
| if trait_ref1.references_error() || trait_ref2.references_error() { |
| return Some(ImplOverlapKind::Permitted { marker: false }); |
| } |
| |
| match (impl1.polarity, impl2.polarity) { |
| (ImplPolarity::Reservation, _) | (_, ImplPolarity::Reservation) => { |
| // `#[rustc_reservation_impl]` impls don't overlap with anything |
| return Some(ImplOverlapKind::Permitted { marker: false }); |
| } |
| (ImplPolarity::Positive, ImplPolarity::Negative) |
| | (ImplPolarity::Negative, ImplPolarity::Positive) => { |
| // `impl AutoTrait for Type` + `impl !AutoTrait for Type` |
| return None; |
| } |
| (ImplPolarity::Positive, ImplPolarity::Positive) |
| | (ImplPolarity::Negative, ImplPolarity::Negative) => {} |
| }; |
| |
| let is_marker_impl = |trait_ref: TraitRef<'_>| self.trait_def(trait_ref.def_id).is_marker; |
| let is_marker_overlap = is_marker_impl(trait_ref1) && is_marker_impl(trait_ref2); |
| |
| if is_marker_overlap { |
| return Some(ImplOverlapKind::Permitted { marker: true }); |
| } |
| |
| None |
| } |
| |
| /// Returns `ty::VariantDef` if `res` refers to a struct, |
| /// or variant or their constructors, panics otherwise. |
| pub fn expect_variant_res(self, res: Res) -> &'tcx VariantDef { |
| match res { |
| Res::Def(DefKind::Variant, did) => { |
| let enum_did = self.parent(did); |
| self.adt_def(enum_did).variant_with_id(did) |
| } |
| Res::Def(DefKind::Struct | DefKind::Union, did) => self.adt_def(did).non_enum_variant(), |
| Res::Def(DefKind::Ctor(CtorOf::Variant, ..), variant_ctor_did) => { |
| let variant_did = self.parent(variant_ctor_did); |
| let enum_did = self.parent(variant_did); |
| self.adt_def(enum_did).variant_with_ctor_id(variant_ctor_did) |
| } |
| Res::Def(DefKind::Ctor(CtorOf::Struct, ..), ctor_did) => { |
| let struct_did = self.parent(ctor_did); |
| self.adt_def(struct_did).non_enum_variant() |
| } |
| _ => bug!("expect_variant_res used with unexpected res {:?}", res), |
| } |
| } |
| |
| /// Returns the possibly-auto-generated MIR of a [`ty::InstanceKind`]. |
| #[instrument(skip(self), level = "debug")] |
| pub fn instance_mir(self, instance: ty::InstanceKind<'tcx>) -> &'tcx Body<'tcx> { |
| match instance { |
| ty::InstanceKind::Item(def) => { |
| debug!("calling def_kind on def: {:?}", def); |
| let def_kind = self.def_kind(def); |
| debug!("returned from def_kind: {:?}", def_kind); |
| match def_kind { |
| DefKind::Const |
| | DefKind::Static { .. } |
| | DefKind::AssocConst |
| | DefKind::Ctor(..) |
| | DefKind::AnonConst |
| | DefKind::InlineConst => self.mir_for_ctfe(def), |
| // If the caller wants `mir_for_ctfe` of a function they should not be using |
| // `instance_mir`, so we'll assume const fn also wants the optimized version. |
| _ => self.optimized_mir(def), |
| } |
| } |
| ty::InstanceKind::VTableShim(..) |
| | ty::InstanceKind::ReifyShim(..) |
| | ty::InstanceKind::Intrinsic(..) |
| | ty::InstanceKind::FnPtrShim(..) |
| | ty::InstanceKind::Virtual(..) |
| | ty::InstanceKind::ClosureOnceShim { .. } |
| | ty::InstanceKind::ConstructCoroutineInClosureShim { .. } |
| | ty::InstanceKind::FutureDropPollShim(..) |
| | ty::InstanceKind::DropGlue(..) |
| | ty::InstanceKind::CloneShim(..) |
| | ty::InstanceKind::ThreadLocalShim(..) |
| | ty::InstanceKind::FnPtrAddrShim(..) |
| | ty::InstanceKind::AsyncDropGlueCtorShim(..) |
| | ty::InstanceKind::AsyncDropGlue(..) => self.mir_shims(instance), |
| } |
| } |
| |
| /// Gets all attributes with the given name. |
| pub fn get_attrs( |
| self, |
| did: impl Into<DefId>, |
| attr: Symbol, |
| ) -> impl Iterator<Item = &'tcx hir::Attribute> { |
| self.get_all_attrs(did).iter().filter(move |a: &&hir::Attribute| a.has_name(attr)) |
| } |
| |
| /// Gets all attributes. |
| /// |
| /// To see if an item has a specific attribute, you should use |
| /// [`rustc_hir::find_attr!`] so you can use matching. |
| pub fn get_all_attrs(self, did: impl Into<DefId>) -> &'tcx [hir::Attribute] { |
| let did: DefId = did.into(); |
| if let Some(did) = did.as_local() { |
| self.hir_attrs(self.local_def_id_to_hir_id(did)) |
| } else { |
| self.attrs_for_def(did) |
| } |
| } |
| |
| /// Get an attribute from the diagnostic attribute namespace |
| /// |
| /// This function requests an attribute with the following structure: |
| /// |
| /// `#[diagnostic::$attr]` |
| /// |
| /// This function performs feature checking, so if an attribute is returned |
| /// it can be used by the consumer |
| pub fn get_diagnostic_attr( |
| self, |
| did: impl Into<DefId>, |
| attr: Symbol, |
| ) -> Option<&'tcx hir::Attribute> { |
| let did: DefId = did.into(); |
| if did.as_local().is_some() { |
| // it's a crate local item, we need to check feature flags |
| if rustc_feature::is_stable_diagnostic_attribute(attr, self.features()) { |
| self.get_attrs_by_path(did, &[sym::diagnostic, sym::do_not_recommend]).next() |
| } else { |
| None |
| } |
| } else { |
| // we filter out unstable diagnostic attributes before |
| // encoding attributes |
| debug_assert!(rustc_feature::encode_cross_crate(attr)); |
| self.attrs_for_def(did) |
| .iter() |
| .find(|a| matches!(a.path().as_ref(), [sym::diagnostic, a] if *a == attr)) |
| } |
| } |
| |
| pub fn get_attrs_by_path( |
| self, |
| did: DefId, |
| attr: &[Symbol], |
| ) -> impl Iterator<Item = &'tcx hir::Attribute> { |
| let filter_fn = move |a: &&hir::Attribute| a.path_matches(attr); |
| if let Some(did) = did.as_local() { |
| self.hir_attrs(self.local_def_id_to_hir_id(did)).iter().filter(filter_fn) |
| } else { |
| self.attrs_for_def(did).iter().filter(filter_fn) |
| } |
| } |
| |
| pub fn get_attr(self, did: impl Into<DefId>, attr: Symbol) -> Option<&'tcx hir::Attribute> { |
| if cfg!(debug_assertions) && !rustc_feature::is_valid_for_get_attr(attr) { |
| let did: DefId = did.into(); |
| bug!("get_attr: unexpected called with DefId `{:?}`, attr `{:?}`", did, attr); |
| } else { |
| self.get_attrs(did, attr).next() |
| } |
| } |
| |
| /// Determines whether an item is annotated with an attribute. |
| pub fn has_attr(self, did: impl Into<DefId>, attr: Symbol) -> bool { |
| self.get_attrs(did, attr).next().is_some() |
| } |
| |
| /// Determines whether an item is annotated with a multi-segment attribute |
| pub fn has_attrs_with_path(self, did: impl Into<DefId>, attrs: &[Symbol]) -> bool { |
| self.get_attrs_by_path(did.into(), attrs).next().is_some() |
| } |
| |
| /// Returns `true` if this is an `auto trait`. |
| pub fn trait_is_auto(self, trait_def_id: DefId) -> bool { |
| self.trait_def(trait_def_id).has_auto_impl |
| } |
| |
| /// Returns `true` if this is coinductive, either because it is |
| /// an auto trait or because it has the `#[rustc_coinductive]` attribute. |
| pub fn trait_is_coinductive(self, trait_def_id: DefId) -> bool { |
| self.trait_def(trait_def_id).is_coinductive |
| } |
| |
| /// Returns `true` if this is a trait alias. |
| pub fn trait_is_alias(self, trait_def_id: DefId) -> bool { |
| self.def_kind(trait_def_id) == DefKind::TraitAlias |
| } |
| |
| /// Arena-alloc of LayoutError for coroutine layout |
| fn layout_error(self, err: LayoutError<'tcx>) -> &'tcx LayoutError<'tcx> { |
| self.arena.alloc(err) |
| } |
| |
| /// Returns layout of a non-async-drop coroutine. Layout might be unavailable if the |
| /// coroutine is tainted by errors. |
| /// |
| /// Takes `coroutine_kind` which can be acquired from the `CoroutineArgs::kind_ty`, |
| /// e.g. `args.as_coroutine().kind_ty()`. |
| fn ordinary_coroutine_layout( |
| self, |
| def_id: DefId, |
| args: GenericArgsRef<'tcx>, |
| ) -> Result<&'tcx CoroutineLayout<'tcx>, &'tcx LayoutError<'tcx>> { |
| let coroutine_kind_ty = args.as_coroutine().kind_ty(); |
| let mir = self.optimized_mir(def_id); |
| let ty = || Ty::new_coroutine(self, def_id, args); |
| // Regular coroutine |
| if coroutine_kind_ty.is_unit() { |
| mir.coroutine_layout_raw().ok_or_else(|| self.layout_error(LayoutError::Unknown(ty()))) |
| } else { |
| // If we have a `Coroutine` that comes from an coroutine-closure, |
| // then it may be a by-move or by-ref body. |
| let ty::Coroutine(_, identity_args) = |
| *self.type_of(def_id).instantiate_identity().kind() |
| else { |
| unreachable!(); |
| }; |
| let identity_kind_ty = identity_args.as_coroutine().kind_ty(); |
| // If the types differ, then we must be getting the by-move body of |
| // a by-ref coroutine. |
| if identity_kind_ty == coroutine_kind_ty { |
| mir.coroutine_layout_raw() |
| .ok_or_else(|| self.layout_error(LayoutError::Unknown(ty()))) |
| } else { |
| assert_matches!(coroutine_kind_ty.to_opt_closure_kind(), Some(ClosureKind::FnOnce)); |
| assert_matches!( |
| identity_kind_ty.to_opt_closure_kind(), |
| Some(ClosureKind::Fn | ClosureKind::FnMut) |
| ); |
| self.optimized_mir(self.coroutine_by_move_body_def_id(def_id)) |
| .coroutine_layout_raw() |
| .ok_or_else(|| self.layout_error(LayoutError::Unknown(ty()))) |
| } |
| } |
| } |
| |
| /// Returns layout of a `async_drop_in_place::{closure}` coroutine |
| /// (returned from `async fn async_drop_in_place<T>(..)`). |
| /// Layout might be unavailable if the coroutine is tainted by errors. |
| fn async_drop_coroutine_layout( |
| self, |
| def_id: DefId, |
| args: GenericArgsRef<'tcx>, |
| ) -> Result<&'tcx CoroutineLayout<'tcx>, &'tcx LayoutError<'tcx>> { |
| let ty = || Ty::new_coroutine(self, def_id, args); |
| if args[0].has_placeholders() || args[0].has_non_region_param() { |
| return Err(self.layout_error(LayoutError::TooGeneric(ty()))); |
| } |
| let instance = InstanceKind::AsyncDropGlue(def_id, Ty::new_coroutine(self, def_id, args)); |
| self.mir_shims(instance) |
| .coroutine_layout_raw() |
| .ok_or_else(|| self.layout_error(LayoutError::Unknown(ty()))) |
| } |
| |
| /// Returns layout of a coroutine. Layout might be unavailable if the |
| /// coroutine is tainted by errors. |
| pub fn coroutine_layout( |
| self, |
| def_id: DefId, |
| args: GenericArgsRef<'tcx>, |
| ) -> Result<&'tcx CoroutineLayout<'tcx>, &'tcx LayoutError<'tcx>> { |
| if self.is_async_drop_in_place_coroutine(def_id) { |
| // layout of `async_drop_in_place<T>::{closure}` in case, |
| // when T is a coroutine, contains this internal coroutine's ptr in upvars |
| // and doesn't require any locals. Here is an `empty coroutine's layout` |
| let arg_cor_ty = args.first().unwrap().expect_ty(); |
| if arg_cor_ty.is_coroutine() { |
| let span = self.def_span(def_id); |
| let source_info = SourceInfo::outermost(span); |
| // Even minimal, empty coroutine has 3 states (RESERVED_VARIANTS), |
| // so variant_fields and variant_source_info should have 3 elements. |
| let variant_fields: IndexVec<VariantIdx, IndexVec<FieldIdx, CoroutineSavedLocal>> = |
| iter::repeat(IndexVec::new()).take(CoroutineArgs::RESERVED_VARIANTS).collect(); |
| let variant_source_info: IndexVec<VariantIdx, SourceInfo> = |
| iter::repeat(source_info).take(CoroutineArgs::RESERVED_VARIANTS).collect(); |
| let proxy_layout = CoroutineLayout { |
| field_tys: [].into(), |
| field_names: [].into(), |
| variant_fields, |
| variant_source_info, |
| storage_conflicts: BitMatrix::new(0, 0), |
| }; |
| return Ok(self.arena.alloc(proxy_layout)); |
| } else { |
| self.async_drop_coroutine_layout(def_id, args) |
| } |
| } else { |
| self.ordinary_coroutine_layout(def_id, args) |
| } |
| } |
| |
| /// Given the `DefId` of an impl, returns the `DefId` of the trait it implements. |
| /// If it implements no trait, returns `None`. |
| pub fn trait_id_of_impl(self, def_id: DefId) -> Option<DefId> { |
| self.impl_trait_ref(def_id).map(|tr| tr.skip_binder().def_id) |
| } |
| |
| /// If the given `DefId` is an associated item, returns the `DefId` and `DefKind` of the parent trait or impl. |
| pub fn assoc_parent(self, def_id: DefId) -> Option<(DefId, DefKind)> { |
| if !self.def_kind(def_id).is_assoc() { |
| return None; |
| } |
| let parent = self.parent(def_id); |
| let def_kind = self.def_kind(parent); |
| Some((parent, def_kind)) |
| } |
| |
| /// If the given `DefId` is an associated item of a trait, |
| /// returns the `DefId` of the trait; otherwise, returns `None`. |
| pub fn trait_of_assoc(self, def_id: DefId) -> Option<DefId> { |
| match self.assoc_parent(def_id) { |
| Some((id, DefKind::Trait)) => Some(id), |
| _ => None, |
| } |
| } |
| |
| /// If the given `DefId` is an associated item of an impl, |
| /// returns the `DefId` of the impl; otherwise returns `None`. |
| pub fn impl_of_assoc(self, def_id: DefId) -> Option<DefId> { |
| match self.assoc_parent(def_id) { |
| Some((id, DefKind::Impl { .. })) => Some(id), |
| _ => None, |
| } |
| } |
| |
| /// If the given `DefId` is an associated item of an inherent impl, |
| /// returns the `DefId` of the impl; otherwise, returns `None`. |
| pub fn inherent_impl_of_assoc(self, def_id: DefId) -> Option<DefId> { |
| match self.assoc_parent(def_id) { |
| Some((id, DefKind::Impl { of_trait: false })) => Some(id), |
| _ => None, |
| } |
| } |
| |
| /// If the given `DefId` is an associated item of a trait impl, |
| /// returns the `DefId` of the impl; otherwise, returns `None`. |
| pub fn trait_impl_of_assoc(self, def_id: DefId) -> Option<DefId> { |
| match self.assoc_parent(def_id) { |
| Some((id, DefKind::Impl { of_trait: true })) => Some(id), |
| _ => None, |
| } |
| } |
| |
| pub fn is_exportable(self, def_id: DefId) -> bool { |
| self.exportable_items(def_id.krate).contains(&def_id) |
| } |
| |
| /// Check if the given `DefId` is `#\[automatically_derived\]`, *and* |
| /// whether it was produced by expanding a builtin derive macro. |
| pub fn is_builtin_derived(self, def_id: DefId) -> bool { |
| if self.is_automatically_derived(def_id) |
| && let Some(def_id) = def_id.as_local() |
| && let outer = self.def_span(def_id).ctxt().outer_expn_data() |
| && matches!(outer.kind, ExpnKind::Macro(MacroKind::Derive, _)) |
| && find_attr!( |
| self.get_all_attrs(outer.macro_def_id.unwrap()), |
| AttributeKind::RustcBuiltinMacro { .. } |
| ) |
| { |
| true |
| } else { |
| false |
| } |
| } |
| |
| /// Check if the given `DefId` is `#\[automatically_derived\]`. |
| pub fn is_automatically_derived(self, def_id: DefId) -> bool { |
| find_attr!(self.get_all_attrs(def_id), AttributeKind::AutomaticallyDerived(..)) |
| } |
| |
| /// Looks up the span of `impl_did` if the impl is local; otherwise returns `Err` |
| /// with the name of the crate containing the impl. |
| pub fn span_of_impl(self, impl_def_id: DefId) -> Result<Span, Symbol> { |
| if let Some(impl_def_id) = impl_def_id.as_local() { |
| Ok(self.def_span(impl_def_id)) |
| } else { |
| Err(self.crate_name(impl_def_id.krate)) |
| } |
| } |
| |
| /// Hygienically compares a use-site name (`use_name`) for a field or an associated item with |
| /// its supposed definition name (`def_name`). The method also needs `DefId` of the supposed |
| /// definition's parent/scope to perform comparison. |
| pub fn hygienic_eq(self, use_ident: Ident, def_ident: Ident, def_parent_def_id: DefId) -> bool { |
| // We could use `Ident::eq` here, but we deliberately don't. The identifier |
| // comparison fails frequently, and we want to avoid the expensive |
| // `normalize_to_macros_2_0()` calls required for the span comparison whenever possible. |
| use_ident.name == def_ident.name |
| && use_ident |
| .span |
| .ctxt() |
| .hygienic_eq(def_ident.span.ctxt(), self.expn_that_defined(def_parent_def_id)) |
| } |
| |
| pub fn adjust_ident(self, mut ident: Ident, scope: DefId) -> Ident { |
| ident.span.normalize_to_macros_2_0_and_adjust(self.expn_that_defined(scope)); |
| ident |
| } |
| |
| // FIXME(vincenzopalazzo): move the HirId to a LocalDefId |
| pub fn adjust_ident_and_get_scope( |
| self, |
| mut ident: Ident, |
| scope: DefId, |
| block: hir::HirId, |
| ) -> (Ident, DefId) { |
| let scope = ident |
| .span |
| .normalize_to_macros_2_0_and_adjust(self.expn_that_defined(scope)) |
| .and_then(|actual_expansion| actual_expansion.expn_data().parent_module) |
| .unwrap_or_else(|| self.parent_module(block).to_def_id()); |
| (ident, scope) |
| } |
| |
| /// Checks whether this is a `const fn`. Returns `false` for non-functions. |
| /// |
| /// Even if this returns `true`, constness may still be unstable! |
| #[inline] |
| pub fn is_const_fn(self, def_id: DefId) -> bool { |
| matches!( |
| self.def_kind(def_id), |
| DefKind::Fn | DefKind::AssocFn | DefKind::Ctor(_, CtorKind::Fn) | DefKind::Closure |
| ) && self.constness(def_id) == hir::Constness::Const |
| } |
| |
| /// Whether this item is conditionally constant for the purposes of the |
| /// effects implementation. |
| /// |
| /// This roughly corresponds to all const functions and other callable |
| /// items, along with const impls and traits, and associated types within |
| /// those impls and traits. |
| pub fn is_conditionally_const(self, def_id: impl Into<DefId>) -> bool { |
| let def_id: DefId = def_id.into(); |
| match self.def_kind(def_id) { |
| DefKind::Impl { of_trait: true } => { |
| let header = self.impl_trait_header(def_id).unwrap(); |
| header.constness == hir::Constness::Const |
| && self.is_const_trait(header.trait_ref.skip_binder().def_id) |
| } |
| DefKind::Fn | DefKind::Ctor(_, CtorKind::Fn) => { |
| self.constness(def_id) == hir::Constness::Const |
| } |
| DefKind::Trait => self.is_const_trait(def_id), |
| DefKind::AssocTy => { |
| let parent_def_id = self.parent(def_id); |
| match self.def_kind(parent_def_id) { |
| DefKind::Impl { of_trait: false } => false, |
| DefKind::Impl { of_trait: true } | DefKind::Trait => { |
| self.is_conditionally_const(parent_def_id) |
| } |
| _ => bug!("unexpected parent item of associated type: {parent_def_id:?}"), |
| } |
| } |
| DefKind::AssocFn => { |
| let parent_def_id = self.parent(def_id); |
| match self.def_kind(parent_def_id) { |
| DefKind::Impl { of_trait: false } => { |
| self.constness(def_id) == hir::Constness::Const |
| } |
| DefKind::Impl { of_trait: true } | DefKind::Trait => { |
| self.is_conditionally_const(parent_def_id) |
| } |
| _ => bug!("unexpected parent item of associated fn: {parent_def_id:?}"), |
| } |
| } |
| DefKind::OpaqueTy => match self.opaque_ty_origin(def_id) { |
| hir::OpaqueTyOrigin::FnReturn { parent, .. } => self.is_conditionally_const(parent), |
| hir::OpaqueTyOrigin::AsyncFn { .. } => false, |
| // FIXME(const_trait_impl): ATPITs could be conditionally const? |
| hir::OpaqueTyOrigin::TyAlias { .. } => false, |
| }, |
| DefKind::Closure => { |
| // Closures and RPITs will eventually have const conditions |
| // for `[const]` bounds. |
| false |
| } |
| DefKind::Ctor(_, CtorKind::Const) |
| | DefKind::Impl { of_trait: false } |
| | DefKind::Mod |
| | DefKind::Struct |
| | DefKind::Union |
| | DefKind::Enum |
| | DefKind::Variant |
| | DefKind::TyAlias |
| | DefKind::ForeignTy |
| | DefKind::TraitAlias |
| | DefKind::TyParam |
| | DefKind::Const |
| | DefKind::ConstParam |
| | DefKind::Static { .. } |
| | DefKind::AssocConst |
| | DefKind::Macro(_) |
| | DefKind::ExternCrate |
| | DefKind::Use |
| | DefKind::ForeignMod |
| | DefKind::AnonConst |
| | DefKind::InlineConst |
| | DefKind::Field |
| | DefKind::LifetimeParam |
| | DefKind::GlobalAsm |
| | DefKind::SyntheticCoroutineBody => false, |
| } |
| } |
| |
| #[inline] |
| pub fn is_const_trait(self, def_id: DefId) -> bool { |
| self.trait_def(def_id).constness == hir::Constness::Const |
| } |
| |
| #[inline] |
| pub fn is_const_default_method(self, def_id: DefId) -> bool { |
| matches!(self.trait_of_assoc(def_id), Some(trait_id) if self.is_const_trait(trait_id)) |
| } |
| |
| pub fn impl_method_has_trait_impl_trait_tys(self, def_id: DefId) -> bool { |
| if self.def_kind(def_id) != DefKind::AssocFn { |
| return false; |
| } |
| |
| let Some(item) = self.opt_associated_item(def_id) else { |
| return false; |
| }; |
| if item.container != ty::AssocItemContainer::Impl { |
| return false; |
| } |
| |
| let Some(trait_item_def_id) = item.trait_item_def_id else { |
| return false; |
| }; |
| |
| return !self |
| .associated_types_for_impl_traits_in_associated_fn(trait_item_def_id) |
| .is_empty(); |
| } |
| } |
| |
| pub fn provide(providers: &mut Providers) { |
| closure::provide(providers); |
| context::provide(providers); |
| erase_regions::provide(providers); |
| inhabitedness::provide(providers); |
| util::provide(providers); |
| print::provide(providers); |
| super::util::bug::provide(providers); |
| *providers = Providers { |
| trait_impls_of: trait_def::trait_impls_of_provider, |
| incoherent_impls: trait_def::incoherent_impls_provider, |
| trait_impls_in_crate: trait_def::trait_impls_in_crate_provider, |
| traits: trait_def::traits_provider, |
| vtable_allocation: vtable::vtable_allocation_provider, |
| ..*providers |
| }; |
| } |
| |
| /// A map for the local crate mapping each type to a vector of its |
| /// inherent impls. This is not meant to be used outside of coherence; |
| /// rather, you should request the vector for a specific type via |
| /// `tcx.inherent_impls(def_id)` so as to minimize your dependencies |
| /// (constructing this map requires touching the entire crate). |
| #[derive(Clone, Debug, Default, HashStable)] |
| pub struct CrateInherentImpls { |
| pub inherent_impls: FxIndexMap<LocalDefId, Vec<DefId>>, |
| pub incoherent_impls: FxIndexMap<SimplifiedType, Vec<LocalDefId>>, |
| } |
| |
| #[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, TyEncodable, HashStable)] |
| pub struct SymbolName<'tcx> { |
| /// `&str` gives a consistent ordering, which ensures reproducible builds. |
| pub name: &'tcx str, |
| } |
| |
| impl<'tcx> SymbolName<'tcx> { |
| pub fn new(tcx: TyCtxt<'tcx>, name: &str) -> SymbolName<'tcx> { |
| SymbolName { name: tcx.arena.alloc_str(name) } |
| } |
| } |
| |
| impl<'tcx> fmt::Display for SymbolName<'tcx> { |
| fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result { |
| fmt::Display::fmt(&self.name, fmt) |
| } |
| } |
| |
| impl<'tcx> fmt::Debug for SymbolName<'tcx> { |
| fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result { |
| fmt::Display::fmt(&self.name, fmt) |
| } |
| } |
| |
| /// The constituent parts of a type level constant of kind ADT or array. |
| #[derive(Copy, Clone, Debug, HashStable)] |
| pub struct DestructuredConst<'tcx> { |
| pub variant: Option<VariantIdx>, |
| pub fields: &'tcx [ty::Const<'tcx>], |
| } |